Computational Thinking Sample Solutions to Exercise 3

1 Hamiltonian

a) We need to prove that we can solve an arbitrary instance of the Hamiltonian Cycle problem by solving instances of the Hamiltonian Path problem. Let $G=(V, E)$ be the input graph. For each edge $e=(u, v) \in E$, we construct a graph G^{\prime} as follows. We remove e from G and add two new nodes s and t and two new edges (s, u) and (v, t). We then search G^{\prime} for a Hamiltonian path. If a Hamiltonian path exists, it must have endpoints s and t, and together with edge e, it gives us a Hamiltonian Cycle in G. On the other hand, if a Hamiltonian cycle exists in G, then for each of its edges, our construction leads to a G^{\prime} containing a Hamiltonian path.
b) Let $G=(V, E)$ be an input of Hamiltonian Path. For every pair of vertices $u, v \in V$, we construct a graph G^{\prime} by adding the edge (u, v) to G and check if G^{\prime} contains a Hamiltonian cycle. If we find one, this gives us a Hamiltonian path in G since at most one of the cycle's edges was added. On the other hand, if a Hamiltonian path exists in G, the G^{\prime} we obtain by adding the edge between its endpoints contains a Hamilton cycle.

2 Circuit Complexity

a) The inclusion $N C^{i} \subset A C^{i}$ for $i \geq 0$ is obvious. To prove $A C^{i} \subset N C^{i+1}$ for $i \geq 0$, we need to replace gates with a large fan-in since these are not allowed in $N C^{i+1}$. A gate (AND or OR) with fan-in m can be replaced by a binary tree of the same gate with fan-in 2 . This tree will have a depth of $\log m$. Since m is no larger than the size of the circuit, the depth of the circuit increases at most by a factor of $\log m=\log (\operatorname{poly}(n))=\mathcal{O}(\log (n))$ through this transformation.
b) PARITY can be solved using a binary tree of XOR gates. (The XOR gates can be constructed from AND, OR and NOT.) Depending on if we are asking if the number of 1 s is even or odd, a NOT gate needs to be placed before the output. Since the depth of such a circuit is $\mathcal{O}(\log n)$, PARITY is in $N C^{1}$.
c) In $N C^{0}$, all gates have a fan-in of at most 2. That means an output bit in a circuit of depth d can only be connected to at most 2^{d} input bits. In particular, this number is constant when d is constant. Since the output of PARITY depends on all n input bits, it cannot be computed by a circuit in $N C^{0}$.
d) Let $x_{n} \ldots x_{1} y_{n} \ldots y_{1}$ denote the input and $z_{n+1} \ldots z_{1}$ the output. It is well known that two n-bit binary numbers can be summed by successively adding two bits and a possible carry bit from the previous addition. (This is a ripple-carry adder (RCA) consisting of a sequence
of n full adders.) If c_{k} denotes the carry bit from the k-th addition, this can be written as $z_{1}=x_{1} \oplus y_{1}, c_{1}=x_{1} \wedge y_{1}$,

$$
\begin{aligned}
& c_{k}=\left(c_{k-1} \wedge\left(x_{k} \vee y_{k}\right)\right) \vee\left(x_{k} \wedge y_{k}\right) \\
& z_{k}=x_{k} \oplus y_{k} \oplus c_{k}
\end{aligned}
$$

for $k=2, \ldots, n$, and $z_{n+1}=c_{n}$.
However, since every carry bit depends on the previous one, this would lead to a circuit of depth $\mathcal{O}(n)$. (In the RCA, each full adder uses the carry bit of the previous full adder as an input.) To find a circuit of constant depth, we would like to compute the carry bits c_{k} independently of each other. Note that the carry bit at position k is 1 if and only if a carry is generated at some position $i \leq k$ and is carried all the way to position k. This fact can be written as

$$
c_{k}=\bigvee_{1 \leq i \leq k}\left(x_{i} \wedge y_{i} \wedge \bigwedge_{i<j \leq k}\left(x_{j} \vee y_{j}\right)\right)
$$

Based on this, we can construct a circuit with constant depth and unbounded fan-in.
e) In binary addition, the first (most significant) bit of the result depends on all input bits. By the same reasoning as in c), this cannot be accomplished in a circuit with constant depth and fan-in of 2 .

