Chapter 10
File Systems and
bile Objects

S Mobile Computing
srove Summer 2002

Overview

o

Y
Y
Y
o

+ File Systems
+ Databases

» Distributed Objects in Ad-Hoc Networks

* Arrow Protocol
* Global Variable in Mobile Ad-Hoc Network

[Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/2

&

File systems - Motivation

>

o

.1/

Y
Y
o

i

Goal

— efficient and transparent access to shared files within a mobile
environment while maintaining data consistency

Problems
— limited resources of mobile computers (memory, CPU, ...)
— low bandwidth, variable bandwidth, temporary disconnection

— high heterogeneity of hardware and software components (no standard
PC architecture)

— wireless network resources and mobile computer are not very reliable

— standard file systems (e.g. NFS) are very inefficient, almost unusable
Solutions

— replication of data (copying, cloning, caching)

— data collection in advance (hoarding, pre-fetching)

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/3

File systems - consistency problems

O >

Y
Y
o

* A central problem of distributed, loosely coupled systems
— are all views on data the same?
— how and when should changes be propagated to what users?
« Strong consistency

— many algorithms offering strong consistency like in database systems
(via atomic updates) cannot be used in mobile environments

— invalidation of data located in caches through a server is very
problematic if the mobile computer is currently not connected to the
network

* Weak consistency

— occasional inconsistencies have to be tolerated, but conflict resolution
strategies must be applied afterwards to reach consistency again

Conflict detection
— content independent: version numbering, time-stamps
— content dependent: dependency graphs

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/4

&

.1/

File system variables

o >

Y
Y
o

+ Client/Server or Peer-to-Peer relations

» Support in the fixed network and/or mobile computers

* One file system (or namespace) or several file systems
* Transparency

— hide the mobility support, applications on mobile computers should not
notice the mobility

— user should not notice additional mechanisms needed
» Optimistic or pessimistic consistency model
« Caching and Pre-fetching
— bytes, paragraphs, single files, directories, subtrees, partitions, ...
— permanent or only at certain points in time
Data management
Conflict solving

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/5

E_L_/’J

Coda
o 1 P »0
« Application transparent extensions of client and server
— changes in the cache manager of a client
— applications use cache replicates of files
— extensive, transparent collection of data in advance for possible future
use (,hoarding®)
+ Consistency

— system keeps a record of changes in files and compares files after
reconnection

— if different users have changed the same file a manual reintegration of
the file into the system is necessary

— optimistic approach, coarse-grained (file size)

mobile client
Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/6

Coda — some functionality

o >

Y
Y
o

strong

* Hoarding » States of a client
— user can pre-determine a file list
with priorities
— contents of the cache determined
by the list and LRU strategy
(Least Recently Used)
— explicit pre-fetching possible
— periodic updating
+ Comparison of files disconnection
— asynchronous, background
— system weighs speed of updating
against minimization of network
traffic
+ Cache misses disconnection
— modeling of user patience: how
long can a user wait for data
without an error message?
— function of file size and bandwidth

&

\
i Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/7

Coda Transaction Mode

o » » »0
File 1 File 2
v,=2 v,=3
Vi+tVv,=5 VitVv,=5
user 1 user 2
Vy = 4 Vv, =
\ 4 v
File 1 File 2
v,=4 v,=4
Vitv,=7 vV,+V,=6

File check-in is not a problem
Solution: transaction mode as an option in Coda

L]
]
\
i Distributed Computing Group MOBILE COMPUTING ~R. Wattenhofer 10/8

&

Little Work

o

Tl

Y
Y
Y
o

Another extension of AFS
Only changes in the cache manager of the client
Connection modes:

Connected | Partially Disconnected

Connected

Fetch only

Method normal delayed write | optimistic abort at cache
to the server replication of files | miss
Network continuous continuous connection on none
requirements | high bandwidth demand
bandwidth

Connection | Office,
Example WLAN

packet radio cellular systems | independent
(e.g., GSM) with
costs per call

o
\[@ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/9

File systems — more examples

o >

Y
Y
o

* Ficus
— not a client/server approach

— use of ,gossip*“ protocols: a mobile computer does not necessarily
need to have direct connection to a server, with the help of other
mobile computers updates can be propagated through the network

— optimistic approach based on replicates
— detection of write conflicts, conflict resolution on directory level

* Mlo-NFS (Mobile Integration of NFS)
— NFS extension
— pessimistic approach: only token holder can write
— Three modes: connected, loosely connected, disconnected

l

g
\J Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/10

[#

)

Database systems in mobile environments

>

o

> > »0

* Request processing

— power conserving, location dependent, cost efficient
* Replication management

— similar to file systems
* Location management

— tracking of mobile users to provide replicated or location dependent
data in time at the right place (minimize access delays)

— example: with the help of the VLR (Visitor Location Register) in
GSM a mobile user can find a local towing service
» Transaction processing

— “mobile” transactions can not necessarily rely on the same models
as transactions over fixed networks (ACID: atomicity, consistency,
isolation, durability)

— therefore models for “weak” transaction

-\L
@ Distributed Computing Group MOBILE COMPUTING ~R. Wattenhofer 10/11

Mobile Objects in Ad-Hoc Networks

o

Y
Y
o

Where is the
token/object?

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/12

The Arrow Protocol

o >

Y
Y
o

e\

+ Build a spanning tree for each token/object \‘)

+ Links of spanning tree are directed (“Arrows”) that point towards the
node that currently has the token/object

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/13

Synchronize Access to Mobile Object

o >

Y
Y
o

Need the file

Me too!

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/14

Requests are queued and object/token passed along path

O > »0

Join Queue = Inform Tail

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/15

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/16

Initialization: Spanning Tree

o >

Y

Initialization: Arrows

o >

Y
Y
o

R\

i

&L@‘ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

1017

B\

l@ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/18

|

New Request

Path Reversal

W

A0

&L@‘ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

10/19

W

A

(@ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/20

|

Path Reversal

R\

i

KL@‘ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/21

Path Reversal

B\

|

l@ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/22

Efficiency of Arrow Protocol

o >

Y
Y
o

+ Definition: Let the latency of a request be the number of hops the
request takes until it arrives at the token (or the end of the queue).

« Theorem: The latency of a request is bounded by the diameter of
the spanning tree.

* What if we have r simultaneous requests? We hope that most
requests will be queued locally.

» Definition: The cost of r simultaneous requests is the sum of the
latencies of the r requests.

+ Theorem: The competitive ratio of r simultaneous requests is log r.
. There is an almost matching lower bound of log r / loglog r.

A0

KL@‘ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/23

Example for Concurrent Requests

o >

Y
Y
o

W

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/24

Example for Concurrent Requests

o >

Example for Concurrent Requests

>

Y
Y
o

o

Y
Y
o

y\ “f-,ry\
‘\\-.. Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/25 ‘\\.

R\

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/26

Example for Concurrent Requests Example for Concurrent Requests

O > > »0 O > > 2%

N\ N\

‘\\.. Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/27 ‘\\. Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/28

Example for Concurrent Requests

o >

Y
Y
o

é First in queue

KL@‘ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/29

R\

Behind red

Paths taken by requests

B\

&L@‘ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/30

Roadmap of proof of log r competitivity

O > »0

* Upper bound on Cost of Arrow: Nearest Neighbor characterization
of order of queuing

+ The nearest neighbor TSP heuristic is log r competitive.
* Lower bound on cost for optimal offline algorithm

* On the other hand, there is a worst-case example whose cost is
log r / loglog r higher than the optimal offline cost.

* Thus, the competitive ratio is almost tight.

+ Open Problem: Dynamic analysis of arrow protocol.

W

KL@‘ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/31

Global Variable in Mobile Ad-Hoc Network

O > 2%

+ Application: Sequence of read / write requests from mobile node to
global object. Each processor decides solely based on its local
knowledge.

+ |dea: Use a variant of the arrow protocol to find a copy of the object
and replicate the object with each read. A write should then
invalidate all replicas.

* Node v writes to variable x: Node v creates (or updates) replica of x
in v, and invalidates all other replicas.

* Node v reads variable x: Node v reads the closest replica of x and
creates copies in every node of the tree on the path back to v.

W

&L@‘ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/32

Example and Analysis

>
>

o

>
1

»0

, read (v,4), write (v)

Consider phase write (v,), read (v,), read (v,)

[Meyer auf der Heide]

Example and Analysis

>
>

Consider phase write (v,),

o

>
e

»O

,read (v,), ..., read (v,_,), write (v,)

V4

A0 A
\[@ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/33 \J Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/34
Example and Analysis Example and Analysis
o - » »O o 1 > »O0
Consider phase write (v,), ,read (v,), ..., read (v,_,), write (v,) Consider phase write (v,), read (v,), read (v,), ... , read (v,), write (v)
2 Vv,
Vo Vo
Vo
\i:_ \l:_
D as
\[@ Distributed Computing Group MOBILE COMPUTING ~R. Wattenhofer 10/35 \| Distributed Computing Group MOBILE COMPUTING ~R. Wattenhofer 10/36

Example and Analysis

O > > »0

Consider phase write (v;), read (v,), read (v,), ... , read (v, 4), write (v,)

Vi
Vo
Va
N\
*’KI |L—@ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/37

Example and Analysis

O > > »O

Consider phase write (v,), read (v,), read (vy), ... , read (v,,), write (v)

S8

W

R T=h Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/38
= puing Groue

Example and Analysis

O > > »0

Consider phase write (vy), read (v,), read (v,), ... , read (v,,), write (v)

Vi

V3
v
*’KI |L—@ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/39

Scheme is 3-competitive (for a fixed tree)

O > > 2%

Consider phase write (v,), read (v,), read (v,), ... , read (v,,), write (v)

<

« Each strategy has to use each link of the red subtree at least once.
« Our strategy uses each of these links at most three times.

s

[i) Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/40
\.E puting Group

