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emerged from early Ethereum community in 2015
Swiss not-for-profit foundation, not a corporation
world’s largest cryptography and blockchain RnD team

270+ team members globally

1600+ 100 00 250+

research papers academic citations technical patents

About us
PhD in Distributed Computing 2009

14 years in industrial research labs (IBM Research, ABB Corporate research)
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. What is the Internet Computer?
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1. What is the Internet Computer Protocol?

Protocol to run any computation,
using blockchain tec (o]

_—— "\

decentralisation anc
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1.1 Internet Computer Protocol (ICP)

Coordination of nodes in

datacenters,
jointly performing any
computation for

|ICP creates the
Internet Computer blockchains

Guarantees safety and liveness o
smart contract execution despite
Byzantine participants
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Internet Computer
Public cyberspace

IP / Internet




1.2 Canister Smart Contracts: Combination of Data and Code

-—— Data: Memory pages

Canister smart contract
Code: WebAssembly bytecode




1.3 Developers and users interact directly with Canisters on the IC

Internet Computer

<
-

©

(D

0

e S
® . ®
@ ° e
S :

End user

\

DEPLOY Public cyberspace

Developer



1.4 Scalability: Nodes and Subnets

Nodes are partitioned into subnets

Canister smart contracts are assigned
to different subnets




1.5 Each Subnet runs State Replication

State:
e canisters and their queues

Inputs:.

e new canisters to be installed,

* messages from users and other
canisters

Outputs:

* responses to users and other
canisters

Transition function:

* message routing and scheduling
 canister code




1.6 Network Nervous System

One subnet is special: it host the Network
Nervous System (NNS) canisters which
govern the IC

|ICP token holders vote on

e Creation of new subnets

* Upgrades to new protocol version
* Replacement of nodes




1.7 Chain Key Technology

® Public key of NNS never changes,
nodes In NNS share private key

® NNS generates key of subnets
and certifies them

® Node In subnets use these keys to
secure communication




1.8 The Layers of the Internet Computer Protocol

Execution Environment

Deterministic computation
Message Routing

Consensus

Message acquisition and ordering
Networking




2. Networking Layer




2.1 Communication Patterns

Messages must be sent from nodes to other nodes within the same subnet
Three communication patterns:
1) Anode to another node

2) A node broadcasts a message to all other nodes
3) A node reliably broadcasts a message to all other nodes




2.2 Faulty/Malicious Behavior

It is possible that some message must arrive at all (honest) nodes

What if a node is faulty/malicious and fails to send a message to all other nodes?




2.3 Reliable Broadcast

Reliable broadcast for message m:

1. (Validity) If the sender Is correct, then every correct node delivers m.
2. (Agreement) If two correct nodes deliver m and m’, then m =m’.

3. (Integrity) Every correct node delivers at most one message m, and if it delivers, then
some node must have invoked reliable broadcast for m.

4. (Totality) If a correct node delivers m, then all correct nodes eventually deliver.

Note: A variant of reliable broadcast was discussed in Chapter 18 (see

Definition 18.10). The crucial difference is the integrity property!




2.4 Bracha’s Reliable Broadcast Algorithm

Sender S: broadcast m

upon receiving m from S and not sent_echo:
broadcast (echo, m)
sent_echo = true

If (received f+1 (ready, m) or 2f+1 (echo, m) messages) and not sent_ready:
broadcast (ready, m)
sent_ready := true

upon receiving 2f+1 (ready, m) messages:
deliver m




2.5 Bracha’s Reliable Broadcast Algorithm - Analysis

Validity (If the sender is correct, then every correct node delivers m):

After S broadcast m, every correct node broadcasts (echo, m).
— Every correct node eventually receives 2f+1 (echo, m) messages and sends (ready, m).

— Every correct node eventually receives 2f+1 (ready, m) messages and delivers m.

Agreement (If two correct nodes deliver m and m’, then m = m’):

Assume two correct nodes v and v’ deliver different messages m and m’.

— v and v’ must have received 2f+1 (ready, m) and (ready, m’) messages, respectively.
Since n=3f+1, there is a correct node that sent both (ready, m) and (ready, m’). This is a
contradiction since every correct node only sends a ready message once.




2.6 Bracha’s Reliable Broadcast Algorithm - Analysis 2

Integrity (Every correct replica delivers at most one message m, and if it delivers, then some
node must have invoked reliable broadcast for m):

Since every correct node only sends one ready message, there can only be one message for
which 2f+1 ready messages are received.

— A correct node delivers at most once.

The first correct node to send a ready message must receive 2f+1 echo messages.
— There must be f+1 correct nodes that send echo messages.

— Correct node only send echo messages when receiving a broadcast message.
— A delivered message must have been broadcast.




2.8 Bracha’s Reliable Broadcast Algorithm - Analysis 3

Totality (If a correct node delivers m, then all correct nodes eventually deliver):

A correct node v delivers m
— Vv received 2f+1 (ready, m) messages

— V received >f+1 (ready, m) messages from correct nodes

— all correct nodes eventually receive >f+1 (ready, m) messages
— all correct nodes eventually broadcast (ready, m) messages

— all correct nodes eventually receive >2f+1 (ready, m) messages
— all correct nodes eventually aeliver m.



2.9 Bracha’s Reliable Broadcast Algorithm - Analysis 4

Theorem: Bracha'’s algorithm is a reliable broadcast algorithm for n > 3f in the asynchronous
communication moael.

Theorem: Bracha’s algorithm has a communication complexity of O(n=L) for a message of L
bits.

Proof: Every correct node broadcasts at most one (echo, m) and one (ready, m) message of
size L each. The sender additionally broadcasts m.

— n-n-2L + n-L € O(n2L).



2.10 Advert-based Reliable Broadcast: Idea

It m Is available locally, sent small "advert” to other nodes.
If m Is missing locally, request m from a node that sent an advert for m!




2.11 Advert-based Reliable Broadcast: Algorithm

Sender S:
Execute Bracha’s algorithm for advert := H(m)
Execute the steps when receiving m

Node v:
If recelved ad = advert from w and not delivered:
advertisers.add(w)

If received m and H(m) = advert and not delivered:
broadcast advert
deliver m
delivered := true
terminate after (f+1)A time

if received reqg(ad) from w & senders and m # L :
send mtow
senders.add(w)




2.12 Advert-based Reliable Broadcast: Dealing with Failures

?

O A
=




2.13 Advert-based Reliable Broadcast: Multiple Requests

Initially, request_time = -00, requested = {}

t ;= time()
if request_time + A <t:
w = choose_node(advertisers \ requested)

send req(ad) tow

requested.add(w)

request_time =1

\

‘ ‘

N




2.14 Advert-based Reliable Broadcast: Asynchrony?

S

O(n2L) bits!



2.14 Advert-based Reliable Broadcast: Asynchrony?!?

: |
e S Terminate!

SK SK Terminate!

S >
Terminate! \ g

?

>(f+1)A time!



2.15 Advert-based Reliable Broadcast: Synchrony

Theorem: For A:=2, the advert-based algorithm implements reliable broadcast in the

synchronous communication model.
Proof (Totality): A correct node v delivers m at time t — v broadcasts ad := H(m)

— Every correct node receives ad by time t+1 and requests the message
— In the worst case, a correct node sends the request to f faulty nodes, which takes Af time
— Node v or another correct node receives the request by time t+2+Af = t+A(f+1) time and

o =
. e
——
—— /
—— /
- /
N 4

returns m.

\ H
< - -
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2.16 Advert-based Reliable Broadcast: Synchrony 2

Theorem: The advert-based algorithm has a communication complexity of O(n2H + (f+1)nL)
for a message of L bits and an advert size of H bits.

Proof:

Executing Bracha’s algorithm requires sending O(n2H) bits.

Adverts are broadcast once and every request Is sent to every other node at most once —
O(n2H) bits.

Every correct node receives the message from one other node — O(nL) bits.

However, all faulty nodes can request m from every correct node — O(fnlL) bits.



2.17 Coding-based Reliable Broadcast: Erasure Codes

Erasure code: A (n,k)-erasure code is a code that transforms a message m of k symbols into
a message with n > k symbols such that m can be recovered from a subset of the n symbols.




2.18 Coding-based Reliable Broadcast: Algorithm (Idea)

XA =» f4,fo, fa, f4
. ~ |
\\ ‘ » / I ‘ 4
BT

o f1,fo, fs =P DL -
s = DS

Size of m: L bits ‘O’
Size of fi: L/(f+1)~ 3L/n bits =



2.19 Coding-based Reliable Broadcast: Algorithm

Sender S:

(f1,..., fn) := get_fragments(m)

ho := get_merkle_root_hash(fy,..., fn)

Execute Bracha’s algorithm for root_hash := hg
forj € {1, ..., n}

P; := get_merkle_proof(fy,..., fn, j)

send (fj, Pj, |) to v;

Node vi:

if received (f, P, j) and root_hash # 1 :
If valid(f, P, root_hash, |):
F .= F U({f}
If | =] and not broadcast f before:
broadcast (f, P, i)

T
HHHHH

Hash
0-0

hash(L1)

Hash
0-1

hash(L2)

T

aaaaaa
-+

A

L1

Hash
1-0

hash(L3)

L2

f

hash(L4)

L3

T

L4

Merkle tree (source: Wikipedia)

Data
Blocks




2.20 Coding-based Reliable Broadcast: Algorithm 2

Node vi:

if IFl =f+1 and m = _L;

m .= recover_message(F)
(f1,..., fn) := get_fragments(m)
ho := get_merkle_root_hash(fy,..., fn)
If ho = root_hash:
If not broadcast fi before:
Pi := get_merkle_proof(fs,..., fn, 1)
broadcast (fi, Pj, i)
else:
root_hash = L

if IFl = 2f+1 and root_hash # 1 and not delivered:
deliver m



2.21 Coding-based Reliable Broadcast: Analysis

Theorem: The coding-based algorithm is a reliable broadcast algorithm for n > 3f in the
asynchronous communication model.

Proof (Totality): A correct node v delivers m.

— Since IFl = 2f+1, v must have received fragments from >f+1 correct nodes.

— All correct nodes must eventually receive >f+1 fragments.

— All correct nodes eventually reconstruct m and broadcast their fragments.

— All correct nodes eventually receive >2f+1 fragments and deliver m.

Theorem: The coding-based algorithm has a communication complexity of O(n2log(n)H + nL)
INn the asynchronous communication model.

Proof: The initial Bracha broadcast requires O(n2H) bits.

A Merkle proof has size O(log(n)H). Each node broadcasts its fragment with a Merkle proof
— O(n - n - (log(n)H) + O(n - n - L/n) = O(n2log(n)H + nL).

Note: This bound is not far from the lower bound £2(n2 + nL)!




3. Consensus Layer




3.1 Consensus Orders Messages




3.2 Consensus Orders Messages

® Message (user — canister) ® Message (canister — canister)

Nodes may receive input messages Iin different orders, but must process them

IN the same order, forexample: (oo 00606



3.3 Consensus Properties

Messages are placed in blocks. We reach agreement using a blockchain.

Block x Block x+1 Block x+2

The following properties must hold even if up to f< n/3 nodes misbehave

® Agreement: For any i, If two (honest) nodes think that the j-th block is
agreed upon, they must have the same block

® Termination: For any i, at some point every (honest) node will think that
the /-th block 1s agreed upon

® Validity: all agreed upon blocks are valid



3.4 Block Maker

® Message (user — canister) ® Message (canister — canister)

A block maker selects available
. messages and combines them into a
block and broadcasts it

Note: We need more than one block maker in each round,

otherwise the IC would not be fault tolerant!




3.5 Notarization

The notarization process ensures that a valid block proposal is published for every block

height
Step 1

Replica 1 receives a block
proposal for height 30,
building on some notarized
height 29 block

'

v
'..<_H<_

Step 2

Replica 1 sees that the block is
valid, signs 1t, and broadcasts
Its notarization share

¢

v v

‘.‘4_4_

Step 3

Replica 1 sees that replicas 3
and 4 also published their
notarization shares on the block

&
v v
e

T

Step 4

3 notarization shares are
sufficient approval: the shares
are aggregated into a single
full notarization. Block 30 is
now notarized, and notaries
wait for height-31 blocks

'

v v

‘.‘4_4_




3.6 Notarization

Replicas may notary-sign multiple blocks to ensure that at least one block becomes fully notarized

Step 1 Step 2 Step 3 Step 4
Replica 1 receives a block , , Replicas 1 sees another height Both height 30 blocks get
, Replica 1 sees that the block is o ,

proposal for height 30, S , 30 block, which is also valid, enough support to become

o , valid, signs it, and broadcasts , ,
building on some notarized . L and i1t broadcasts another notarized

, its notarization share o
height 29 block notarization share

® *

. ¢
=l 2 -{@ =] 9
_. _. :

v




3.7 Notarization

Multiple notarized blocks may exist at the same block height

0 0 0 0
gloan
! l{
'"*H{
- .1

s o



3.8 Random Beacon

At every height, there iIs a Random Beacon, an unpredictable random value shared by the replicas

Step 1

Replica 1 has Random
Beacon 29 and wants to help
constructing Random
Beacon 30

Step 2

Replica 1 signs RB29 using a
threshold signature scheme,
yielding a share of random
beacon 30

RB |
oo 0 ¢“\"W
Q

Step 3

Replicas 1 sees that replica 2
also published a share of
Random Beacon 30

Step 4

2 random beacon shares are

sufficient to reconstruct a full
threshold signature, which is

Random Beacon 30

RB
30




3.9 Block Maker Ranking

The Random Beacon iIs used to rank block makers

RB RB RB RB
coe — — — — — — —
24 26 28 29

High
Priority
Rank O
Rank 1
Rank 2
Rank 3
Low

Priority

v

\4

\4

v

v

v

Replica 1 Replica 4 Replica 2 Replica 3 Replica 4 Replica 2
Replica 4 Replica 3 Replica 3 Replica 1 Replica 2 Replica 1
Replica 3 Replica 1 Replica 4 Replica 4 Replica 1 Replica 3
Replica 2 Replica 2 Replica 1 Replica 2 Replica 3 Replica 4
Round 24 Round 25 Round 26 Round 27 Round 28 Round 29




3.10 Notarization with Block Maker Ranking

Rounds are divided into time slots defining when block maker proposals are considered

Start of round, Notarize Notarize Notarize
notarize rank 0 proposals rank 1 proposals rank 2 proposals rank 3 proposals
¢ -------- >




3.11 Notarization with Block Maker Ranking

The block ranks can reduce the number of notarized blocks

Step 1

Replica 1 receives a rank-1
block proposal for height 30,

building on some notarized
height 29 block

Step 2

Replica 1is still in time slot O,
so not willing to notary-sign a
rank-1 block yet

Step 3

Replicas 1 sees a valid rank-0
height 30 block, and it
broadcasts a notarization share

Step 4

Eventually, only the rank O
block becomes notarized

4
v
..._h

30
Rank 1
v

30
Rank O




3.12 Notarization with Block Maker Ranking

One notarized block b at a height h = Agreement up to h

o o o

v

34 Kte' 36 Y4
Rank 1 Rank O Rank O Rank O

ST 32 33
Rank 1 Rank O Rank O
i

ST
Rank 2

How can we detect this...?

v
4_ 4_
Rank O

Rank 2




3.13 Notarization with Block Maker Ranking

Synchronous communication — Forks can be removed

o o o

v

34 35 36 S/
Rank 1 Rank O Rank O Rank O

ST 32 33
Rank 1 Rank O Rank O

!
4_
Rank O

Rank 2




3.14 Notarization with Block Maker Ranking

Partially synchronous communication — Forks cannot be removed!

o0

v !
© © O [+ [=|l[+
¢ i $ Rank 1 Rank O Rank O Rank O
Rank 1 Rank O Rank O

34 35 36 Y4 38
Rank 2 Rank 3 Rank 1 Rank 1 Rank O

v
4_ 4_
Rank O




3.15 Finalization

Replicas create finalization shares if they did not sign any other block at that

height
Step 1

Replica 1 notary-signs
block b at height 30

¢
v
..._

Step 2

Replica 1 observes
that block b is fully
notarized and will no
longer notary-sign
blocks at height < 30

4
v
..._

Step 3

Since replica 1 did not

notary-sign any other
block than block b, it

signs block b, creating
a finalization-share on b

4
v
..._
:

FS1

height 30 block other than b

Step 4

Replicas 2 and 4 also
cast finalization

shares on block b

Replica 1 did not notary-sign any

Step 5

3 finalization-shares
are sufficient
approval: the shares
are aggregated into a
single full finalization

¢
...4_
°




3.16 Finalization

Finalization on block b at height h = Proof that no other block is notarized at height h

© o o o

v

34 35 36 Y4
Rank 1 Rank O Rank O Rank O

The chain up to this block is final

ST 32 33
Rank 1 Rank O Rank O

| 30
u




3.17 Agreement

If block b at height h is finalized, then there is no notarized block b’ # b at height h.

Proof:
1. A full finalization on b requires n-freplicas to finality-sign (by construction)
2. At least n-2f of the n-f replicas that finality-signed b must be honest (by
assumption that < f replicas are corrupt)

. An honest replica that finality-signed b did not notary-sign any other block at
height h (by construction)
4. At least n-2freplicas did not notary-sign any height h block other than b (by 2. & 3.)

. A full notarization requires n-f notarization-shares (by construction)

Ol

6. The n-(n-2f) < n-fremaining replicas that may have notary-signed a block b’ are
not sufficient to reach the notarization threshold of n-f(by 4. & 5.)



3.18 Termination

For every block height h, at least one block is notarized.

Proof:
1. An honest replica will eventually broadcast a block b (its own or a received block
from a replica with a lower rank).
2. All honest replicas will eventually receive block b and notary-sign 1t unless another
block b’ is already fully notarized.
3. Ifthere is no such block b’, all honest replicas will eventually receive notarization
shares at least from all (n-f) honest replicas and thus notarize block b.



3.19 Termination

If communication is synchronous for 3 time units at the beginning of the execution for
block height h and the rank-0 block maker is honest, then its block will be finalized.

Proof:

1. If the honest rank-0 block maker broadcasts its block b at time t, 1t is notary-signed by
every honest replica by time t+1.

2. Every honest replica receives at least n-f notarization shares by time t+2 and notarizes
block b.

3. No other block proposal I1s accepted by time t+2, therefore every honest replica
broadcasts its finalization share for block b.

4. By time t+3, every honest replica receives at least n-f finalization shares for block b
and finalizes block b.




4. Message Routing and Execution Layer



4.0 The Four Layers of the Internet Computer Protocol

Execution Environment

Deterministic computation

Message Routing Take state of height x - 7 and apply block of

height x to obtain state of height x

Consensus

Message acquisition and ordering

IS P2P



4.2 Canisters and their Input and Output Queues
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4.3 Subnet State

State x

Xnet streams



4.4 High-Level Intuition of a Deterministic Execution Cycle

Finalized Blocks

INDUCTION

Take messages from finalized blocks
and put them into input/ingress queues
of the respective canisters.



4.5 High-Level Intuition of a Deterministic Execution Cycle

Execution Environment

EEEEEEEN EEEEEENN
[IIITT1T

Finalized Blocks

INDUCTION

Take messages from finalized blocks Take messages from input/ingress
and put them into input/ingress queues queues, execute them and put
of the respective canisters. produced messages in output queues



4.6 High-Level Intuition of a Deterministic Execution Cycle

Execution Environment

Stream to .
O SN 2 g
= I
= a
CZ> 8 Streamto
Finalized Blocks (lg "&"" SN 3
: %
— =
E Stream to
E SN n

Take messages from finalized blocks Take messages from input/ingress Take messages from output
and put them into input/ingress queues queues, execute them and put queues, route them in cross
of the respective canisters. produced messages in output queues subnet streams (respecting ordering)




4.7 Ingress Message Status

e
o
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call =

 ?

read status B4

rejecteD

- Status and responses signed by the subnet
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4.7 Ingress Message Status

/

read status B4

@ces@
- Status and responses signed by the subnet \

rejecte

- Message expiry

/
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4.8 Subnet State

State x

Xnet streams

(Y EENEEEEEEE

Time Ingress history



4.9 Certification after every execution round

—  12f+1 threshold signature

Only one certified state can exist per height

Merkle Tree

Purpose:
a) output certification

b) non-determinism prevention
C) consensus and execution speed
adaptation




4.10 Extend Block and Validity Conditions

Block
e Dblock time > previous block time and < local time
* Ingress payload e for each message m in ingress payload
e xnet payIOad  m doesn't occur in earlier blocks
e time * m IS signed correctly
- | * m's expiry time < block time
e certified height

e for each message m in xnet payload
e m doesn't occur in earlier blocks
* m IS signed correctly
* noO xnet stream messages are skipped

MR
data

e certified height <= local certified height

66




4.11 Execution Cycle

upon process_payload(time,ingress, xnet) called:
state.height := state.height + 1

state.time := taime

insert_into_input_queues(ingress U xnet, state)

for m € B.ingress do

state.ingress history|m| := RECEIVED

end for

while execution time left do
m := pop_from_input_queues(state)
if m € state.ingress history then

if state.time < m.expiry then
state.ingress history|/m| := PROCESSING

else

state.ingress history|m| := REJECTED

end if
end if

execute(m, state)
end while

prune_ingress_history(state)

certify_state(state)
xnet_communication()
end upon

/ /sets certified height eventually

Time

State x

mfjm B

SEEEEEEEEEE
Ingress history

EEEEEC- N

Xnet
streams




4.12 Unique Execution Before Expiry

An Ingress message enters the status processing at most once before 1ts expiry or never.
Responses have been computed and signed by at least f+1 honest nodes

Proof sketch:

1. Time and message In finalised blocks are valid, 1.e., > previous block time and
expiry > block time respectively, otherwise they wouldn’t have been notarised by
2f+1 nodes.

2. No ingress message occurs more than once in blockchain by the same argument,
therefore it can be added to 1ts canister queue at most once.

3. Before starting execution (and thus transition) to status processing the expiry time
Is checked again.

4. 2f+1 signatures are necessary to certify the state, therefore f+1 honest honest are
involved in each computation and certification signature.




9. The Internet Computer Today



5.1 Live Since May 2021!

Blocks Transactions ETH-equivalent Transactions Cycle Burn Rate

2’65 1’564’860 8’185 . 20 TX/s 271’161 . 99 /s 12’739’200’192 Cycles/s

38.13 Blocks/s 16’718.22 - 90 day peak Based on avg. instructions per TX 7'187'362'163 - 90 day average

Active Node Machines Boundary Nodes () Upcoming Node Machines () Upcoming Boundary Nodes

O

i Leaflet | © OpenStreetMap contributors © CARTO

Total Node Machines [4 Node Machines In Subnets (£ Boundary Nodes Node Providers (4 Subnets (£

1318 559 11 15 =

https://dashboard.internetcomputer.or



https://dashboard.internetcomputer.org

5.1 Live Since May 2021!

Canisters (i) Transactions Cycle Burn Rate

(Dapps/Smart Contracts)

356’932 5’222 .22 1x/s date @) Quer 8'836°382°267 Cycles/s

https://dashboard.internetcomputer.org Q


https://dashboard.internetcomputer.org

5.2 Many Distributed Systems Problems

® Disseminating messages among all nodes in the same subset

® Exchanging canister and control messages between subnets

® Scheduling and concurrent execution of canister messages

@ Catching up after a node has been offline for a while

@ Handling churn (adding and removing nodes)

@ Guaranteeing consistency (different users need a consistent view of data and
operations)

® Upgrading to next protocol version

® Creating new subnets
® Load balancing




5.3 Growing Blockchain Ecosystem

Website upgraded to 2.0.45¢%

- Fix bug with predictive text on
. .
Phones | . Search engine
- Mark chat as read if latest )
! O C h t message was sent by you (this is
‘ p e n a needed if you send a message on
one device then load OpenChat on
another) 181

@ Follows

Kaksyeh, Rommyjah, alexialexi20, checkpoint,
milyonerunicorn and tasdekul1998 joined the
group

Top New

GE General }
Website upgraded to 2.0.451

Unleash the Power , - e — ‘ CUBETOPIA

of Decentralized N
Oracles with Orally! e

ransform your dApps with real-world data,
automated smart contracts, and more. Join

the revolution today!

I [
Enable ICP Gaming ; S
9 Principal o =
o Ox3Cd..bF32x
O Share cherished family moments
Tokens NFT
€) Captivating wildlife photography ' Bitfinity Wallet
ICP ,
€) Breathtaking landscapes
616.875 ICP
€D Stunning fashion stills, or 852USD . Canister: 0x3Cd..bF32) ®
€D Your very own artistic creations. 0.00 T-ICP ®
456 USD . Canister: O0x3Cd...bF32x
INTERNET
COMPUTER

L
https://internetcomputer.org/ecosystem Q


https://internetcomputer.org/ecosystem

5.4 Internet Computer vs. ...

Average block time:

Finality:

TX per second:

Validation data:

1 block / 10 minutes

1 hour

524 GB

N4

1 block / 15 seconds
15 minutes
15

1300 GB

OO

38 blocks / second

1-3 seconds

33,000 (write)
2,300,000 (read)

96 bytes




5.5 More information

 \Website: here

» Technical Library: here (videos of talks) and here (blogposts)

» 200,000,000 CHF Developer Grant Program here

» Developer Docs and SDK: here
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https://internetcomputer.org/how-it-works
https://www.youtube.com/playlist?list=PLuhDt1vhGcrfHG_rnRKsqZO1jL_Pd970h
https://medium.com/dfinity/tech-updates-dev-resources/home
https://dfinity.org/grants/
https://internetcomputer.org/docs/current/home

DFINITY



