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Distributed Storage



Consistent Hashing

How to store many items on many nodes in a “consistent” manner?

Use hash functions to transform item and node IDs into values in [0,1)

For each hash function, item is stored on machine with the closest hash.



Consistent Hashing

Some properties of consistent hashing:

● Each node stores the same number of items in expectation

● Number of hash functions determines degree of duplication

● Any single node’s memory consumption is bounded (by Chernoff bound)

● Supports nodes leaving/joining



Hypercubic Networks

● How should our distributed storage system look like? 

● How should the nodes be connected? 

● How do we find a particular item?

● ...



Hypercubic Networks

In a classic distributed system one node can have a view of the entire system 

because nodes rarely leave/join 

However, we are considering very large networks with high churn in which it 

becomes impossible for nodes to have an accurate and updated picture of 

large parts of the network topology

Thus, we want a system that only relies on every node knowing its small 

neighborhood 

What kind of network topology should we use?



Hypercubic Networks

Consistent hashing reminder: Where to store items

Hypercubic networks: Arrange nodes such that they form a virtual network, 

also called an overlay network

In general, the overlay network gives us the possibility to “navigate” our 

distributed storage system, i.e., do routing. This is necessary since each node 

only has a local view, but we still want to find any item, even if it is not in the 

neighborhood of the node we are currently querying



Hypercubic Networks

A good overlay topology should fulfill the following properties (more or less):

● Homogeneity: No single point of failure, all nodes are “equal”

● Node IDs in [0,1) for consistent hashing

● Nodes have small degree, i.e., only relatively few neighbours

● Small diameter and easy routing: Any node should be reachable within 

reasonable time



Different overlay topologies make different trade-offs, for example:

Butterflies: Constant small node degree

Hypercube: More fault tolerant routing; i.e. more short routes between 

nodes (k! routes of length k)

Hypercubic Networks



You will draw some simple hypercubic graphs in the quiz 

Hypercubic Networks



DHT & Churn

DHT: Distributed Hash Table

● Combines consistent hashing with overlay networks

● Supports searching, insertion and (maybe) deletion

● For example: Use hypercube with hyper nodes. “Core” nodes store data, 

“periphery” nodes can move around.



DHT & Churn

Robustness against Churn

● Attacker crashes nodes in worst-case 

manner. Can target weak spots to 

partition the DHT.

● DHT redistributes nodes to make sure 

each hypernode has ≈ the same 

number of nodes → No weak spots.



Quiz

Draw the following hypercubic graphs:

● M(3,1)

● M(3,2)

● SE(2)

● M(2,4)



Quiz Solutions



Assignment Outlook



Assignment Outlook



Assignment Outlook



Game Theory



Prisoner’s Dilemma - matrix representation of games



Game Theory - Terminology

Strategy move

Strategy profile set of strategies for all players 
specifying all actions in a game

Social optimum (SO)

Dominant strategy (DS)

Dominant strategy profile

Nash equilibrium (NE)



Example: Prisoners Dilemma

Strategy: Player v will play “Cooperate”

Strategy profile: Player v will play “Cooperate” and player u will play “Defect”

Dominant Strategy:

Social optimum:

Nash equilibrium: 



Game Theory - Terminology

Strategy move

Strategy profile set of strategies for all players 
specifying all actions in a game

Social optimum (SO) Strategy profile with the best sum 
of outcomes over players

Dominant strategy (DS) The move that’s never worse than 
another strategy for a player

Dominant strategy profile Every player plays a dominant 
strategy

Nash equilibrium (NE)



Example: Prisoners Dilemma

Strategy: Player v will play “Cooperate”

Strategy profile: Player v will play “Cooperate” and player u will play “Defect”

Dominant Strategy: Defect (if other player cooperates: 0<1; if other player defects 2<3)

Social optimum: Cooperate-Cooperate (cost: 2)

Nash equilibrium: 



Game Theory - Terminology

Strategy move

Strategy profile set of strategies for all players 
specifying all actions in a game

Social optimum (SO) Strategy profile with the best sum 
of outcomes over players

Dominant strategy (DS) The move that’s never worse than 
another strategy for a player

Dominant strategy profile Every player plays a dominant 
strategy

Nash equilibrium (NE) Strategy profile such that nobody 
can improve by unilaterally 
changing their move



Example: Prisoners Dilemma

Strategy: Player v will play “Cooperate”

Strategy profile: Player v will play “Cooperate” and player u will play “Defect”

Dominant Strategy: Defect (if other player cooperates: 0<1; if other player defects 2<3)

Social optimum: Cooperate-Cooperate (cost: 2)

Nash equilibrium: Defect-Defect (cost: 4)



Selfish Caching

Consider a network. Nodes can either cache a file or fetch it through the network 
from another node. At least one node should store the file.

As a game:

• Strategy: cache or not cache
• Cost: 1 if cache, otherwise (shortest path to cache) * demand

(Note: path lengths are symmetric (if undirected) but demands might vary)



Selfish Caching - Algorithm

cu←v = cost for u of fetching from v, i.e. u-v-path length * demand of u

remove all candidates that 
are better off by fetching



Selfish Caching - Example

With demands all 1

There are 2 NE, both can be found with algorithm depending on the start node:

Optimistic NE (start algo at v): ?

Pessimistic NE (start algo at u or w): ?

Social Optimum: ?



Selfish Caching - Example

With demands all 1

There are 2 NE, both can be found with algorithm depending on the start node:

Optimistic NE (start algo at v): v caches  Cost = 1/2 + 1 + 3/4 = ⇒ 9/4

Pessimistic NE (start algo at u or w): ?

Social Optimum: ?



Selfish Caching - Example

With demands all 1

There are 2 NE, both can be found with algorithm depending on the start node:

Optimistic NE (start algo at v): v caches  Cost = 1/2 + 1 + 3/4 = ⇒ 9/4

Pessimistic NE (start algo at u or w): u & w cache  Cost = 1 + 1/2 + 1 = ⇒ 10/4

Social Optimum: ?



Selfish Caching - Example

With demands all 1

There are 2 NE, both can be found with algorithm depending on the start node:

Optimistic NE (start algo at v): v caches  Cost = 1/2 + 1 + 3/4 = ⇒ 9/4

Pessimistic NE (start algo at u or w): u & w cache  Cost = 1 + 1/2 + 1 = ⇒ 10/4

Social Optimum: v caches (same as Optimistic NE)  Cost = ⇒ 9/4



Price of Anarchy

Idea: With some rules, we could always enforce the social optimum. But what is 
the cost of having no rules (anarchy)?

• Optimistic approach: players will converge to “best” nash equilibrium.

• Then, price of anarchy: 

• Pessimistic approach: players will converge to “worst” nash equilibrium

• Then, price of anarchy:



Selfish Caching - Example

With demands all 1

Optimistic NE: 9/4      Pessimistic NE: 10/4      Social Optimum: 9/4

PoA: ?

OPoA: ?



Selfish Caching - Example

With demands all 1

Optimistic NE: 9/4      Pessimistic NE: 10/4      Social Optimum: 9/4

PoA: (10/4) / (9/4) = 10/9 > 1

OPoA: (9/4) / (9/4) = 1



Braess Paradox

d = #drivers on link

NE for 1000 drivers:
split evenly across 
s→u→t and s→v→t

 ⇒ cost = 1.5



Braess Paradox

adding link {u,v} 
makes the NE worse

consider even split, but 
then s→v→u→t costs 
just 1, so drivers will 
start switching until all 
choose that path  ⇒
cost = 2



Mixed Nash Equilibrium

MNE for rock paper scissors: 
Both players choose a strategy 
with ⅓ probability (due to 
symmetry)



Quiz (Assignment 11)



Q & A Session
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