. P Slides last updated:
ETHz(irich [E& ostiued fo o

Systems@ ETH ziricn Com pu ti n g N

" -"II-.'ﬂ:...l':';i':.:.=.:1m'_'l srarmres

ot e Sk] .
N
R
et i
o B « =21

o T 1 et 111
N

Y e T e T :
T j o 5

Computer Systems /
Distributed Systems

=z s -2 s a
Exercise Session 12 _iS j' - Al B L

EEI i i"___—-- i
HS 2023 T TR Y D —

e OO ETTTT T

.......

igeaand = b -

ETHzirich [Ba ommwer fuds,
Systems@ ETH ziricn

Computing 't‘

Distributed Storage

m ZU rl C h :E; Distributed / '.- .:‘

Computing \‘“

Consistent Hashing

How to store many items on many nodes in a “consistent” manner?
Use hash functions to transform item and node IDs into values in [0,1)

For each hash function, item is stored on machine with the closest hash.

ETHziirich B osme (o

Computing

Consistent Hashing

Some properties of consistent hashing:

® Each node stores the same number of items in expectation
® Number of hash functions determines degree of duplication

® Any single node’s memory consumption is bounded (by Chernoff bound)

® Supports nodes leaving/joining

ETHziirich [Ea osived foi.

Computing < %5

Hypercubic Networks

® How should our distributed storage system look like?
® How should the nodes be connected?

® How do we find a particular item?

E'H Z U r I C h :C; Distributed t’g“‘ .
Systems@ ETH zuicr

Computing ‘s‘“

Hypercubic Networks

In a classic distributed system one node can have a view of the entire system
because nodes rarely leave/join

However, we are considering very large networks with high churn in which it
becomes impossible for nodes to have an accurate and updated picture of
large parts of the network topology

Thus, we want a system that only relies on every node knowing its small
neighborhood

What kind of network topology should we use?

ETHziirich B osmed fior.,

Computing \“ o

Hypercubic Networks

Consistent hashing reminder: Where to store items

Hypercubic networks: Arrange nodes such that they form a virtual network,
also called an overlay network

In general, the overlay network gives us the possibility to “navigate” our
distributed storage system, i.e., do routing. This is necessary since each node
only has a local view, but we still want to find any item, even if it is not in the
neighborhood of the node we are currently querying

/ ;i'-“

E'H Z U r I C h :C; Distributed t’g“‘ .
Systems@ ETH zuicr

Computing ‘s‘“

Hypercubic Networks

A good overlay topology should fulfill the following properties (more or less):

I”

® : No single point of failure, all nodes are “equa
@® Node IDs in [0,1) for consistent hashing
@® Nodes have small degree, i.e., only relatively few neighbours

@® Small diameter and easy routing: Any node should be reachable within
reasonable time

e
gy
!“‘ ™\ 5

[.] ' ¥
ETHziirich B5 ostivuted {
Systems@ ETH zuicr

Computing Wes% i
Hypercubic Networks

Different overlay topologies make different trade-offs, for example:

Butterflies: Constant small node degree

Hypercube: More fault tolerant routing; i.e. more short routes between
nodes (k! routes of length k)

000 001 010 011 100 101 110 111 110 111

0 / /
100 101

1

, /010 /()11

3 — ¢) —e 000

001

ETHzirich [Ea osies

Systems@ ETH ziricn Com pu tl n g

Hypercubic Networks

You will draw some simple hypercubic graphs in the quiz

2-d hypercube 3-d hypercube 4-d hypercube
: } o o o
i
o o o
T T T T T T T T T T T T T T T
2 Bl 0 1 2 2 Bl 0 1 2 2 Bl 0 1 2
x(1) x(1) x(1)
5-d hypercube 6-d hypercube 7-d hypercube
~
AN l'
NN 1\‘\4

x(2)
0
x(2)
x(2)

A2 ‘.“7‘\

V \l\ 4.«/r ‘\V
-

ETHziirich B osvme (.,

Computing \‘“‘

DHT & Churn

DHT: Distributed Hash Table

® Combines consistent hashing with overlay networks
® Supports searching, insertion and (maybe) deletion

® For example: Use hypercube with hyper nodes. “Core” nodes store data,
“periphery” nodes can move around.

p e
ETHziirich R ostimed faute,
Systems@ ETH zuicr

Computing W% i

DHT & Churn
Core

Robustness against Churn Periphery

® Attacker crashes nodes in worst-case
manner. Can target weak spots to
partition the DHT.

® DHT redistributes nodes to make sure
each hypernode has = the same
number of nodes = No weak spots.

E'H Z U r I C h :C; Distributed t’g“‘ .
Systems@ ETH zuicr

Computing ‘;\“
Quiz

Draw the following hypercubic graphs:

® M(3,1)
® M(3,2)
® SE(2)

® M(2,4)

ETHzuri
zurich n; Distributed ‘if:‘;’;'_;.‘l

Systemse ETH o Com pu tin g “!“ .’

Quiz Solutions

M(3,1)
0O — 1 — 2
SE(2)
01
M(3,2) rd
0
00 — 10— 20 -
L
G — 11— 21
Lol

11

1000 /

0000

M(2,4)
1100 1110
: 1010 /£
*1101 1117
Lo 1011,/
10071
0101 0111
0007 0011
- : ~Jo110

0100}

0010

ETHzlirich R ostivued fud.,

Systems@ ETH ziricn Com pu ti n g

Assignment Outlook

Basic

2.2 Iterative vs. Recursive Lookup

There are two fundamental ways to perform a lookup in an overlay network: recursive and
iterative lookup.

Assume node ng is attempting to look up an object in a DHT. In the recursive lookup ng
selects a node n; which is closest according to the DHT metric and sends a request to it. Upon
receiving the request n; selects its closest known neighbor ny and forwards the request to it and
so on. The request either ends up at the node storing the object, returning the object along
the same path, or it ends at a node that does not store the object and does not have a closer
neighbor.

In the iterative case ng looks up the closest neighbor ny and sends it the request. Upon
receiving the request n; is either the node storing the object and it returns the object, or it
knows a closer node ny and returns ny to the ng. If ng receives a node ny it will add it to
its neighbor set and sends a new request to ny which is now its closest neighbor. The lookup
terminates either when ng sends a request to the node storing the object, or no closer node can
be found.

a) What are the advantages of recursive lookups over the iterative lookups?

b) Most systems that are in use today use the iterative lookup, and not the recursive lookup,
why?

.

E , H ‘1ri Distributed /’5':
#5985 B
ZurICh Wnns;m; Computing ‘:“‘: }_'u_.,:.

Assignment Outlook

2.3 Building a set of Hash functions

Consistent hashing relies on having k hashing functions {hg,...,h;_1} that map object ids to
hashes. There are several constructions for these hash functions, the most common being iterative
hashing and salted hashing. In iterative hashing we use a hash function A and apply it iteratively
so that the hashes of an object id o are defined as

k) if i=0
h%(O) - {h(hq‘,~1(0)) otherwise.

With salted hashing the object id is concatenated with the hash function index ¢ resulting in the
following definition

h;(0) = h(ol|i).

Which hashing function derivation is better and why?

ETHziirich B2 o fud.

systemse ETH omputmg

Assignment Outlook
Advanced

2.4 Multiple Skiplists

In the lecture we have seen the simple skip list in which at each level nodes have probability 1/2
of being promoted to the next level. We have also discussed a variation known as a skip graph.
For yet another option, we once again redefine the promotion so that a node is promoted to a list
s if s is a suffix of the binary representation of the node’s id. At each level [we now have 2! lists
(some empty), each defined by a string of bits s of length /. In particular, the root level I = 0
is constructed with s being the empty string. The second level has one list for each s € {0,1},
the third level one list for each s € {00,01, 10,11}, and so on. We call the resulting network a
multi-skiplist. For the purposes of this question, assume that all lists are circular.

a) Assuming we have an 8 node network, with ids {000,...,111}, draw the multi-skiplist
graph.

b) What is the minimum degree of a node in the multi-skiplist if we have d levels?

c) What is the maximum number of hops a lookup has to perform?

Systems @ ETH zun

"

.

Distributed !::.r_' .
Computing ¥ %%,

Game Theory

ETH:zirich

Prisoner’s Dilemma - matrix representation of games

ETH:zirich

u Player u
v Cooperate | Defect
1 0
Player v Cooperate 1 9
: 3 2
Defect 0 5

Systems @ ETH zun

A
Distributed f:l"-' .

Computing W%

®
L annl

Game Theory - Terminology Systemse ETH.wo

Distributed ﬁ:;-:‘-.
Strategy move Computing s

Strategy profile set of strategies for all players
specifying all actions in a game

Social optimum (SO)

Dominant strategy (DS)

Dominant strategy profile

Nash equilibrium (NE)

ETH:zirich

Example: Prisoners Dilemma Systems @ ETHzu

e

L
Distributed f‘.-».'-

C ting W v
u Player u omputing ¥
v Cooperate | Defect
1 0
Player Cooperate { 9
: 3 2
Defect 0 5

Strategy: Player v will play “Cooperate”

Strategy profile: Player v will play “Cooperate” and player u will play “Defect”
Dominant Strategy:

Social optimum:

Nash equilibrium:
zlrich

Game Theory - Terminology

Strategy

Systems @ ETH zun

P
Distributed f".n» "

Strategy profile

set of strategies for all players
specifying all actions in a game

Social optimum (SO)

Strategy profile with the best sum
of outcomes over players

Dominant strategy (DS)

The move that’s never worse than
another strategy for a player

Dominant strategy profile

Every player plays a dominant
strategy

Nash equilibrium (NE)

ETH:zirich

. -

move Computing W50

Example: Prisoners Dilemma

u Player u
v Cooperate | Defect
1 0
Player v Choperte 1 3
Defect 3 2
efec 0 9

Strategy: Player v will play “Cooperate”

Strategy profile: Player v will play “Cooperate” and player u will play “Defect”

Systems @ ETH zun

A
Distributed f.'.n-.'-_
Computing ¥e %500

Dominant Strategy: Defect (if other player cooperates: 0<1; if other player defects 2<3)

Social optimum: Cooperate-Cooperate (cost: 2)

Nash equilibrium:
zurich

Game Theory - Terminology Systemse ETH.wo

7
Distributed f. 0%’ s

Strategy move Computing Ws %5
Strategy profile set of strategies for all players
specifying all actions in a game
Social optimum (SO) Strategy profile with the best sum
of outcomes over players
Dominant strategy (DS) The move that’s never worse than
another strategy for a player
Dominant strategy profile Every player plays a dominant
strategy
Nash equilibrium (NE) Strategy profile such that nobody

can improve by unilaterally
changing their move

ETH:zirich

. -

Example: Prisoners Dilemma

u Player u
v Cooperate | Defect
1 0
Player v Choperte 1 3
Defect 3 2
efec 0 9

Strategy: Player v will play “Cooperate”

Strategy profile: Player v will play “Cooperate” and player u will play “Defect”

Systems @ ETH zun

A
Distributed f.'.n-.'-_
Computing ¥e %500

Dominant Strategy: Defect (if other player cooperates: 0<1; if other player defects 2<3)

Social optimum: Cooperate-Cooperate (cost: 2)

Nash equilibrium: Defect-Defect (cost: 4)

zurich

Selfish Caching Systemse ETHs

s
Distributed (. 0%’ s

Computing ¥ % %.n

Consider a network. Nodes can either cache a file or fetch it through the network
from another node. At least one node should store the file.

As a game:
* Strategy: cache or not cache

* Cost: 1if cache, otherwise (shortest path to cache) * demand
(Note: path lengths are symmetric (if undirected) but demands might vary)

ETH:zirich

Selfish Caching - Algorithm systemse ETH e

5
%
Distributed éz‘:ﬂ.' .
. pt'isus 8
Computing W% 5. u

Algorithm 25.7 Nash Equilibrium for Selfish Caching
s B =141 //set of nodes that cache the file
: repeat
Let v be a node with maximum demand d, in set V

1
2
3:
i S=8Ui{sh ¥V =V {v}
5!
6

Remove every node u from V with ¢,,. ,, <1 «—— remove all candidates that
Y WA = are better off by fetching

:until V = {}

c,., = cost for u of fetching from v, i.e. u-v-path length * demand of u

u

ETH:zirich

Selfish Caching - Example Systemse ETH.wo

@ 1/2 @ 3/4 @

With demands all 1

)
fgr®
i s *

Distributed f
Computing ¥ %%,

There are 2 NE, both can be found with algorithm depending on the start node:
Optimistic NE (start algo at v): ?
Pessimistic NE (start algo at u or w): ?

Social Optimum: ?

ETH:zirich

Selfish Caching - Example Systemse ETH.wo

@ 1/2 @ 3/4 @

With demands all 1

Distributed f
Computing ¥e %500

There are 2 NE, both can be found with algorithm depending on the start node:
Optimistic NE (start algo at v): v caches = Cost=1/2 + 1 + 3/4 = 9/4
Pessimistic NE (start algo at u or w): ?

Social Optimum: ?

ETH:zirich

Selfish Caching - Example Systemse ETH.wo

@ 1/2 @ 3/4 @

With demands all 1

Distributed f
Computing ¥e %500

There are 2 NE, both can be found with algorithm depending on the start node:
Optimistic NE (start algo at v): v caches = Cost = 1/2 + 1 + 3/4 = 9/4

Pessimistic NE (start algo at u or w): u & w cache = Cost=1+1/2+ 1 =10/4

Social Optimum: ?

ETH:zirich

Selfish Caching - Example Systems o ETH v

@ 1/2 @ 3/4 @

With demands all 1

i
S ge®
) %% *

Distributed f
Computing ¥e %500

There are 2 NE, both can be found with algorithm depending on the start node:
Optimistic NE (start algo at v): v caches = Cost=1/2 + 1 + 3/4 = 9/4
Pessimistic NE (start algo at u or w): u & w cache = Cost=1+1/2+1=10/4

Social Optimum: v caches (same as Optimistic NE) = Cost = 9/4

ETH:zirich

Price of Anarchy Systemse ETH.wo

7
Distributed (. 0%’ s

Computing ¥ % %.n

Idea: With some rules, we could always enforce the social optimum. But what is
the cost of having no rules (anarchy)?

* Optimistic approach: players will converge to “best” nash equilibrium.

| | _ cost(NE)
Then, price of anarchy: OPoA = cost(S0)
* Pessimistic approach: players will converge to “worst” nash equilibrium
| B cost(NE_)
. . O —
Then, price of anarchy: cost(S0)

ETH:zirich

Selfish Caching - Example Systemse ETH.wo

Distributed !;':.-:‘-.
1/2 /\ 3/4 Q
u v w
OmnO

Computing ¥e %500
With demands all 1

Optimistic NE: 9/4 Pessimistic NE: 10/4 Social Optimum: 9/4
PoA: ?

OPOA: ?

ETH:zirich

Selfish Caching - Example Systemse ETH.wo

Distributed !;':.-:‘-.
1/2 /\ 3/4 Q
u v w
OmnO

Computing ¥e %500
With demands all 1

Optimistic NE: 9/4 Pessimistic NE: 10/4 Social Optimum: 9/4
PoA: (10/4) / (9/4) = 10/9 > 1

OPoA: (9/4) / (9/4) = 1

ETH:zirich

Braess Paradox Systems @ ETH s

A
Distributed f:l"-' .

Computing ¥e %500

d = #drivers on link

NE for 1000 drivers:
split evenly across
s—u—t and s—»v—t
= cost=1.5

d/1000

(a) The road network without the shortcut

ETH:zirich

Braess Paradox Systems @ ETH s

Distributed [ﬁ::’--
Computing ¥ %%,

adding link {u,v}
makes the NE worse

consider even split, but
then s—v—u—t costs
just 1, so drivers will
start switching until all

choose that path =
cost=2 (b) The road network with the shortcut

d/1000

ETH:zirich

Mixed Nash Equilibrium Systems e ETH.uis

Definition 25.16 (Mixed Nash Equilibrium). A Mixed Nash Equilibrium (MNE) D"‘c::::ﬁfng é‘.:‘-
s a strategy profile in which at least one player is playing a randomized strategy .
(choose strategy profiles according to probabilities), and no player can improve

their expected payoff by unilaterally changing their (randomized) strategy.

Theorem 25.17. FEvery game has a mixed Nash Equilibrium.

U Player u
v Rock Paper Scissors

Hock 0 1 -1 MNE for rock paper scissors:

| 0 -1 1 Both players choose a strategy
) 1 o
Dl o 1 1 : 0 i 1 \;v;/trr:1 rfei)r;o)bablllty (due to
e 1 -1 0
C1Ss0rs . 1 0

Table 23.15: Rock-Paper-Scissors as a matrix.

Systems @ ETH zun

#e %
Distributed é:-;‘ .
Computing ¥e %500

Quiz (Assignment 11)

1.1 Selling a Franc

Form groups of two to three people. Every member of the group is a bidder in an auction for
one (imaginary) franc. The franc is allocated to the highest bidder (for his/her last bid). Bids
must be a multiple of CHF 0.05. This auction has a crux. Every bidder has to pay the amount
of money he/she bid (last bid) — it does not matter if he/she gets the franc. Play the game!

a) Where did it all go wrong?
b) What could the bidders have done differently?

ETH:zirich

. s M
ETHziirich [Ba ouriwed (o,

Systems@ ETH ziricn Computing “?\ ‘s“)

Q & A Session

	Computer Systems / Distributed Systems
	Distributed Storage
	Consistent Hashing
	Consistent Hashing
	Hypercubic Networks
	Hypercubic Networks
	Hypercubic Networks
	Hypercubic Networks
	Hypercubic Networks
	Hypercubic Networks
	DHT & Churn
	DHT & Churn
	Quiz
	Quiz Solutions
	Assignment Outlook
	Assignment Outlook
	Assignment Outlook
	Slide 18
	Prisoner’s Dilemma - matrix representation of games
	Game Theory - Terminology
	Example: Prisoners Dilemma
	Game Theory - Terminology
	Example: Prisoners Dilemma
	Game Theory - Terminology
	Example: Prisoners Dilemma
	Selfish Caching
	Selfish Caching - Algorithm
	Selfish Caching - Example
	Selfish Caching - Example
	Selfish Caching - Example
	Selfish Caching - Example
	Price of Anarchy
	Selfish Caching - Example
	Selfish Caching - Example
	Braess Paradox
	Braess Paradox
	Mixed Nash Equilibrium
	Quiz (Assignment 11)
	Q & A Session

