
Chapter 10
File Systems and

Mobile Objects
Mobile Computing

Summer 2002
Distributed
Computing

Group

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/2

• File Systems
• Databases

• Distributed Objects in Ad-Hoc Networks
• Arrow Protocol
• Global Variable in Mobile Ad-Hoc Network

Overview

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/3

File systems - Motivation

• Goal
– efficient and transparent access to shared files within a mobile

environment while maintaining data consistency
• Problems

– limited resources of mobile computers (memory, CPU, ...)
– low bandwidth, variable bandwidth, temporary disconnection
– high heterogeneity of hardware and software components (no standard

PC architecture)
– wireless network resources and mobile computer are not very reliable
– standard file systems (e.g. NFS) are very inefficient, almost unusable

• Solutions
– replication of data (copying, cloning, caching)
– data collection in advance (hoarding, pre-fetching)

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/4

File systems - consistency problems

• A central problem of distributed, loosely coupled systems
– are all views on data the same?
– how and when should changes be propagated to what users?

• Strong consistency
– many algorithms offering strong consistency like in database systems

(via atomic updates) cannot be used in mobile environments
– invalidation of data located in caches through a server is very

problematic if the mobile computer is currently not connected to the
network

• Weak consistency
– occasional inconsistencies have to be tolerated, but conflict resolution

strategies must be applied afterwards to reach consistency again
• Conflict detection

– content independent: version numbering, time-stamps
– content dependent: dependency graphs

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/5

File system variables

• Client/Server or Peer-to-Peer relations
• Support in the fixed network and/or mobile computers
• One file system (or namespace) or several file systems
• Transparency

– hide the mobility support, applications on mobile computers should not
notice the mobility

– user should not notice additional mechanisms needed
• Optimistic or pessimistic consistency model
• Caching and Pre-fetching

– bytes, paragraphs, single files, directories, subtrees, partitions, ...
– permanent or only at certain points in time

• Data management
• Conflict solving

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/6

mobile client

Coda

• Application transparent extensions of client and server
– changes in the cache manager of a client
– applications use cache replicates of files
– extensive, transparent collection of data in advance for possible future

use („hoarding“)
• Consistency

– system keeps a record of changes in files and compares files after
reconnection

– if different users have changed the same file a manual reintegration of
the file into the system is necessary

– optimistic approach, coarse-grained (file size)

cacheapplication server

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/7

Coda – some functionality

hoarding

write
disconnected

emulating

disconnection

disconnection

connection

strong
connection

weak
connection

• Hoarding
– user can pre-determine a file list

with priorities
– contents of the cache determined

by the list and LRU strategy
(Least Recently Used)

– explicit pre-fetching possible
– periodic updating

• Comparison of files
– asynchronous, background
– system weighs speed of updating

against minimization of network
traffic

• Cache misses
– modeling of user patience: how

long can a user wait for data
without an error message?

– function of file size and bandwidth

• States of a client

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/8

Coda Transaction Mode

v1 = 2
v1 + v2 = 5

v2 = 3
v1 + v2 = 5

File 1 File 2

v1 = 4
v1 + v2 = 7

v2 = 4
v1 + v2 = 6

File 1 File 2

user 1
v1 := 4

user 2
v2 := 4

• File check-in is not a problem
• Solution: transaction mode as an option in Coda

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/9

Little Work

• Another extension of AFS
• Only changes in the cache manager of the client
• Connection modes:

 Connected Partially
Connected

Fetch only Disconnected

Method normal delayed write
to the server

optimistic
replication of files

abort at cache
miss

Network
requirements

continuous
high
bandwidth

continuous
bandwidth

connection on
demand

none

Connection
Example

Office,
WLAN

packet radio cellular systems
(e.g., GSM) with
costs per call

independent

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/10

File systems – more examples

• Ficus
– not a client/server approach
– use of „gossip“ protocols: a mobile computer does not necessarily

need to have direct connection to a server, with the help of other
mobile computers updates can be propagated through the network

– optimistic approach based on replicates
– detection of write conflicts, conflict resolution on directory level

• MIo-NFS (Mobile Integration of NFS)
– NFS extension
– pessimistic approach: only token holder can write
– Three modes: connected, loosely connected, disconnected

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/11

Database systems in mobile environments

• Request processing
– power conserving, location dependent, cost efficient

• Replication management
– similar to file systems

• Location management
– tracking of mobile users to provide replicated or location dependent

data in time at the right place (minimize access delays)
– example: with the help of the VLR (Visitor Location Register) in

GSM a mobile user can find a local towing service
• Transaction processing

– “mobile” transactions can not necessarily rely on the same models
as transactions over fixed networks (ACID: atomicity, consistency,
isolation, durability)

– therefore models for “weak” transaction

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/12

Mobile Objects in Ad-Hoc Networks

Where is the
token/object?

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/13

The Arrow Protocol

• Build a spanning tree for each token/object
• Links of spanning tree are directed (“Arrows”) that point towards the

node that currently has the token/object

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/14

Need the file

Me too!

Me too!

Me too!

Synchronize Access to Mobile Object

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/15

Requests are queued and object/token passed along path

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/16

New tail

Join Queue = Inform Tail

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/17

Initialization: Spanning Tree

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/18

Initialization: Arrows

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/19

New Request

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/20

Path Reversal

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/21

Path Reversal

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/22

Path Reversal

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/23

Efficiency of Arrow Protocol

• Definition: Let the latency of a request be the number of hops the
request takes until it arrives at the token (or the end of the queue).

• Theorem: The latency of a request is bounded by the diameter of
the spanning tree.

• What if we have r simultaneous requests? We hope that most
requests will be queued locally.

• Definition: The cost of r simultaneous requests is the sum of the
latencies of the r requests.

• Theorem: The competitive ratio of r simultaneous requests is log r.
There is an almost matching lower bound of log r / loglog r.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/24

Example for Concurrent Requests

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/25

Example for Concurrent Requests

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/26

Example for Concurrent Requests

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/27

First in Queue

Example for Concurrent Requests

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/28

Example for Concurrent Requests

First in queue

Behind red

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/29

Example for Concurrent Requests

First in queue

Behind red

Behind green

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/30

Paths taken by requests

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/31

Roadmap of proof of log r competitivity

• Upper bound on Cost of Arrow: Nearest Neighbor characterization
of order of queuing

• The nearest neighbor TSP heuristic is log r competitive.

• Lower bound on cost for optimal offline algorithm

• On the other hand, there is a worst-case example whose cost is
log r / loglog r higher than the optimal offline cost.

• Thus, the competitive ratio is almost tight.

• Open Problem: Dynamic analysis of arrow protocol.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/32

Global Variable in Mobile Ad-Hoc Network

• Application: Sequence of read / write requests from mobile node to
global object. Each processor decides solely based on its local
knowledge.

• Idea: Use a variant of the arrow protocol to find a copy of the object
and replicate the object with each read. A write should then
invalidate all replicas.

• Node v writes to variable x: Node v creates (or updates) replica of x
in v, and invalidates all other replicas.

• Node v reads variable x: Node v reads the closest replica of x and
creates copies in every node of the tree on the path back to v.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/33

Consider phase write (v0), read (v1), read (v2), ... , read (vk-1), write (vk)

v0

Example and Analysis

[Meyer auf der Heide]

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/34

Consider phase write (v0), read (v1), read (v2), ... , read (vk-1), write (vk)

v0

v1

Example and Analysis

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/35

Consider phase write (v0), read (v1), read (v2), ... , read (vk-1), write (vk)

v0

v1

Example and Analysis

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/36

Consider phase write (v0), read (v1), read (v2), ... , read (vk-1), write (vk)

v0

v1

v2

Example and Analysis

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/37

Consider phase write (v0), read (v1), read (v2), ... , read (vk-1), write (vk)

v0

v1

v2

Example and Analysis

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/38

Consider phase write (v0), read (v1), read (v2), ... , read (vk-1), write (vk)

v0

v1

v2

v3

Example and Analysis

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/39

Consider phase write (v0), read (v1), read (v2), ... , read (vk-1), write (vk)

v0

v1

v2

v3

vk

Example and Analysis

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/40

Consider phase write (v0), read (v1), read (v2), ... , read (vk-1), write (vk)

v0

v1

v2

v3

vk

Scheme is 3-competitive (for a fixed tree)

• Each strategy has to use each link of the red subtree at least once.
• Our strategy uses each of these links at most three times.

