...

Computer Systems/
Distributed Systems

Exercise Session 8
HS 2023

FORA NNDE 3

FPGA

10R4 1]

i
" Sl 1! - % "
4] 4 \ Pk | { Aindy :Qfgr“‘h
3 —~ ' ToSREI 3 »
)] 13 5
" :: . t‘-- .‘u:": ll 3 ‘(
& wh pd b : \ ".. — P~
QSR B 'F PSRRI g
1 i ._-FJ b1t "y e OF
3,58 50 "‘“(a s SEETET | 1- -
SHER TN o VY O s = b tod
-‘i . ix:'ﬂ o1 100 1= r? o 50,
: s e ol
Jo R [5% mil ety
— Y= : - .

\ : :=) ——na? :.,.
@Q} , -}aai‘; rebe »
o 7S P | ———
""l —""I')v o " “
.gr\’br;
1 ’

NG
—FPGA_PCle_x16 :

s TR

e
' gt
.| Je T i T5
P~ o :
v . e
| A e Ll
e J s 1 - ‘f 2 A

FOaA

> -

-

s
>3

R £
COUITAG o A e

sadd |

-
=
- p— \
x \
- N
e e

[cpu

£0C, BnC

2. B35 1335 T3l

e 10
e :
P iaiiiiiid Lassssssbomdddd 4

- .

FPGA
1.!::33@1_1

244 ddid ahaaaBE (G

TR St CHRIgw e s b WART S dviiee W
Semmes v Vhe JIND S, S sedl W e teeereeie)

< UER LD

ARL A A ARG A S ™ [[
Annad " T -

e

ar a . . Vs
ETHzurich BF ostibuted fud.

Computing ':?

=

O\ BT

Program

1. Lecture Recap
a) Introduction: Distributed Systems
b) Fault Tolerance and Paxos
c) Consensus

2. Quiz

3. Assignment Preview

- . . . /l's .
ETHzlirich BZ piriuted e,

Computing ¥

Set-Up

Client1

Server 1

Server 2

Client 2

Node: single actor in a distributed system

Can be both client or server

Server 3

ETHzirich Ba oistivuted fi.
Z U r I C Systems @ ETH o %“‘t“‘ u

Computing ¥ %

Challenges
- Messages can get lost
- Nodes may crash

- Messages can have varying delays

r L . . ’/"-‘—:’
ETHz(irich B5 oistributed facts,

Computing %

a
N L

Challenges

- Messages can get lost
- Nodes may crash

- Messages can have varying delays

First Goal: State Replication

- All servers execute the same commands in the same order.

Why do we want State Replication?

Client1
X € X*2

Client 2
X € X+2

Server 1

X=5
XEX*2
XEX+2

Server 2

XEX+2
XEX*2

Result: x=12

Result: x=14

ETHzlirich EZ ostibuted fras..

'''' Computing '$%

O\

First Approaches

Server sends acknowledgment message
 Reasonable with one client
* Inconsistent state with multiple clients and servers

First Approaches

Server sends acknowledgment message
 Reasonable with one client
* Inconsistent state with multiple clients and servers

Serializer — all commands go through one node which orders them
* Single point of failure

First Approaches

Server sends acknowledgment message
 Reasonable with one client
* Inconsistent state with multiple clients and servers

Serializer — all commands go through one node which orders them
* Single point of failure

Two-Phase Protocol — ask for locks, execute once acquired all locks
* Breaks down if we even have just one node failure
* How to avoid deadlocks?

ETHzUrich B3 pitributed fe,

.
Computing WSs% i

Paxos — Main ldeas

1. Tickets

- “Weak lock”

- Can be overwritten by later tickets
- Reissuable

- Expiration

P . [*" '
ETHZiirich BR pistributed [,

Computing 83 %% .

Paxos — Main ldeas

1. Tickets

- “Weak lock”
- Can be overwritten by later tickets
- Reissuable
- Expiration
2. Require majority
- Ensures only single command gets accepted

Py
V5
’ﬁ; O g
W

AN

m Z U r I C h Mnm; Distributed

Computing

—

|
) | |

X

Paxos — Main ldeas

1. Tickets

- “Weak lock”
- Can be overwritten by later tickets
- Reissuable
- Expiration
2. Require majority
- Ensures only single command gets accepted
3. Servers inform clients about their stored command
- Client can switch to supporting this command

P 4;"6

MW\

-
Al

'y] . H /‘ ﬁ 7 ;
ETHz(irich BEZ pistributed el

u
Computing W5

—

|
s B

=

Paxos — Main ldeas

1. Tickets

- “Weak lock”
- Can be overwritten by later tickets
- Reissuable
- Expiration
2. Require majority
- Ensures only single command gets accepted
3. Servers inform clients about their stored command
- Client can switch to supporting this command

Good video with slightly different terminology:
https://www.youtube.com/watch?v=d7nAGI_NZPk

https://www.youtube.com/watch?v=d7nAGI_NZPk

Algorithm 7.13 Paxos

ETH:zurich Em; Client (Proposer) Server {Acceptor) Clients can restart

“’ Initializalion i e q
A . t L Phase 1 at any time.
Distributed V. tee c < command to ezecute max = 0 < largest issued ticke
] 6"“‘ l‘ ue t =0 < ticket number to try
Computlng ‘%“\ Lo C=_1 4 stored command
Titore = 0 < ticket used to store C
PRhase 1 .. e
Clients asks for a t=t+1 S Vi
Speciﬁc thket ¥ 2: Ask all servers for ticket ¢ - erver only 1ssues
: VR e then ticket tif tis the
5 A’—“:;Z?;ver with ok(Titore, C) hlgh est ticket
6: end if
_— requested so far.
BSE 2 o
. . 7. if a majority answers ok then
If Cllent receives 8: Pick (Tytore, C) with largest Tyiore
majority of tickets, it 0. ifT,..>0 then
proposes a command. 10: c=C
11: end if
12: Send propose(t, ¢) to same
majority .
13: end if When a server receives a
14: if t = Thhax then .
TR proposal, and the ticket of
16: Tstore =t the clientis still valid, the
.. 17: Answer success
If a majority of servers 18: end if server stores the command
store the command, PRASE 3 oot and notifies the client.
the CIIent nOtIfles a” 19: if a majority answers success
servers to execute the then

20: Send execute(c) to every server

Command- 21: end if

11 Distributed »‘5’5 B
ETH:zUrich BF oirbued farge,
Consensus
We want...

1. Agreement:
All (correct) nodes decide on the same value.

. g
ETHz(rich ER ostibuted fuc.,

. X
'''' Computing "% %

o Saum

Consensus

We want...
1. Agreement:

All (correct) nodes decide on the same value.
2. Termination:

All (correct) nodes terminate (violated by Paxos).

m ’ LR . . . ,/,‘-":
ZUric h Fm; Distributed é’:;" A i:,‘-

'''' Computing wans

Consensus

We want...
1. Agreement:

All (correct) nodes decide on the same value.
2. Termination:

All (correct) nodes terminate (violated by Paxos).
3. Validity:

The decision value is the input value of at least one node.

5o %
pu®
|\ “ i-

*

/

ETHzuUrich B3 pitributed g

'''' Computing "¢

(\ AL |

—
X

Consensus

We want...
1. Agreement:

All (correct) nodes decide on the same value.
2. Termination:
All (correct) nodes terminate (violated by Paxos).
3. Validity:
The decision value is the input value of at least one node.

Impossibility
Consensus cannot be solved deterministically in the asynchronous model!

ETHzUrich B3 pitributed fe,

.
Computing WSs% i

Randomized Consensus

Easy cases:
* All inputs are equal (all 0 or 1)

* Almostall input values equal

P . [*" '
ETHZiirich BR pistributed [,

Computing WS % i

Randomized Consensus

Easy cases:
* All inputs are equal (all 0 or 1)

* Almostall input values equal

Otherwise:

e Choose a random value locally - Expected time O(2") until all agree (once)

E,Hzijrich E= 16.4 Randomized Consensus

y/ 1

#5
445°
s

“"‘g 9

Distributed fi3g85" . Algorithm 16.15 Randomized Consensus (assuming f < n/2)

;u8

Computing L 1: v € {0,1} < input bit
2: round = 1
3: while true do
4: Broadcast myValue(v;, round)

Propose

5. Wait until a majority of myValue messages of current round arrived
6: if all messages contain the same value v then
7: Broadcast propose(v, round)
8 else
9: Broadcast propose(L, round)
10: end if
Vote

11: Wait until a majority of propose messages of current round arrived
Majority has seen a majority % 12: if all messages propose the same value v then

13: Broadcast myValue(v, round + 1)
14: Broadcast propose(v, round + 1)
15: Decide for v and terminate

At least someone has seen majority 9 16: else if there is at least one proposal for v then
17: V; =V

No majority seen = 18 else

19: Choose v; randomly, with Pr[v; = 0] = Prjv; = 1] =1/2
20: end if

21: round = round + 1
22: end while

‘?7
[N L] . R /‘"- lk ‘
ETHzUrich B3 pitributed fe,
:

Computing '§

Ben-Or: Consensus Proof
Validity:

If all nodes start with the same value, then all proposals are for the same value.
Thus, the algorithm terminated within one round, deciding on the common value.

If some nodes start with 0 and some start with 1, then both outcomes are legal.

‘E
'Y " . . /,a's ‘k
ETH:zUrich BE oitributed et

Computing W3 %% i

Ben-Or: Consensus Proof

Agreement: (need to show: if one node decides - all nodes decide on the same value)

In a single round r:

- Nodes only decide after having received a proposal.

- Note, that a proposal required a majority, therefore a proposal in round r can only
occur for one value.

— In any round r, all nodes decide on at most one identical value.

Ben-Or: Consensus Proof
Termination:

Trivial case: all nodes start with the same value
— Termination after one round.

In the worst case: no node receives allOidentical majorities, and all repeatedly choose a

random value. The probability of all nodes getting the same value is 2™, thus we expect all
nodes to send the same “my value” after 2" runs.

Ben-Or: Consensus Proof

Agreement: (need to show: if one node decides - all nodes decide on the same value)

In any round r:

- Nodes only decide after having received a proposal.

- Note, that a proposal required a majority, therefore a proposal in round r can only
occur for one value.

— In any round r, all nodes decide on at most one identical value.

If any node decided in round r:

- Deciding node received > n/2 proposals for v. > All nodes received > 1 proposal for v.
- They adapt their own value to vin round r, and broadcast it in round r+1.

- As all nodes broadcast v, they will also all propose v in the same round.

- All nodes receive > n/2 proposals for vin round r+1 and decide on v.

ve » o P
EII‘Z uric h Synm; Distributed ﬁ:‘i‘,\; .

Computing ':?

=
\)

O\ BT

Randomized Consensus

e Wouldn’t it be useful if the nodes could all toss the same coin? > Shared Coin

v o p o
ETH:ziirich E5 pitributed finds,
('S

Computing

Shared Coin
16.5 Shared Coin

Algorithm 16.22 Shared Coin (code for node u)

1: Choose local coin ¢, = 0 with probability 1/n, else ¢, = 1
2: Broadcast myCoin(c,)

3: Wait for n — f coins and store them in the local coin set C,
4: Broadcast mySet(C,)

5: Wait for n — f coin sets

6: if at least one coin is 0 among all coins in the coin sets then
7: return 0

8: else

9: return 1

10: end if

i ’ . 4. / sf‘a—
ETHzUrich B3 pitributed fe,

.
Computing WSs% i

Shared Coin

* The algorithm stays exactly the same, except the standard coin flip is replaced by a call
to the shared coin algorithm.

255
/’ A
552w
]

ETHziirich ER oistibuted o

'''' Computing '¥s®

MW\

s
5

—
=

Shared Coin

* The algorithm stays exactly the same, except the standard coin flip is replaced by a call
to the shared coin algorithm.

Proofs for validity and agreement still hold (since it is still the same algorithm).

PO
/’ A
552w
]

ETHzurich | mge| Distributed ,’:_’,ﬁ

u
.
'''' Computing %

MW\

|
g B

X

Shared Coin

* The algorithm stays exactly the same, except the standard coin flip is replaced by a call
to the shared coin algorithm.
* Proofs for validity and agreement still hold (since it is still the same algorithm).

* The proof for termination has to be changed slightly to account for the changed
probability that all coins will give the same result.

ETHZ(irich B5 oistributed §

juesse
(S

MW\

5
e

—
X

Computing

Shared Coin

The algorithm stays exactly the same, except the standard coin flip is replaced by a call
to the shared coin algorithm.

Proofs for validity and agreement still hold (since it is still the same algorithm).

The proof for termination has to be changed slightly to account for the changed
probability that all coins will give the same result.

Runtime: From exponential down to constant!

ETHZ(irich B5 oistributed §

455

1)
o%s U5
o

MW\

;?‘

=

Computing

Shared Coin

The algorithm stays exactly the same, except the standard coin flip is replaced by a call
to the shared coin algorithm.

Proofs for validity and agreement still hold (since it is still the same algorithm).

The proof for termination has to be changed slightly to account for the changed
probability that all coins will give the same result.

Runtime: From exponential down to constant!

Can only tolerate f < n/3 crash failures, not f < n/2.

AP o -
E’" Z U r I C h Fm; Distributed ﬁ:i‘,v ;

'''' Computing

Quiz Paxos

1. How does a node in Paxos know if a majority answered with ok?

2. Does the Paxos algorithm in the script achieve state replication?

3. How many nodes could crash so the Paxos still works?

4. Does Paxos solve consensus?

n] ’/’ =-‘ik
; E; Distri /,l gh_
mzu rIC Systems@ ETH zuicn IStrIbUted %“:‘““ i-
ST T

'''' Computing

Quiz Paxos

1. How does a node in Paxos know if a majority answered with ok?
Each node needs to know the number n of servers in the system.

2. Does the Paxos algorithm in the script achieve state replication?

3. How many nodes could crash so the Paxos still works?

4. Does Paxos solve consensus?

Y/ ":
1ri E; Distributed ,{"i’i',kii
ziirich B3 s,

'''' Computing

Quiz Paxos

1. How does a node in Paxos know if a majority answered with ok?
Each node needs to know the number n of servers in the system.

2. Does the Paxos algorithm in the script achieve state replication?
No, it only shows agreement on a single command, for several commands we

would need to restart the system.

3. How many nodes could crash so the Paxos still works?

4. Does Paxos solve consensus?

Quiz Paxos

1. How does a node in Paxos know if a majority answered with ok?
Each node needs to know the number n of servers in the system.

2. Does the Paxos algorithm in the script achieve state replication?
No, it only shows agreement on a single command, for several commands we

would need to restart the system.

3. How many nodes could crash so the Paxos still works?
Less than n/2

4. Does Paxos solve consensus?

Quiz Paxos

1. How does a node in Paxos know if a majority answered with ok?
Each node needs to know the number n of servers in the system.

2. Does the Paxos algorithm in the script achieve state replication?

No, it only shows agreement on a single command, for several commands we
would need to restart the system.

3. How many nodes could crash so the Paxos still works?
Less than n/2

4. Does Paxos solve consensus?
No, termination is not guaranteed.

p o
TN '] . . g
ETHziirich B5 oistibuted [,
Systems@ ETH zur ““ \s‘, 5
g ety

Computing W3 %% i

—

More quiz questions (choose the right answer)

State replication is trivial for fewer than 3 nodes? T/F
In Paxos, a new ticket can only be issued if all previous tickets have been returned. T/F
Which is not a property of consenus? Agreement Termination Tolerance Validity

A configuration includes all received messages but not the messages in transit. T/F

A S

In a synchronous system, a message has a delay of __ time units. 1/n/f-n/ potentially

infinite

&

n » . . y

E’" ZUric h E; Distributed [?qs%"w
Systems@ ETH zucn ““ v ‘k“ -

Computing W3 %% i

—

More quiz questions (choose the right answer)

State replication is trivial for fewer than 3 nodes? T/
In Paxos, a new ticket can only be issued if all previous tickets have been returned. T/
Which is not a property of consenus? Agreement Termination Validity

A configuration includes all received messages but not the messages in transit. T/

A S

In a synchronous system, a message has a delay of ___ time units. 1/n/f-n/ potentially

infinite

i s L. 5%
ETHzUrich E5 osributed flasle,

Computing '§

Assignment Preview

1.1 An Asynchronous Riddle

A hangman summons his 100 prisoners, announcing that they may meet to plan a strategy, but
will then be put in isolated cells, with no communication. He explains that he has set up a switch
room that contains a single switch. Also, the switch is not connected to anything, but a prisoner
entering the room may see whether the switch is on or off (because the switch is up or down).
Every once in a while the hangman will let one arbitrary prisoner into the switch room. The
prisoner may throw the switch (on to off, or vice versa), or leave the switch unchanged. Nobody
but the prisoners will ever enter the switch room. The hangman promises to let any prisoner
enter the room from time to time, arbitrarily often. That is, eventually, each prisoner has been
in the room at least once, twice, a thousand times or any number you want. At any time, any
prisoner may declare “We have all visited the switch room at least once”. If the claim is correct,
all prisoners will be released. If the claim is wrong, the hangman will execute his job (on all the
prisoners). Which strategy would you choose...

a) ...if the hangman tells them, that the switch is off at the beginning?

b) ...if they don’t know anything about the initial state of the switch?

n » . . /
ETHZiirich BR pistributed [,

Computing S8 o

Assignment Preview

2.1 Consensus with Edge Failures

In the lecture we only discussed node failures, but we always assumed that edges (links) never
fail. Let us now study the opposite case: Assume that all nodes work correctly, but up to f
edges may fail.

Analogously to node failures, edges may fail at any point during the execution. We say that
a failed edge does not forward any message anymore, and remains failed until the algorithm
terminates. Assume that an edge always simultaneously fails completely, i.e., no message can be
exchanged over that edge anymore in either direction.

We assume that the network is initially fully connected, i.e., there is an edge between every
pair of nodes. Our goal is to solve consensus in such a way, that all nodes know the decision.

a) What is the smallest f such that consensus might become impossible? (Which edges fail
in the worst-case)

b) What is the largest f such that consensus might still be possible? (Which edges fail in the
best-case)

c) Assume that you have a setup which guarantees you that the nodes always remain con-
nected, but possibly many edges might fail. A very simple algorithm for consensus is the
following: Every node learns the initial value of all nodes, and then decides locally. How
much time might this algorithm require?

Assume that a message takes at most 1 time unit from one node to a direct neighbor.

	Slide 1: Computer Systems/ Distributed Systems
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

