Computer Systems/
Distributed Systems

Exercise Session 11

HS 2023

FORA

FPGA

nAbD4 A

10R4 1]

= n '
A N f:._.__
) " " »
‘ wh - ;’
1 s F9al 1] F—J
”
LEN
nh o L
iR wes ";‘,:55a”
1 "~ } -0
; ‘u ‘ o0
~ " =
» N -— { .
e
1 pany
W o=
. i L

|
€
=

¥ P
| ' i' “ el I~ 3 Lt
X -~ i ' PSS
= o s
"- "o e e I
{ USRS = 4 :
' — R T o) ‘f A

"i.-'"'g.';". ..;..,?5'~---- : ——VF'VDG.“._DCIe_xM 5~ e

T B B 25 T VFOAAT e BHMCC

vee .‘:.. » e ':’;’ rc_?_d,;’,'_r.aﬁs_,_.l\ Thent " -,4'. [L™
]

'__‘

i 8

[cPu_EDC, BMC

FPGA]

. BB 32k 33235 Tal, 1,5.‘1.’391_[_.

v v PO
e
LAAAAAAL L LAAA .‘;-’_L-WJ“‘ ‘

|

PR N | R FA
243 202 DIIOJEE
W0 St Covigw B e s b AR Sn dviiee .
Semmes v Vhe JIND S, S sedl W e teeereeie)

\E EOC’ ; e N E t g_?‘%; -—:’m T

ARab iR A BB M Tl
Aamad o i

e

e L. /ﬂ‘-':
ETHz(irich BF oitributed funte,

.
‘‘‘‘‘ Computing "% %'% o

&

Systems @ ETH ziicn

Consistency models
* Linearizable
* Sequentially Consistency

* Quiescent Consistency

Theorem:

Linearizable implies both sequentially and quiescent consistency.

ETH:zurich

ETHzurich ks Ditributed flagte,

Computing s %5 o

Systems @ ETH ziicn

Linearizable
 “one global order”
* Linearizable = put points on a “line”

e Strongest assumption, implies other two

ETH:zurich

v L 4
ETH:zlUrich BE oitributed et

Computing W% s

SyS tems@ ETH zicn

Linearizable
 “one global order”
* Linearizable = put points on a “line”

e Strongest assumption, implies other two

write x=1 write x=3 read x=2

read x=1 write y=1

write x=2 read y=1

ETH:zurich

v L 4
ETH:zlUrich BE oitributed et

Computing W% s

SyS tems@ ETH zicn

Linearizable
 “one global order”
* Linearizable = put points on a “line”

e Strongest assumption, implies other two

write x=1 write x=3 read x=2
—_— O o O e
read x=1 write y=1
write x=2 read v=1
’— —
O O o-0—0 o-0

write x=1 < read x=1< write x=3 < write x=2 < write y=1 < read y=1< read x=1
ETHzurich

/l‘;’;
ETHz(irich ER pstibuted [,

Computing WSs% i

Systems @ ETH ziicn

Sequential Consistency
 “per thread order”

* Sequential consistency = build “sequences”

ETH:zurich

p .o
" ’Zur[C h E; Distributed ,4/"5?“;"

.]
Computing "% %

Systems @ ETH ziicn

Sequential Consistency
 “per thread order”

* Sequential consistency = build “sequences”

write x=1 read x=2

read y=2

write x=2 write y=1

write y=2 read y=2

ETH:zurich

ETHz(irich ER pstibuted [,
| |

Computing

Systems @ ETH ziicn

Sequential Consistency
 “per thread order”

* Sequential consistency = build “sequences”

write x=1 read x=2

read y=2

write x=2 write y=1

write y=2 read y=2

Not

linearizable

ETH:zurich

e
" ’Zur[C h E; Distributed ,fﬁ"‘i‘i‘

Computing

5
@
a

m |

Sequential Consistency

 “per thread order”

* Sequential consistency = build “sequences”

SyS tems@ ETH zicn

write x=1 read x=2 read y=2
—_— ® O
write x=2 write y=1
1 () e— ’
write y=2 read y=2
- -.
® ® ® o o—00

ETH:zurich

write x=1 < write x=2 < write y=2 < read x=2 < read y=2 < read y=2 < write y=1

o o)
ETH:zlUrich BE oitributed et

Computing W% s

Systems @ ETH ziicn

Quiscent Consistency

* Synchronizes all threads on quiescent point, i.e. point where no execution

happens
read x=1 read y=1
write x=1 write y=1
write x=2 read y=1

ETH:zurich

" N L. /1/,’5';‘:-
ETHzUrich &= ostributed flasle,

Systems @ ETH ziicn

Quiscent Consistency

* Synchronizes all threads on quiescent point, i.e. point where no execution

happens
read x=1 read y=1
write x=1 write y=1
write x=2 read y=1

ETH:zurich

e . .. /1/,’5'-;:‘
ETHzUrich &= ostributed flasle,

Systems @ ETH ziicn

Quiscent Consistency

* Synchronizes all threads on quiescent point, i.e. point where no execution

happens
read x=1 read y=1
write x=1 write y=1
write x=2 read y=1

write x=2 < write x=1 . < write y=1 <read y=1 < read x=1 < read y=1

ETH:zurich

" . .. y/ 114 ‘ﬁ
ETHzurich Ex Ditibuted fasgle,

Computing ':?

O\ T

Systems @ ETH ziicn

Composable Consistency

e Definition: If you only look at all operations concerning any object and the
execution is consistent, then also the whole execution is consistent

* Sequentially consistent is not composable

* Linearizability is composable

 (Quiescent consistency is composable

ETH:zurich

e

/o
" ’ZU['IC h Distributed ,{:ﬁ-‘;‘ us

Computing WSs% i

Systems @ ETH ziicn

Composable Consistency

e Definition: If you only look at all operations concerning any object and the
execution is consistent, then also the whole execution is consistent

* Sequentially consistent is not composable

* Linearizability is composable

 (Quiescent consistency is composable

write x=1 read x=3 read x=2

read x=1 write y=1

write x=2 read y=1

ETH:zurich

m ‘1r h Distributed /"?i“-.
ZUricn b== pists "

Computing WSs% i

Systems @ ETH ziicn

Logical Clocks:
* Happened before relation “2” holds
1) IF f < g on the same node

2) Send happens before receive

3) If f 2 gand g =2 h, then f=> h (transitivity)

ETH:zurich

m el h Distributed /"/i’?":“-‘
ZUricn == feoss =%

Computing WSs% i

Systems @ ETH ziicn

Logical Clocks:

* Happened before relation “2” holds

1) IF f < g on the same node

2) Send happens before receive

3) If f 2 gand g =2 h, then f> h (transitivity)

e ((a): timestamp of event a

ETH:zurich

e o p o
ETHZUrich &= Distributed [facts,
]

Logical Clocks:

* Happened before relation “2” holds

1) IF f < g on the same node

2) Send happens before receive

3) If f 2 gand g =2 h, then f> h (transitivity)

e ((a): timestamp of event a

* logical clocks: a=> b implies c(a) < c(b)

* Strong logical clock: c(a) < c(b) implies a=> b (in addition)

ETH:zurich

m 'ZUFIC h Em Distributed ﬂi‘:‘:‘l.

Lamport Clocks:

P, -
I ¢ J
store own clock /
A (
’ - -
2 N \d
1 vy -
timel

ETHzrich

SyS tems@ ETH zicn

1l Distributed ~ [/#gss®
ETHzUrich BE ostriuted (g,

Computing W %5 iu

Systems @ ETH ziicn

Lamport Clocks:

+1 max(1,2) + 1
i u
f ‘! SRS
1 2
—S O
a D
Pl N
v 3

store own clock
rIY

—h
P2 O
1

»

fime
Weak logical clock: a - b implies c(a) < c¢(b) but not vice versa

ETH:zurich

m’ 4 U r [C h ME;E Distributed /‘f -“:_-

Computing '.)“\‘

Vector Clocks:

now vector of clocks increase own clock for event

A A
(Y |
(1,0,0) (2,0,0) (3,1,0) (4,1,0) (5,1,2) (6,1.2) (7,12
P I\ Fa 7\ ™\
0 N T
2 b c d
send current timestamp
Py O -
' (0,1,0) (2 2,0)) K (632
increase own by one and
take max of received and own
= -, forevery other one
2 \f
1(0,0,1) m (0.0.2/

-

ETH:irich

Systems @ ETH ziicn

m el h Distributed ‘,,/ii’ﬁ";“
ZUricn == feoss =%

Computing WSs% i

Systems @ ETH ziicn

Vector Clocks:

 What does c(a) < c(b) mean now?

- if all the entries in a<= b and at least one entry wherea<b
* |s alogical clock (so if a 2 b then c(a) < c(b))

* |s also a strong logical clock (if c(a) < c(b) ->a = b)

Intuition: because in order to achive c(a) < c(b), all entries have to be at least
as big, so a message from a must have reached b (not necessarily directly)
so that b has the right value

ETH:zurich

P
e

o . ey . ///,’:' .
ETHzurich ks Ditributed flagte,

‘‘‘‘‘ Computing Cy‘

>
=

Systems @ ETH ziicn

Consistent Snapshot:

e Cut: prefix of a distributed execution

* Consistent Snapshot:

a cut where for every operation g in that cut, if f 2 g, then the cut
contains f

- if all “connected” preceding operations are included
 With number of consistent snapshots, one can make conclusions about

degrees of concurrency in system

ETH:zurich

e s 4 ‘-‘
ETHzurich Bx citibuted g,

Computing ' Peshues,

Systems @ ETH ziicn

Time & Clocks

- Wall clock time: “true” time

- clock error

L LR L AR Sy Ly
PRIAT LI B LR L Ll

—

Figure 20.8: Drift (left) and Jitter (right). On top is a square wave, the wall-
clock time t*.

ETH:zurich

. L. £5*"'s
ETHZ(rich BR istributed [,
{

SyS tems@ ETH zicn

NTP

)

: t-5 S:t
0
-
i request
\ Propagation delay = ((25-0) — (20-15)) /2 =10
15

20
response

25

ETH:zurich

ETHziirich EZ ostiweed fus.,

Computing W%

NTP

)

:t-5 S:t
-
| —}

request

0 \

15

20
response

25

ETH:zurich

Systems @ ETH ziicn

Propagation delay = ((25-0) — (20-15)) / 2 = 10

Assumed to be symmetric!

. p
ETHz(irich BESR ostributed frcs.,
17

NTP

)

:t-5 S:t
-
| —}

request

0 \

15

20
response

25

ETH:zurich

SyS tems@ ETH zicn

Propagation delay = ((25-0) — (20-15)) /2 = 10

Assumed to be symmetric!

Skew = ((15-0) + (20-25))/2 =5
—> Adjust clock by skew

L L) ’/’=- —’;i
Distributed ’{‘=“‘“"i
ETH:zurich &cs pirited flasge,

a
N L

Systems @ ETH ziicn

Alternative Synchronization Protocols
* Precision Time Protocol
 Local Time Synchronization

* Wireless Clock Synchronization with Known Delays

ETH:zurich

7S
ETHz(irich BESR ostributed frcs.,

Systems @ ETH ziicn

GPS - General Idea

Satellite 2

Satel ﬁtj)) \\\.

- Mé\are here

ETH:zurich

m Z U r I C h Synm; Distributed {,::

Computing W%

GPS - General Idea

i) i Satellite 2
Satellites transmit location (e
and timestamp when sent '}\‘?\;;e here

N\

A\
—
Satellite 3

ETH:zurich

Systems @ ETH zuricy

e n .y /f"y'i
ETH (rich BEE oitributed fits,

Computing 'W¥'% .0

SyS tems@ ETH zicn

GPS - General Idea

. . . Satellite 2
Satellites transmit location e

and timestamp when sent —— @ \eare here
N

- Compare satellite

timestamp to local timestamp

and calculate distance

ETH:zurich

m Z U r I C h Synm; Distributed {,::

Computing W%

Systems @ ETH ziicn

GPS - General Idea

Problem: Quadratic equation
results in two possible locations

i) i Satellite 2
Satellites transmit location (e
and timestamp when sent '}\‘?\;;e here

- Compare satellite ,- = \
timestamp to local timestamp ;" Satellite 3
and calculate distance \

ETH:zurich

r '] /‘)
ETHz(irich BER pstibuted o,

Computing

Systems @ ETH ziicn

GPS - General Idea

Problem: Quadratic equation
results in two possible locations
Satellites transmit location
and timestamp when sent Solution: Generally, only one
close to Earth’s surface

- Compare satellite
timestamp to local timestamp

and calculate distance

ETH:zurich

. Lo y 5
ETHZ(rich BR istributed [,

Computing '§

Systems @ ETH ziicn

GPS - General Idea

Problem: We do not have the
same time as the satellite, so
calculatingthe distance might not
be accurate

Satellites transmit location
and timestamp when sent

- Compare satellite
timestamp to local timestamp
and calculate distance

ETH:zurich

AN
‘:\=\
.

“

. 11
s Y

.

=\
\\

m’ 4 U r I C h Mnm; Distributed

Computing

ST
—
| |

0‘
PO
s%
1“

Systems @ ETH ziicn

GPS - General Idea

Problem: We do not have the
same time as the satellite, so
calculatingthe distance might not
be accurate

Satellites transmit location
and timestamp when sent

Solution: take measurements from
forth satellite!

- Compare satellite
timestamp to local timestamp
and calculate distance

ETH:zurich

o . L. Y LB
ETH (irich B3 oistibuted fhects,

Computing

Systems @ ETH ziicn

GPS - Redefined

Satellite 2

ETH:zurich

ETHzurich Ex Ditibuted fasgle,

.
Computing WSs% i

Systems @ ETH ziicn

Quiz

1. Does sequential consistency imply quiescent consistency?

2. Are there guarantees a Lamport clock can achieve a vector clock cannot?

3. Does a high number of consistent snapshots imply a high level of

concurrency?

ETH:zurich

e

s . . . /’/:ig”i ;
m Z U r I C h B Distributed t"::""i . .

Computing WS %% i

Systems @ ETH ziicn

Quiz

1. Does sequential consistency imply quiescent consistency? - Wrong

x=2%x e.g. x=1.5 is a valid outcome for
sequential consistency, but not quiescent

Xx=x+1

2. Are there guarantees a Lamport clock can achieve a vector clock cannot?

No, because the concept of a Lamport clock is included in the vector clock concept

3. Does a high number of consistent snapshots imply a high level of

concurrency? - True

ETH:zurich

ETHzirich BE istibuted g,

Computing

SyS tems@ ETH zicn

Quiz
4. What is the difference between jitter and drift?

ETH:zurich

L L) ""2‘
Distributed l’i"v‘
fss8ys =
ETHzirich BE ptibuted e,

A1

Systems @ ETH ziicn

Quiz
4. What is the difference between jitter and drift?

e e i e e e |
J S0 5 R L 0 L

Figure 22.8: Drift (left) and Jitter (right). On top is a square wave, the wall-
clock time t*.

ETH:zurich

L . g 42" |
ETHzuUrich BE ostribed furge,

Computing

Assignment 9 Outlook:

ETH:zurich

1

Quiz

1.1
a)

b)

d)

Clock Sync

Clock Synchronization

Assume you run NTP to synchronize speakers in a soccer stadium. Each speaker has a
radio downlink to receive digital audio data. However, there is no uplink! You decide to
use an acoustic signal transmit by the speaker. To synchronize its clock, a speaker first
plays back an acoustic signal. This signal is picked up by the NTP server which responds
via radio. The speaker measures the exact time that passes between audio playback and
radio downlink response. What is likely the largest source of error?

What are strategies to reduce the effect of this error source?

Prove or disprove the following statement: If the average local skew is smaller than z, then
so is the average global skew.

Prove or disprove the following statement: If the average global skew is smaller than x,
then so is the average local skew.

SyS tems@ ETH zicn

ey Distributed /
i‘
ETHzurich s ot fuge

Assignment 9 Outlook:

ETH:zurich

1.2 Time Difference of Arrival

Assume you are located on a line y = —z + 8 km in the two dimensional plane. You receive the
GPS signals from satellites A and B. Both signals are transmitted exactly at the same time ¢ by
both satellites. You receive the signal from satellite A 3.3 ps before the signal of satellite B. At
time ¢, satellite A is located at ps4 = (6 km, 6 km) and satellite B is located at pp = (2 km, 1 km),
in the plane.

a) Formulate the least squares problem to find your location.
b) Are you more likely to be at position (2 km, 6 km) or (4 km, 4 km)?

¢) What is the time when receiving the signal from satellite B?

SyS tems@ ETH zicn

Tl h E; Distributed ~ [qs
r' [P
m Z U I C Systems@ ETH CO m p ut I' n g “““ ‘\

Assignment 9 Outlook:

ETH:zurich

1.3 Clock Synchronization: Spanning Tree

Common clock synchronization algorithms (e.g. TPSN, FTSP) rely on a spanning tree to perform
clock synchronization. Finding a good spanning tree for clock synchronization is not trivial.
Nodes which are neighbors in the network graph should also be close-by in the resulting tree.
Show that in a grid of n = m x m nodes there exists at least a pair of nodes with a stretch of
at least m. The stretch is defined as the hop distance in the tree divided by the distance in the

grid.

SyS tems@ ETH zicn

s s . 4. ,l"?
ETH:zirich BEE ostibuted fluge,

Computing '

SyS tems@ ETH zicn

Assignment 9 Outlook:

1.4 NTP Programming

Write a Linux program that prints the current UTC time and the maximum error.

Hint: Have a look at the manpage for adjtimex.

ETH:zurich

s s . 4. ,l"?
ETH:zirich BEE ostibuted fluge,

Computing '

SyS tems@ ETH zicn

Assignment 9 Outlook:

1.4 NTP Programming

Write a Linux program that prints the current UTC time and the maximum error.

Hint: Have a look at the manpage for adjtimex.

ETH:zurich

L L /’/";E’i‘;-“;“
ETHziirich E5 ostiouted fuets,
SptemseETH Computing S ST

SyS tems@ ETH zicn

Assignment 9 Outlook:

2 Consistency and Logical Clocks
Quiz

2.1 Different Consistencies
Prove or disprove the following statements:
a) Neither sequential consistency nor quiescent consistency imply linearizability.

b) If a system has sequential consistency and quiescent consistency, it is linearizable.

ETH:zurich

e s f g V
ETH:zirich B3 ostibuted flafe,

Computing

Assignment 9 Outlook:

ETH:zurich

2.2 Measure of Concurrency from Vector Clocks

You are given two nodes that each have a vector logical clock that additionally logs the clock
state upon receiving a message (see Algorithm 1).

Algorithm 1 Vector clocks with logging

1: (Code for node u)

2: Initialize ¢, [v] := 0 for all other nodes v.

3: Upon local operation: Increment current local time ¢, [u] := ¢,[u] + 1.

4: Upon send operation: Increment ¢, [u] := ¢,[u] + 1 and include the whole vector ¢, as d in
message.

5: Upon receive operation: Extract vector d from message and update ¢, [v] := max(d[v], c,[v])
for all entries v. Increment ¢, [u] := ¢, [u] + 1. Save the vector ¢, to the log file of node w.

Assume that exactly one message gets send from one to the other node. Given the logs
and current vector states of both nodes, write a short program that calculates the measure of
concurrency as defined in the script (Definition 19.30). You can use your favorite programming
language. The example solution will be in Python.

Advanced

Generalize your program to any number of messages exchanged between the nodes.

SyS tems@ ETH zicn

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

