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+ File Systems
+ Databases

» Distributed Objects in Ad-Hoc Networks

* Arrow Protocol
* Global Variable in Mobile Ad-Hoc Network
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File systems - Motivation
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Goal

— efficient and transparent access to shared files within a mobile
environment while maintaining data consistency

Problems
— limited resources of mobile computers (memory, CPU, ...)
— low bandwidth, variable bandwidth, temporary disconnection

— high heterogeneity of hardware and software components (no standard
PC architecture)

— wireless network resources and mobile computer are not very reliable

— standard file systems (e.g. NFS) are very inefficient, almost unusable
Solutions

— replication of data (copying, cloning, caching)

— data collection in advance (hoarding, pre-fetching)

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/3

File systems - consistency problems
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* A central problem of distributed, loosely coupled systems
— are all views on data the same?
— how and when should changes be propagated to what users?
« Strong consistency

— many algorithms offering strong consistency like in database systems
(via atomic updates) cannot be used in mobile environments

— invalidation of data located in caches through a server is very
problematic if the mobile computer is currently not connected to the
network

* Weak consistency

— occasional inconsistencies have to be tolerated, but conflict resolution
strategies must be applied afterwards to reach consistency again

Conflict detection
— content independent: version numbering, time-stamps
— content dependent: dependency graphs
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File system variables
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+ Client/Server or Peer-to-Peer relations

» Support in the fixed network and/or mobile computers

* One file system (or namespace) or several file systems
* Transparency

— hide the mobility support, applications on mobile computers should not
notice the mobility

— user should not notice additional mechanisms needed
» Optimistic or pessimistic consistency model
« Caching and Pre-fetching
— bytes, paragraphs, single files, directories, subtrees, partitions, ...
— permanent or only at certain points in time
Data management
Conflict solving
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Coda
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« Application transparent extensions of client and server
— changes in the cache manager of a client
— applications use cache replicates of files
— extensive, transparent collection of data in advance for possible future
use (,hoarding®)
+ Consistency

— system keeps a record of changes in files and compares files after
reconnection

— if different users have changed the same file a manual reintegration of
the file into the system is necessary

— optimistic approach, coarse-grained (file size)

mobile client
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Coda — some functionality
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* Hoarding » States of a client
— user can pre-determine a file list
with priorities
— contents of the cache determined
by the list and LRU strategy
(Least Recently Used)
— explicit pre-fetching possible
— periodic updating
+ Comparison of files disconnection
— asynchronous, background
— system weighs speed of updating
against minimization of network
traffic
+ Cache misses disconnection
— modeling of user patience: how
long can a user wait for data
without an error message?
— function of file size and bandwidth
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Coda Transaction Mode
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File 1 File 2
v,=2 v,=3
Vi+tVv,=5 VitVv,=5
user 1 user 2
Vy = 4 Vv, =
\ 4 v
File 1 File 2
v,=4 v,=4
Vitv,=7 vV,+V,=6

File check-in is not a problem
Solution: transaction mode as an option in Coda

L]
]
\
i Distributed Computing Group MOBILE COMPUTING ~R. Wattenhofer 10/8

&




Little Work
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Another extension of AFS
Only changes in the cache manager of the client
Connection modes:

Connected | Partially Disconnected

Connected

Fetch only

Method normal delayed write | optimistic abort at cache
to the server replication of files | miss
Network continuous continuous connection on none
requirements | high bandwidth demand
bandwidth

Connection | Office,
Example WLAN

packet radio cellular systems | independent
(e.g., GSM) with
costs per call
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File systems — more examples
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* Ficus
— not a client/server approach

— use of ,gossip*“ protocols: a mobile computer does not necessarily
need to have direct connection to a server, with the help of other
mobile computers updates can be propagated through the network

— optimistic approach based on replicates
— detection of write conflicts, conflict resolution on directory level

* Mlo-NFS (Mobile Integration of NFS)
— NFS extension
— pessimistic approach: only token holder can write
— Three modes: connected, loosely connected, disconnected
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Database systems in mobile environments
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* Request processing

— power conserving, location dependent, cost efficient
* Replication management

— similar to file systems
* Location management

— tracking of mobile users to provide replicated or location dependent
data in time at the right place (minimize access delays)

— example: with the help of the VLR (Visitor Location Register) in
GSM a mobile user can find a local towing service
» Transaction processing

— “mobile” transactions can not necessarily rely on the same models
as transactions over fixed networks (ACID: atomicity, consistency,
isolation, durability)

— therefore models for “weak” transaction
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Mobile Objects in Ad-Hoc Networks
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Where is the
token/object?
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The Arrow Protocol
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+ Build a spanning tree for each token/object \‘)

+ Links of spanning tree are directed (“Arrows”) that point towards the
node that currently has the token/object
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Synchronize Access to Mobile Object
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Need the file

Me too!
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Requests are queued and object/token passed along path
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Join Queue = Inform Tail
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Initialization: Spanning Tree
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Initialization: Arrows
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New Request

Path Reversal
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Path Reversal
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Path Reversal
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Efficiency of Arrow Protocol
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+ Definition: Let the latency of a request be the number of hops the
request takes until it arrives at the token (or the end of the queue).

« Theorem: The latency of a request is bounded by the diameter of
the spanning tree.

*  What if we have r simultaneous requests? We hope that most
requests will be queued locally.

» Definition: The cost of r simultaneous requests is the sum of the
latencies of the r requests.

+ Theorem: The competitive ratio of r simultaneous requests is log r.
. There is an almost matching lower bound of log r / loglog r.
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Example for Concurrent Requests
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Example for Concurrent Requests
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Example for Concurrent Requests Example for Concurrent Requests
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Example for Concurrent Requests
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é First in queue
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Behind red

Paths taken by requests
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Roadmap of proof of log r competitivity
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* Upper bound on Cost of Arrow: Nearest Neighbor characterization
of order of queuing

+ The nearest neighbor TSP heuristic is log r competitive.
* Lower bound on cost for optimal offline algorithm

* On the other hand, there is a worst-case example whose cost is
log r / loglog r higher than the optimal offline cost.

* Thus, the competitive ratio is almost tight.

+ Open Problem: Dynamic analysis of arrow protocol.
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Global Variable in Mobile Ad-Hoc Network
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+ Application: Sequence of read / write requests from mobile node to
global object. Each processor decides solely based on its local
knowledge.

+ |dea: Use a variant of the arrow protocol to find a copy of the object
and replicate the object with each read. A write should then
invalidate all replicas.

* Node v writes to variable x: Node v creates (or updates) replica of x
in v, and invalidates all other replicas.

* Node v reads variable x: Node v reads the closest replica of x and
creates copies in every node of the tree on the path back to v.
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Example and Analysis
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, read (v,4), write (v)

Consider phase write (v,), read (v,), read (v,)

[Meyer auf der Heide]

Example and Analysis
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Consider phase write (v,),
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,read (v,), ..., read (v,_,), write (v,)
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Example and Analysis Example and Analysis
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Consider phase write (v,), ,read (v,), ..., read (v,_,), write (v,) Consider phase write (v,), read (v,), read (v,), ... , read (v,), write (v)
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Example and Analysis
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Consider phase write (v;), read (v,), read (v,), ... , read (v, 4), write (v,)
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Example and Analysis
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Consider phase write (v,), read (v,), read (vy), ... , read (v,,), write (v)
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Example and Analysis
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Consider phase write (vy), read (v,), read (v,), ... , read (v,,), write (v)
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Scheme is 3-competitive (for a fixed tree)
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Consider phase write (v,), read (v,), read (v,), ... , read (v,,), write (v)
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« Each strategy has to use each link of the red subtree at least once.
« Our strategy uses each of these links at most three times.
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