Automata & languages

A primer on the Theory of Computation

Roland Schmid

nsg.ee.ethz.ch

ETH Zürich (D-ITET)

19 October 2023

Part 5 out of 5

Last week was all about

Context-Free Languages

Context-Free Languages

a superset of Regular Languages

Example $\{0^n1^n \mid n \ge 0\}$ is a CFL but not a RL

We saw the concept of

Context-Free Grammars

As for Regular Languages,

Context-Free Languages are recognized by "machines"

Language Regular Context-Free

Machine DFA/NFA Push Down Automata

Push-Down Automatas are pretty similar to DFAs

Push-Down Automatas are pretty similar to DFAs except for... the stack and transition function

stack alphabet
$$M=(Q,\Sigma, \Gamma, \pmb{\delta}, q_0, F)$$
 transition function $Q imes \Sigma_\epsilon imes \Gamma_\epsilon o P(Q imes \Gamma_\epsilon)$

Language

 $L = \{a^ib^jc^k \mid i,j,k \ge 0 \text{ and } i=j \text{ or } i=k\}$

Machine (PDA)

But before that, we'll prove some extra properties about Context-Free Languages

Today's plan

PDA ≍ CFG

Pumping lemma for CFL