
The Internet Computer

Yvonne Anne Pignolet (yvonneanne@dfinity.org)

Thomas Locher (thomas.locher@dfinity.org)

mailto:yvonneanne@dfinity.org
mailto:thomas.locher@dfinity.org

DFINITY Foundation

1600+ 100 000+ 250+

• emerged from early Ethereum community in 2015
• Swiss not-for-profit foundation, not a corporation
• world’s largest cryptography and blockchain RnD team
• 270+ team members globally

research papers academic citations technical patents

🇨🇭

About us
• PhD in Distributed Computing 2009
• 14 years in industrial research labs (IBM Research, ABB Corporate research)
• @DFINITY since January 2019 / 2021

1. What is the Internet Computer?  

2. Networking Layer 

3. Consensus Layer 

4. Message Routing Layer 

5. The Internet Computer Today

Outline

1. What is the Internet Computer Protocol?

Protocol to run any computation,
using blockchain technology for
decentralisation and security

ICP creates the 
Internet Computer blockchains 
 
Guarantees safety and liveness of
smart contract execution despite
Byzantine participants

Coordination of nodes in
independent datacenters,  
jointly performing any
computation for anyone Internet Computer

Public cyberspace

IP / Internet

Data Centers

ICP protocol

1.1 Internet Computer Protocol (ICP)

Canister smart contract

Data: Memory pages

Code: WebAssembly bytecode

1.2 Canister Smart Contracts: Combination of Data and Code

DEPLOY

Internet Computer

UX

Public cyberspace

End user

1.3 Developers and users interact directly with Canisters on the IC

Developer

Nodes are partitioned into subnets

Canister smart contracts are assigned
to different subnets

1.4 Scalability: Nodes and Subnets

State:
• canisters and their queues

Inputs:
• new canisters to be installed,
• messages from users and other

canisters

Outputs:
• responses to users and other

canisters

Transition function:
• message routing and scheduling
• canister code

1.5 Each Subnet runs State Replication

1.6 Network Nervous System

One subnet is special: it host the Network
Nervous System (NNS) canisters which
govern the IC

ICP token holders vote on
• Creation of new subnets
• Upgrades to new protocol version
• Replacement of nodes
• …

1.7 Chain Key Technology

•Public key of NNS never changes,  
nodes in NNS share private key

•NNS generates key of subnets 
and certifies them 

•Node in subnets use these keys to
secure communication

Networking

Message Rout ing

Consensus

Execut ion Environment } Deterministic computation

} Message acquisition and ordering

1.8 The Layers of the Internet Computer Protocol

2. Networking Layer

2.1 Communication Patterns

Messages must be sent from nodes to other nodes within the same subnet

Three communication patterns: 

1) A node sends a message to another node
2) A node broadcasts a message to all other nodes
3) A node reliably broadcasts a message to all other nodes

2.2 Faulty/Malicious Behavior

It is possible that some message must arrive at all (honest) nodes

What if a node is faulty/malicious and fails to send a message to all other nodes?

?

2.3 Reliable Broadcast

Reliable broadcast for message m:

1. (Validity) If the sender is correct, then every correct node delivers m. 

2. (Agreement) If two correct nodes deliver m and m’, then m = m’. 

3. (Integrity) Every correct node delivers at most one message m, and if it delivers, then
some node must have invoked reliable broadcast for m.

4. (Totality) If a correct node delivers m, then all correct nodes eventually deliver.

Accepts m (fo
r

furth
er p

rocessing)

Note: A variant of reliable broadcast was discussed in Chapter 18 (see
Definition 18.10). The crucial difference is the integrity property!

2.4 Bracha’s Reliable Broadcast Algorithm

Sender S: broadcast m

upon receiving m from S and not sent_echo:
 broadcast (echo, m)
 sent_echo := true

if (received f+1 (ready, m) or 2f+1 (echo, m) messages) and not sent_ready:
 broadcast (ready, m)
 sent_ready := true

upon receiving 2f+1 (ready, m) messages:
 deliver m

2.5 Bracha’s Reliable Broadcast Algorithm - Analysis

Validity (If the sender is correct, then every correct node delivers m): 
 
 After S broadcast m, every correct node broadcasts (echo, m).

 Every correct node eventually receives 2f+1 (echo, m) messages and sends (ready, m).
 Every correct node eventually receives 2f+1 (ready, m) messages and delivers m.

Agreement (If two correct nodes deliver m and m’, then m = m’): 
 
Assume two correct nodes v and v’ deliver different messages m and m’.

 v and v’ must have received 2f+1 (ready, m) and (ready, m’) messages, respectively.
Since n=3f+1, there is a correct node that sent both (ready, m) and (ready, m’). This is a
contradiction since every correct node only sends a ready message once.

→
→

→

2.6 Bracha’s Reliable Broadcast Algorithm - Analysis 2

Integrity (Every correct replica delivers at most one message m, and if it delivers, then some
node must have invoked reliable broadcast for m):

Since every correct node only sends one ready message, there can only be one message for
which 2f+1 ready messages are received.

 A correct node delivers at most once.

The first correct node to send a ready message must receive 2f+1 echo messages.
 There must be f+1 correct nodes that send echo messages.
 Correct node only send echo messages when receiving a broadcast message.
 A delivered message must have been broadcast.

→

→
→
→

2.8 Bracha’s Reliable Broadcast Algorithm - Analysis 3

Totality (If a correct node delivers m, then all correct nodes eventually deliver): 
 
A correct node v delivers m

 v received 2f+1 (ready, m) messages
 v received f+1 (ready, m) messages from correct nodes
 all correct nodes eventually receive f+1 (ready, m) messages
 all correct nodes eventually broadcast (ready, m) messages
 all correct nodes eventually receive 2f+1 (ready, m) messages
 all correct nodes eventually deliver m.

→
→ ≥
→ ≥
→
→ ≥
→

2.9 Bracha’s Reliable Broadcast Algorithm - Analysis 4

Theorem: Bracha’s algorithm is a reliable broadcast algorithm for n > 3f in the asynchronous
communication model.

Theorem: Bracha’s algorithm has a communication complexity of O(n2L) for a message of L
bits.
Proof: Every correct node broadcasts at most one (echo, m) and one (ready, m) message of
size L each. The sender additionally broadcasts m.

 n n 2L + n L O(n2L).→ ⋅ ⋅ ⋅ ∈

2.10 Advert-based Reliable Broadcast: Idea

If m is available locally, sent small “advert” to other nodes.
If m is missing locally, request m from a node that sent an advert for m!

ad
ad

req
req

ad
ad

1 2

3 4

2.11 Advert-based Reliable Broadcast: Algorithm

Sender S:
 Execute Bracha’s algorithm for advert := H(m)
 Execute the steps when receiving m

Node v:
if received ad = advert from w and not delivered:
 advertisers.add(w)

if received m and H(m) = advert and not delivered:
 broadcast advert
 deliver m
 delivered := true
 terminate after (f+1) time

if received req(ad) from w senders and m :
 send m to w
 senders.add(w)

Δ

∉ ≠ ⊥

2.12 Advert-based Reliable Broadcast: Dealing with Failures

ad req1 2

?

2.13 Advert-based Reliable Broadcast: Multiple Requests

Initially, request_time = - , requested = {}

t := time()
if request_time + t:
 w := choose_node(advertisers \ requested)
 send req(ad) to w
 requested.add(w)
 request_time := t

∞

Δ ≤

req

req

1 2

2.14 Advert-based Reliable Broadcast: Asynchrony?

req

req

1 2

3 4

ad
ad ad

?

?

req

O(n2L) bits!

2.14 Advert-based Reliable Broadcast: Asynchrony?!?

req

1 2

ad
ad ad

?

Terminate!

Terminate!

Terminate!

req
req

>(f+1) time!Δ

2.15 Advert-based Reliable Broadcast: Synchrony

req

req

1 2

Theorem: For :=2, the advert-based algorithm implements reliable broadcast in the
synchronous communication model.
Proof (Totality): A correct node v delivers m at time t v broadcasts ad := H(m)

 Every correct node receives ad by time t+1 and requests the message
 In the worst case, a correct node sends the request to f faulty nodes, which takes f time
 Node v or another correct node receives the request by time t+2+ f = t+ (f+1) time and

returns m.

Δ

→
→
→ Δ
→ Δ Δ

2.16 Advert-based Reliable Broadcast: Synchrony 2

Theorem: The advert-based algorithm has a communication complexity of O(n2H + (f+1)nL)
for a message of L bits and an advert size of H bits.
Proof:
Executing Bracha’s algorithm requires sending O(n2H) bits.
Adverts are broadcast once and every request is sent to every other node at most once
O(n2H) bits.
Every correct node receives the message from one other node O(nL) bits.
However, all faulty nodes can request m from every correct node O(fnL) bits.

→

→
→

2.17 Coding-based Reliable Broadcast: Erasure Codes

Erasure code: A (n,k)-erasure code is a code that transforms a message m of k symbols into
a message with n > k symbols such that m can be recovered from a subset of the n symbols.

s1 s2 s3 s4

s’2 s’4 s’6 s’7

s’1 s’2 s’3 s’4 s’5 s’6 s’7

s1 s2 s3 s4

2.18 Coding-based Reliable Broadcast: Algorithm (Idea)

1 2
f1,f2, f3, f4

f2

f3
f4

f1 f1

f1
f2

f2 f2
f3

f3 f3
f1,f2, f3

f1,f2, f3

Size of m: L bits
Size of fi: L/(f+1) 3L/n bits≈

2.19 Coding-based Reliable Broadcast: Algorithm

Sender S:

 (f1,…, fn) := get_fragments(m) 
 h0 := get_merkle_root_hash(f1,…, fn)
 Execute Bracha’s algorithm for root_hash := h0
 for j {1, …, n}:
 Pj := get_merkle_proof(f1,…, fn, j)
 send (fj, Pj, j) to vj

Node vi:

if received (f, P, j) and root_hash :
 if valid(f, P, root_hash, j):
 F := F {f}
 if i = j and not broadcast f before:
 broadcast (f, P, i)

∈

≠ ⊥

∪ Merkle tree (source: Wikipedia)

2.20 Coding-based Reliable Broadcast: Algorithm 2

Node vi:

if |F| = f+1 and m = :
 m := recover_message(F)
 (f1,…, fn) := get_fragments(m) 
 h0 := get_merkle_root_hash(f1,…, fn) 
 if h0 = root_hash: 
 if not broadcast fi before: 
 Pi := get_merkle_proof(f1,…, fn, i)
 broadcast (fi, Pi, i)
 else: 
 root_hash :=  

if |F| = 2f+1 and root_hash and not delivered:
 deliver m

⊥

⊥

≠ ⊥

2.21 Coding-based Reliable Broadcast: Analysis

Theorem: The coding-based algorithm is a reliable broadcast algorithm for n > 3f in the
asynchronous communication model.
Proof (Totality): A correct node v delivers m.

 Since |F| = 2f+1, v must have received fragments from f+1 correct nodes.
 All correct nodes must eventually receive f+1 fragments.
 All correct nodes eventually reconstruct m and broadcast their fragments.
 All correct nodes eventually receive 2f+1 fragments and deliver m.

→ ≥
→ ≥
→
→ ≥

Theorem: The coding-based algorithm has a communication complexity of O(n2log(n)H + nL)
in the asynchronous communication model.
Proof: The initial Bracha broadcast requires O(n2H) bits.
A Merkle proof has size O(log(n)H). Each node broadcasts its fragment with a Merkle proof

 O(n n (log(n)H) + O(n n L/n) = O(n2log(n)H + nL).→ ⋅ ⋅ ⋅ ⋅

Note: This bound is not far from the lower bound (n2 + nL)!Ω

3. Consensus Layer

3.1 Consensus Orders Messages

Nodes may receive input messages in different orders, but must process them
in the same order, for example: 4 51 2 3 6

Message (user → canister) Message (canister → canister)

4 51 2 3 6

1 53 2 6

3 5 2 6

2 4 5 1 6

3.2 Consensus Orders Messages

3.3 Consensus Properties

Messages are placed in blocks. We reach agreement using a blockchain.

1 2 4 5

Block x Block x+1 Block x+2

3 6

The following properties must hold even if up to f < n/3 nodes misbehave

• Agreement: For any i, If two (honest) nodes think that the i-th block is
agreed upon, they must have the same block

• Termination: For any i, at some point every (honest) node will think that
the i-th block is agreed upon

• Validity: all agreed upon blocks are valid

We use n = 4, f =
 1 in

 examples

3.4 Block Maker

30

A block maker selects available
messages and combines them into a
block and broadcasts it

24 25 26 27 28 29…

Note: We need more than one block maker in each round, 
otherwise the IC would not be fault tolerant!

30

Message (user → canister) Message (canister → canister)

3.5 Notarization
The notarization process ensures that a valid block proposal is published for every block
height

Step 1

29 30…

Replica 1 receives a block
proposal for height 30,
building on some notarized
height 29 block

N

Step 2

29 30…

Replica 1 sees that the block is
valid, signs it, and broadcasts
its notarization share

N NS1

Step 3

29 30…

Replica 1 sees that replicas 3
and 4 also published their
notarization shares on the block

N NS1 NS3

NS4

Step 4

29 30…

3 notarization shares are
sufficient approval: the shares
are aggregated into a single
full notarization. Block 30 is
now notarized, and notaries
wait for height-31 blocks

NN

Replicas may notary-sign multiple blocks to ensure that at least one block becomes fully notarized

Step 1

Replica 1 receives a block
proposal for height 30,
building on some notarized
height 29 block

29

30

…

N

Step 2

Replica 1 sees that the block is
valid, signs it, and broadcasts
its notarization share

29

30

…

NS1

N

Step 3

Replicas 1 sees another height
30 block, which is also valid,
and it broadcasts another
notarization share

29

30

…

NS1

N

30’

NS1

Step 4

29

30

…

Both height 30 blocks get
enough support to become
notarized

N

N

30

N

3.6 Notarization

Multiple notarized blocks may exist at the same block height

30

31

…

N

N

31

N

32

N

32

N

33

N

33

N

34

N

34

N

35

N

36

N

33

N

34

N

35

N

3.7 Notarization

3.8 Random Beacon

At every height, there is a Random Beacon, an unpredictable random value shared by the replicas

Step 1

Replica 1 has Random
Beacon 29 and wants to help
constructing Random
Beacon 30

… RB

29

Step 2

Replica 1 signs RB29 using a
threshold signature scheme,
yielding a share of random
beacon 30

… RB

29

RBS1

Step 3

Replicas 1 sees that replica 2
also published a share of
Random Beacon 30

… RB

29

RBS1

RBS2

Step 4

2 random beacon shares are
sufficient to reconstruct a full
threshold signature, which is
Random Beacon 30

… RB

29

RB

30

Un
iq

ue
 (B

LS
) s

ig
na

tu
re

ou
t o

f f
+1

 s
ha

re
s!

3.9 Block Maker Ranking

The Random Beacon is used to rank block makers

… RB

23

RB

24

RB

25

RB

26

RB

27

RB

28

RB

29

Replica 1 Replica 4 Replica 2 Replica 3 Replica 4 Replica 2

Replica 4 Replica 3 Replica 3 Replica 1 Replica 2 Replica 1

Replica 3 Replica 1 Replica 4 Replica 4 Replica 1 Replica 3

Replica 2 Replica 2 Replica 1 Replica 2 Replica 3 Replica 4

Rank 0

Rank 1

Rank 2

Rank 3

Round 24 Round 25 Round 26 Round 27 Round 28 Round 29

High

Priority

Low

Priority

3.10 Notarization with Block Maker Ranking

Rounds are divided into time slots defining when block maker proposals are considered

Start of round,
notarize rank 0 proposals

Notarize
rank 1 proposals

Time
Slot 0 Slot 1 Slot 2

Notarize
rank 2 proposals

Notarize
rank 3 proposals

The block ranks can reduce the number of notarized blocks

Step 1

Replica 1 receives a rank-1
block proposal for height 30,
building on some notarized
height 29 block

29

30

Rank 1

…

N

Step 2

Replica 1 is still in time slot 0,
so not willing to notary-sign a
rank-1 block yet

29

30

Rank 1

…

N

Step 3

Replicas 1 sees a valid rank-0
height 30 block, and it
broadcasts a notarization share

29

30

Rank 1

…

N

30

Rank 0

NS1

Step 4

29

30

Rank 1

…

Eventually, only the rank 0
block becomes notarized

N

30

Rank 0

N

3.11 Notarization with Block Maker Ranking

3.12 Notarization with Block Maker Ranking

One notarized block b at a height h = Agreement up to h

30

Rank 0

31

Rank 1

…

N

N

31

Rank 2

N

32

Rank 0

N
34

Rank 1

N

34

Rank 2

N

35

Rank 0

N

36

Rank 0

N

37

Rank 0

33

Rank 0

N

How can we detect this…?

Agreement up to height 36

30

Rank 0

31

Rank 1

…

N

N

31

Rank 2

N

32

Rank 0

N
34

Rank 1

N

34

Rank 2

N

35

Rank 0

N

36

Rank 0

N

37

Rank 0

33

Rank 0

N

3.13 Notarization with Block Maker Ranking

Synchronous communication Forks can be removed→

30

Rank 0

31

Rank 1

…

N

N

31

Rank 2

N

32

Rank 0

N
34

Rank 1

N

34

Rank 2

N

35

Rank 0

N

36

Rank 0

N

37

Rank 0

33

Rank 0

N

35

Rank 3

N

36

Rank 1

N

37

Rank 1

N

38

Rank 0

N

3.14 Notarization with Block Maker Ranking

Partially synchronous communication Forks cannot be removed!→

3.15 Finalization

Step 1

Replica 1 notary-signs
block b at height 30

30…

NS1

Step 2

Replica 1 observes
that block b is fully
notarized and will no
longer notary-sign
blocks at height ≤ 30

30…

N

Step 3

Since replica 1 did not
notary-sign any other
block than block b, it
signs block b, creating
a finalization-share on b

30…

N

FS1

Replica 1 did not notary-sign any
height 30 block other than b

Step 4

Replicas 2 and 4 also
cast finalization
shares on block b

30…

N

FS1FS2 FS4

Step 5

3 finalization-shares
are sufficient
approval: the shares
are aggregated into a
single full finalization

30…

N

F

Replicas create finalization shares if they did not sign any other block at that
height

30

Rank 0

31

Rank 1

…

N

N
32

Rank 0

N
34

Rank 1

N

35

Rank 0

N

36

Rank 0

N

37

Rank 0

N

33

Rank 0

N

F

The chain up to this block is final
31

Rank 2

N
34

Rank 2

N

3.16 Finalization

Finalization on block b at height h = Proof that no other block is notarized at height h

If block b at height h is finalized, then there is no notarized block b’ b at height h.

Proof:

1. A full finalization on b requires n-f replicas to finality-sign (by construction)

2. At least n-2f of the n-f replicas that finality-signed b must be honest (by

assumption that ≤ f replicas are corrupt)

3. An honest replica that finality-signed b did not notary-sign any other block at

height h (by construction)

4. At least n-2f replicas did not notary-sign any height h block other than b (by 2. & 3.)

5. A full notarization requires n-f notarization-shares (by construction)

6. The n-(n-2f) < n-f remaining replicas that may have notary-signed a block b’ are

not sufficient to reach the notarization threshold of n-f (by 4. & 5.)

≠

3.17 Agreement

For every block height h, at least one block is notarized.

Proof:

1. An honest replica will eventually broadcast a block b (its own or a received block

from a replica with a lower rank).

2. All honest replicas will eventually receive block b and notary-sign it unless another

block b’ is already fully notarized.

3. If there is no such block b’, all honest replicas will eventually receive notarization

shares at least from all (n-f) honest replicas and thus notarize block b.

3.18 Termination

If communication is synchronous for 3 time units at the beginning of the execution for
block height h and the rank-0 block maker is honest, then its block will be finalized.

Proof:

1. If the honest rank-0 block maker broadcasts its block b at time t, it is notary-signed by
every honest replica by time t+1.

2. Every honest replica receives at least n-f notarization shares by time t+2 and notarizes
block b.

3. No other block proposal is accepted by time t+2, therefore every honest replica
broadcasts its finalization share for block b.

4. By time t+3, every honest replica receives at least n-f finalization shares for block b
and finalizes block b.

3.19 Termination

4. Message Routing and Execution Layer

P2P

Message Routing

Consensus

Execution Environment

Deterministic computation

Message acquisition and ordering

Take state of height x - 1 and apply block of
height x to obtain state of height x

4.0 The Four Layers of the Internet Computer Protocol

… …

Ingress Queue

B

C

X

Input
Queues

Output

Queues

B

C

X

A

Input & Output Queues of Canisters

4.2 Canisters and their Input and Output Queues

State x

…

Xnet streams

4.3 Subnet State

Execution Environment

Message Routing

Take messages from finalized blocks

and put them into input/ingress queues

of the respective canisters.

Finalized Blocks

IN
D

U
C

TI
O

N

4.4 High-Level Intuition of a Deterministic Execution Cycle

Execution Environment

Message Routing

Finalized Blocks

IN
D

U
C

TI
O

N

Take messages from finalized blocks

and put them into input/ingress queues

of the respective canisters.

Take messages from input/ingress

queues, execute them and put

produced messages in output queues

EXECUTION

4.5 High-Level Intuition of a Deterministic Execution Cycle

Execution Environment

Message Routing

Finalized Blocks

IN
D

U
C

TI
O

N

Take messages from finalized blocks

and put them into input/ingress queues

of the respective canisters.

Take messages from input/ingress

queues, execute them and put

produced messages in output queues

EXECUTION

Take messages from output

queues, route them in cross 

subnet streams (respecting ordering)

X
N

ET
 M

ES
SA

E
RO

U
TI

N
G

Stream to
SN 2

Stream to
SN 3

Stream to
SN n

…

4.6 High-Level Intuition of a Deterministic Execution Cycle

62

unknown

received

processing

replied

rejected

call

read status

 - Status and responses signed by the subnet

4.7 Ingress Message Status

63

unknown

received

processing

replied

rejected

call

read status

 - Status and responses signed by the subnet
 - Message expiry

4.7 Ingress Message Status

State x

…

Time Ingress history

Xnet streams

4.8 Subnet State

“c”

“d”“c”“b”“a”

“demo3”“demo1”

“z”

“demo

2.3”

“x” “y”

Merkle Tree

2f+1 threshold signature

Purpose: 
a) output certification  
b) non-determinism prevention  
c) consensus and execution speed
adaptation

4.9 Certification after every execution round

Only one certified state can exist per height

State x

…

Ti

66

Block

• ingress payload

• xnet payload

• time

• certified height

• block time > previous block time and < local time  

• for each message m in ingress payload

• m doesn’t occur in earlier blocks

• m is signed correctly

• m’s expiry time < block time  

• for each message m in xnet payload

• m doesn’t occur in earlier blocks

• m is signed correctly

• no xnet stream messages are skipped 

• certified height <= local certified height
} MR 

data

4.10 Extend Block and Validity Conditions

State x

…

Time Ingress history
Xnet

streams

4.11 Execution Cycle

An ingress message enters the status processing at most once before its expiry or never. 
Responses have been computed and signed by at least f+1 honest nodes

Proof sketch:

1. Time and message in finalised blocks are valid, i.e., > previous block time and

expiry > block time respectively, otherwise they wouldn’t have been notarised by
2f+1 nodes.

2. No ingress message occurs more than once in blockchain by the same argument,
therefore it can be added to its canister queue at most once.

3. Before starting execution (and thus transition) to status processing the expiry time
is checked again.

4. 2f+1 signatures are necessary to certify the state, therefore f+1 honest honest are
involved in each computation and certification signature.

4.12 Unique Execution Before Expiry

5. The Internet Computer Today

https://dashboard.internetcomputer.org

5.1 Live Since May 2021!

https://dashboard.internetcomputer.org

https://dashboard.internetcomputer.org

5.1 Live Since May 2021!

https://dashboard.internetcomputer.org

• Disseminating messages among all nodes in the same subset

• Exchanging canister and control messages between subnets

• Scheduling and concurrent execution of canister messages

• Catching up after a node has been offline for a while

• Handling churn (adding and removing nodes)

• Guaranteeing consistency (different users need a consistent view of data and

operations)

• Upgrading to next protocol version

• Creating new subnets

• Load balancing

• …

•

5.2 Many Distributed Systems Problems

https://internetcomputer.org/ecosystem

5.3 Growing Blockchain Ecosystem

https://internetcomputer.org/ecosystem

5.4 Internet Computer vs. …

Average block time: 1 block / 10 minutes 1 block / 15 seconds 38 blocks / second

Finality: 1 hour 15 minutes 1-3 seconds

TX per second: 7 15 33,000 (write) 
2,300,000 (read)

Validation data: 524 GB 1300 GB 96 bytes

5.5 More information

•	 Website: here

•	 Technical Library: here (videos of talks) and here (blogposts)

•	 200,000,000 CHF Developer Grant Program here

• Developer Docs and SDK: here

https://internetcomputer.org/how-it-works
https://www.youtube.com/playlist?list=PLuhDt1vhGcrfHG_rnRKsqZO1jL_Pd970h
https://medium.com/dfinity/tech-updates-dev-resources/home
https://dfinity.org/grants/
https://internetcomputer.org/docs/current/home

