
Automata & languages

A primer on the Theory of Computation

Laurent Vanbever

nsg.ee.ethz.ch

ETH Zürich (D-ITET)

5 October 2023

Part 3 out of 5

Last week, we started to learn about closure and equivalence of regular languages

Last week, we started to learn about closure and equivalence of regular languages

The class of regular languages is closed under the

- union
- concatenation
- star

regular operations

The class of regular languages is closed under the

if L_1 and L_2 are regular,

- union
- concatenation
- star

 $L_1 \cup L_2$

then so are

 $L_1 L_2$

L₁*

regular operations

Last week, we started to learn about closure and equivalence of regular languages

is equivalent to

DFA × NFA

X

REX

We'll finish that today then start asking ourselves whether all languages are regular

- $L_1 \quad \{0^n 1^n \mid n \geq 0\}$
- L₂ {w | w has an equal number of 0s and 1s}
- L₃ {w | w has an equal number of occurrences of 01 and 10}

Hint: only one of them actually is

Advanced Automata

Thu Oct 5

Equivalence (the end)

DFA

NFA

Regular Expression

Non-regular languages

3 Context-free languages