
Distributed
 Computing

Autumn Term 2020 Prof. R. Wattenhofer

Distributed Systems

Exam
Thursday, 28th of January 2021, 14:30 - 16:00

Do not open or turn before the exam starts!
Read the following instructions!

The exam takes 90 minutes and there is a total of 90 points. The maximum number
of points for each subtask is indicated in brackets. Justify all your answers unless
the task explicitly states otherwise. Mark drawings precisely.

Answers which we cannot read are not awarded any points!

At the beginning, fill in your name and student number in the corresponding fields
below. You should fill in your answers in the spaces provided on the exam. If you
need more space, we will provide extra paper for this. Please label each extra sheet
with your name and student number.

Family Name First Name Student Number

Task Achieved Points Maximum Points

1 - Choose the Correct Answer 24

2 - Asynchronous Byzantine Agreement 16

3 - Tree Quorum Systems 17

4 - Relationship Game 18

5 - Localization 15

Total 90

1 Choose the Correct Answer (24 points)

Each question has exactly one correct answer. Indicate your answer by checking the corre-
sponding circle. A correct answer gives 2 points, a wrong answer gives 0 points, and no answer
gives 0 points. You do not need to explain your answers.

a) In Paxos, if some servers store a command:

The command will be executed by those servers.

The command will be executed by all servers.

The command might be executed by all servers.

The command might be executed by some servers.

b) What is the minimum number of byzantine clients f that will cause Paxos to fail?

f = bn3 c
f = bn3 + 1c
f = 1

None of the above.

c) A consensus algorithm starting with input values of [0, 0, 0, 1, 0] terminated with node
values of [1, 1, 1, 1, 1]:

Violated the agreement property.

Violated the validity property.

Violated the termination property.

Did not violate any consensus properties.

d) If in the first phase of the King algorithm the first king is honest, then:

Every honest node will decide for the initial input of the king.

An honest node will propose a value in the first phase.

The king himself can change its own value in the first phase.

The nodes might change the value in future phases if there are other honest kings
later.

e) In a shared coin protocol:

It is impossible for some of the honest nodes to output 0 and for some honest
nodes to output 1.

It is required that with constant probability all honest nodes output 0, but not
necessarily for 1.

It is required that with constant probability all honest nodes output 1, but not
necessarily for 0.

None of the above.

f) In best-effort broadcast it is impossible for two honest nodes to:

Accept different values if the sender is honest.

Accept different values if the sender is dishonest.

Accept the same value if the sender is honest.

Accept the same value if the sender is dishonest.

g) In reliable broadcast:

All honest nodes accept at most one message.

All honest nodes accept at least one message.

All honest nodes echo at least one message.

It might happen that no honest node accepts a message.

h) Which of the following is true?

Bitcoin is more efficient than PBFT (in communication complexity).

In a synchronous network, PBFT satisfies termination and agreement, while
Bitcoin satisfies termination and probabilistic agreement.

In an asynchronous network, Bitcoin cannot guarantee the security of transacti-
ons (safety), while PBFT cannot guarantee progress (liveness).

All of the above.

i) In practice, a Bitcoin client executes a transaction tx when 6 blocks are built on top of
the block that contains the transaction tx. Assuming the network is partitioned, Bitcoin
satisfies:

Eventual consistency.

Availability.

All of the above.

None of the above.

j) As mentioned in the script, Bitcoin’s proof-of-work function is given by

Fd(c, x)→ SHA256(SHA256(c|x)) <
2224

d
,

where both challenge c and nonce x are bit strings, and difficulty d is a positive number.
What is the maximum probability that a random attempt at the proof-of-work function
is successful (at any difficulty)?

1

1
21,000,000

2−32

2−224

k) For the same dimension d, a (2, d)-mesh M(2, d), which has 2 nodes per dimension, has
exactly the same number of edges as:

The (2, d)-torus T (2, d).

The d-dimensional butterfly BF (d).

All of the above.

None of the above.

l) Which statement about the NTP algorithm is true?

NTP becomes more accurate if more nodes participate.

NTP becomes less accurate if the network delays in both directions are not equal.

NTP uses UDP because packets could be lost with TCP.

NTP is not possible over wireless connections.

SO
LU
TI
ON

Solutions

a) (3). Only the command that is stored by the majority of servers will eventually be stored
by all servers and executed. If a command is stored just on some servers it might or might
not be picked for execution.

b) (3). In Phase 2 or 3 the sole byzantine client could send a different command c to every
server.

c) (4). While the algorithm chose the minority value it satisfied all three consensus properties:
agreement, termination and validity. Validity property only requires that the chosen value
was one of the input values.

d) (3). If all other parties have input different from the king, one can think of as the case
where the king is dishonest and other parties have pre-agreement. Thus they will propose
this different value and the king himself will change his value.

where the bitstring is hardcoded in the protocol.

e) (4). A shared coin is a binary random variable shared among all nodes. It is 0 for all nodes
with constant probability and 1 for all nodes with constant probability. The shared coin
is allowed to fail (be 0 for some nodes and 1 for other nodes) with constant probability.

f) (1). Best-effort broadcast ensures that a message that is sent from a correct node u to
another correct node v will eventually be received and accepted by v.

g) (4). In reliable broadcast, if the sender is dishonest, the honest nodes may accept none,
one or multiple messages. On the one hand, if the sender does not send any messages,
the honest nodes will wait forever and never accept a message. On the other hand, if the
sender sends multiple messages, they will be echoed and accepted by all nodes.

h) (4). Reason: (1) Bitcoin requires only linear to the number of parties communication
complexity because the miner winning the hash race simply transmits the block in the
network, while PBFT requires at least quadratic communication complexity. (2) PBFT
satisfies all BA properties: agreement, termination and validity. Bitcoin on the other hand
satisfies termination because transactions are executed eventually, but the agreement is
probabilistic since the chain may be reverted by byzantine nodes. (3) In asynchrony, Bitcoin
cannot guarantee consistency hence loses safety, while BTC-PBFT cannot make progress
thus loses liveness.

i) (2). In Bitcoin nodes keep producing blocks when the network is partitioned, so availability
is satisfied. However, if the network is partitioned for long enough – more than 6 blocks
are produced in the partitions – then consistency is not satisfied as the transactions are
already executed.

j) (3). The SHA256 hash space is in the in {0, . . . , 2256−1}. The minimum possible difficulty
is 1. So, the right hand side of the PoW equation is 2224. Any number in the SHA256 hash
space being less than 2224 is 2−(256−224) = 2−32.

k) (1). If m = 2 (m, d)-torus and (m, d)-mesh are d-dimensional hypercubes and have exactly
the same structure. While the d-dimensional butterfly is said to effectively be an unrolled
hypercube it does have 2n+1n edges instead of the 2n−1n edges the hypercube has.

l) (2). The calculation of the propagation delay assumes that both are equal.

2 Asynchronous Byzantine Agreement (16 points)

Let’s consider the following protocol for solving asynchronous byzantine agreement.

Algorithm 1 Randomized Byzantine Agreement

1: vi ∈ {0, 1} input bit
2: round = 1
3: while true do
4: Broadcast myValue(vi, round)

Propose

5: Wait until n− f of myValue messages of current round arrived
6: if all received messages contain the same value v then
7: Broadcast propose(v, round)
8: else
9: Broadcast propose(⊥, round)

10: end if

Update

11: Wait until n− f of propose messages of current round arrived
12: if all received messages propose the same value v then
13: Broadcast myValue(v, round + 1)
14: Broadcast propose(v, round + 1)
15: Update vi = v, decide for v and terminate
16: else if there are at least f + 1 proposals for v then
17: Update vi = v
18: else
19: Update vi randomly, with Pr[vi = 0] = Pr[vi = 1] = 1/2
20: end if
21: round = round + 1
22: end while

Let’s assume four nodes P1, P2, P3 and P4 execute the above protocol, where P4 is byzantine,
i.e., we have n = 4 and f = 1.

a) [9 points] Continue the execution of the protocol in the following table where the nodes
start with the same input 0 in such a way that they finally decide for 1, i.e., the protocol
doesn’t achieve all-same validity.

In the column “P4 strategy”, write down which values P4 sends to each node. In the third
column of the table, in each propose round write down three values each node receives and
which value they propose. Similarly, in each update round write down three values that the
nodes receive, the value and in which line (15, 17, or 19) they update vi. Just fill in the
table, no need for additional explanations.

Hint. You can assume the local coins to be in favor of the adversary.

Round P4 strategy P1 P2 P3

broadcasts
Initial Setup sends 1 to all nodes 0 0 0

P4 receives
Propose proposes to P1 (, ,) (, ,) (, ,)
Round proposes to P2 proposes

proposes to P3

receives
P4 (, ,) (, ,) (, ,)

Update sends to P1 updates vi (and decides for)
Round sends to P2

sends to P3 in line

P4 receives
Propose proposes to P1 (, ,) (, ,) (, ,)
Round proposes to P2 proposes

proposes to P3

receives
(1,1,1) (1,1,1) (1,1,1)

Update - updates vi (and decides for)
Round 1 1 1

in line
15 15 15

b) [7 points] Continue the execution of the protocol in the following table where two honest
nodes decide for different values, i.e., the protocol doesn’t achieve agreement.

Round P4 strategy P1 P2 P3

broadcasts
Initial Setup sends 1 to all nodes 0 0 0

P4 receives
Propose proposes to P1 (, ,) (, ,) (, ,)
Round proposes to P2 proposes

proposes to P3

receives
P4 (, ,) (, ,) (, ,)

Update sends to P1 updates vi (and decides for)
Round sends to P2

sends to P3 in line

P4 receives
Propose proposes to P1 (, ,) (, ,) (, ,)
Round proposes to P2 proposes

proposes to P3

receives
(, ,) (, ,) (, ,)

Update - updates vi (and decides for)
Round

in line

SO
LU
TI
ON

a)
Round P4 strategy P1 P2 P3

broadcasts
Initial Setup sends 1 to all nodes 0 0 0

P4 receives
Propose proposes ⊥ to P1 (0,0,1) (0,0,1) (0,0,1)
Round proposes ⊥ to P2 proposes

proposes ⊥ to P3 ⊥ ⊥ ⊥
receives

P4 (⊥, ⊥,⊥) (⊥,⊥,⊥) (0,⊥,⊥)
Update sends 1 to P1 updates vi (and decides for)
Round sends 1 to P2 1 1 1

sends 1 to P3 in line
19 19 19

P4 receives
Propose proposes 1 to P1 (1,1,1) (1,1,1) (1,1,1)
Round proposes 1 to P1 proposes

proposes 1 to P1 1 1 1

receives
(1,1,1) (1,1,1) (1,1,1)

Update - updates vi (and decides for)
Round 1 1 1

in line
15 15 15

b) Round P4 strategy P1 P2 P3

broadcasts
Initial Setup sends 1 to all nodes 0 0 0

P4 receives
Propose proposes 0 to P1 (0,0,0) (0,0,0) (0,0,1)
Round proposes ⊥ to P2 proposes

proposes ⊥ to P3 0 0 ⊥
receives

P4 (0,0,0) (0,⊥,⊥) (0,⊥,⊥)
Update sends 1 to P1 updates vi (and decides for)
Round sends 1 to P2 0 1 1

sends 1 to P3 in line
15 19 19

P4 receives
Propose proposes 1 to P1 - (1,1,1) (1,1,1)
Round proposes 1 to P2 proposes

proposes 1 to P3 - 1 1

receives
- (1,1,1) (1,1,1)

Update - updates vi (and decides for)
Round - 1 1

in line
- 15 15

3 Tree Quorum Systems (17 points)

In the following we study the tree quorum system, where the servers are ordered in a binary
tree.

1

2

4

...
...

5

...
...

3

6

...
...

7

...
...

Let’s assume we have n = 2k − 1 servers. A quorum is chosen as follows: Start from the root of
the tree (the server with number 1) and follow some path towards a leaf. For example, for n = 7,
a possible quorum is the set {1, 2, 5}. We define a tree quorum system as a set of all possible
paths from the root to some leaf.

a) [3] Is the tree quorum system valid?

b) [6] What are load, work and resilience of the tree quorum system?

c) [8] Assume that every server works with probability 2/3 (and fails with probability 1/3).
What is the asymptotic failure probability of the tree quorum system?

SO
LU
TI
ON

a) Yes. All paths start from the root, so any two quorums intersect, i.e. they have the root
server in common.

b) Since the root server is part of any quorum, the load of the system is 1. Furthermore, since
any path from the root to a leaf has k = log(n + 1) nodes, the work is k = log(n + 1).
Finally, the resilience of the system is 0: if the root fails, then there is no quorum without
a failed node.

c) For depth 1 (only the root server), the failure probability is f = 1− p = 1/3. For depth 2,
if the root doesn’t fail, then both the left subtree and the right subtree must fail so that
the whole system fails. Hence we have f = 1/3 + 2/3 · (1/3)2 ≈ 0.407. Hence, for n −→∞,
we can calculate the asymptotic failure probability f recursively as follows:

f = 1/3 +
2

3
f2

⇔ 2

3
f2 − f +

1

3
= 0

2f2 − 3f + 1 = 0

f =
3±
√

9− 4 · 2 · 1
4

f = 1 ∧ f =
1

2

The series 0.333, 0.407, . . . converges to f = 1/2.

4 Relationship Game (18 points)

Alex and Billy are dating, but Alex likes hiking while Billy likes to go to the cinema. Doing the
preferred activity is enjoyable and is worth 1 happiness point to each of them (a = 1). As they
also like spending time together, if they end up doing the same activity each gets an additional
reward of 2 (t = 2). Both types of happiness rewards add up to a+ t.

a) [4] Write this game in matrix form.

b) [2] Identify the pure Nash equilibiria in this game (no explanation needed).

c) [7] What are the mixed Nash equilibria?

d) [2] What is the Optimistic Price of Anarchy (OPoA)?

e) [3] Assume non-negative a and t. What should be the relationship between a and t so
that each player would have a dominant strategy?

SO
LU
TI
ON

a)
Alex

Billy
Hiking Cinema

Hiking 3,2 1,1

Cinema 0,0 2,3

b) There are two pure Nash equilibria (Hiking, Hiking) and (Cinema, Cinema).

c) There is one mixed Nash equilibrium. Let’s say Billy picks Hiking with probability p and
Cinema with probability 1 − p. For the mixed Nash equilibrium Billy has to make Alex
indifferent to picking a particular action:

3p+ 1(1− p) = 0p+ 2(1− p)

p =
1

4

For Alex, the situation is symmetric. Thus, the resulting mixed Nash equilibria are ((34 -
Hiking, 1

4 - Cinema), (14 - Hiking, 3
4 - Cinema))

d) OPoA = NE+

SO = 5
5 = 1.

e) If a ≥ t always choosing the preferred activity becomes the dominant strategy for each
player because the other activity always results in less points regardless of the action of
the other player. (It is not expected to explain why a ≤ t is not a dominant strategy).

5 Localization (15 points)

We build a localization system using transmitters on the ground instead of satellites. We have
three transmitters A (at coordinates x = 0km, y = 0km), B (0km, 30km) and C (60km, 0km).
Each transmitter sends a strong and short radio transmission once per second at a random time
to avoid collisions with other transmitters. We know that radio signals can be received very
far due to signal reflections at the ionosphere. Assume messages travel with the speed of light
c = 3 ∗ 108m/s.

a) [3] What information must the radio transmission contain to allow the self-localization
of a receiver that does not know its time and location.

b) [6] Write down the system of equations to solve for the position (x, y) of a mobile handset
receiving these 3 messages.

Transmitter Measured transmission delay

A 53.10ms
B 53.14ms
C 53.10ms

c) [3] Below are two possible solutions for the equation system of b). Which solution is more
plausible for a receiver?

Position (x, y) Offset θ

(35km, 0km) 53ms
(-30km, -35km) 52.9ms

d) [3] We now deploy this system in all of Europe with a total of five transmitters. For
locations far from the transmitters we experience large localization errors. Why?

SO
LU
TI
ON

a) Needs a send timestamp and location of the transmitter or some identification of the
transmitter.

b) ‖(x, y)‖/c = 53.1ms− θ
‖(0km, 30km)− (x, y)‖/c = 53.14ms− θ
‖(60km, 0km)− (x, y)‖/c = 53.1ms− θ

c) The measured transmission delay is the same for A and B. The receiver has to be the same
distance from both. So position (30km, 0km) with offset 53ms would be correct. (35km,
0km) is close to it.

Or the residuals for both solutions can be calculated.

d) The signal is reflected on the ionosphere. So over long distances the signal does not travel
on a straight path. Therefore the transmission delay is longer than the direct path (that
might even go through the ground).

SO
LU
TI
ON

