
Exercise: Specification and Verification

Using Set Operations and BDDs

Jiahui Xu

DYNAMO research group

dynamo.ethz.ch

About Myself

2

Jiahui Xu

• PhD student in the DYNAMO group since April 2022

Research topics that I am interested:

• High-level synthesis (HLS): compile C/C++ code into digital circuits

• Optimization and formal verification of HLS-produced circuits

Email: jxu@ethz.ch Office: ETZ G75 Website: jiahui17.github.io

mailto:jxu@ethz.ch

Event Reminder: Student Meets Lab

3

• Introduce to you our theses and projects

• Next Tuesday, 05 December 2023

• From 17:30 to 19:00 in the ETZ Foyer (ETZ E90.1)

Schedule

4

We have four exercise sessions:

• 30.11.2023: set operations, characteristic functions, BDDs

• 07.12.2023: reachability and temporal logic

• 14.12.2023: Petri nets

• 21.12.2023: time Petri nets

First half of today’s lecture

N

Q1.1 Set Operations and Characteristic Functions

5

Program states classified in sets

• X: Set of all states

• N: Set of normal states

• E: Set of error states

• O: Set of states with memory overflow O

E6

5
7

41

32

*Characteristic function ΨN(σ(s)): evaluates to 1 if s ∈ N, and 0 otherwise.

Q1.1 Set Operations and Characteristic Functions

6

Program states classified in sets

• X: Set of all states

• N: Set of normal states

• E: Set of error states

• O: Set of states with memory overflow

6

5
7

O

E
41

32N

(a) What is the characteristic function* ΨX of the set of all states X?

*Characteristic function ΨN(σ(s)): evaluates to 1 if s ∈ N, and 0 otherwise.

∀𝑠 ∈ 𝑋,ΨX(σ(s))) = 1
Because state s is always in the set of all states.

N

Q1.1 Set Operations and Characteristic Functions

7

Program states classified in sets

• X: Set of all states

• N: Set of normal states

• E: Set of error states

• O: Set of states with memory overflow O

E6

5
7

41

32

(b) ”Each state (in the set of all states) is either a normal or an error state or both”.

Express this property in terms of sets and characteristic functions

ΨX = 1 = ΨN + ΨEX = N ∪ E

*Characteristic function ΨN(σ(s)): evaluates to 1 if s ∈ N, and 0 otherwise.

N

Q1.1 Set Operations and Characteristic Functions

8

Program states classified in sets

• X: Set of all states

• N: Set of normal states

• E: Set of error states

• O: Set of states with memory overflow O

E6

5
7

41

32

(c) ”If a state (in the set of all states) is in the set of overflow states, then

it is not a normal state”.

Express this property in terms of sets and characteristic functions.

(d) Describe Q1, the set of error states which are not an overflow,

in terms of sets and characteristic functions.

(e) Describe Q2, the set of states that satisfies O ⇒ E, i.e., the set of states for which this

property holds, in terms of sets and characteristic functions.

Hint: O ⇒ E reads O implies E, in other words, if a state is in O, then it is in E.

Your turn!

*Characteristic function ΨN(σ(s)): evaluates to 1 if s ∈ N, and 0 otherwise.

N

Q1.1 Set Operations and Characteristic Functions

9

Program states classified in sets

• X: Set of all states

• N: Set of normal states

• E: Set of error states

• O: Set of states with memory overflow O

E6

5
7

41

32

(c) ”If a state (in the set of all states) is in the set of overflow states, it is

not a normal state”.

Express this property in terms of sets and characteristic functions.

For every state s: if “s is in set O” then “s is not in set N”

*Characteristic function ΨN(σ(s)): evaluates to 1 if s ∈ N, and 0 otherwise.

Convention: if A then B

10

// if A is true, then

if (A){

// check if B is true

assert(B);

}

// the execution is ok

return(0);

A B What

happen to

this code?

False False Good

False True Good

True False Assertion

Error

True True Good

*assert(B): the program crushes with B is false, and the program ignores the statement if B is true.

When we test a specification “if A then B”, we are actually executing the following program:

Let’s agree with the following convention…

Conclusion: “if A then B” is the same as “(not A) or B”

Convention: if A then B

11I didn’t invent this concept!

N

Q1.1 Set Operations and Characteristic Functions

12

Program states classified in sets

• X: Set of all states

• N: Set of normal states

• E: Set of error states

• O: Set of states with memory overflow O

E6

5
7

41

32

(c) ”If a state (in the set of all states) is in the set of overflow states, it is

not a normal state”.

Express this property in terms of sets and characteristic functions.

For every state s: if “s is in set O” then “s is not in set N”

Set of states violates this property: 𝑋 = O ∩ 𝑁

Set of all states: X = 𝑂 ∩ 𝑁

Ψ𝑋 = Ψ𝑂 ∙ Ψ𝑁

*Characteristic function ΨN(σ(s)): evaluates to 1 if s ∈ N, and 0 otherwise.

For every state s: not (“s is in set O” and “s is in set N”)

“if A then B” is the same as “(not A) or B”

N

Q1.1 Set Operations and Characteristic Functions

13

Program states classified in sets

• X: Set of all states

• N: Set of normal states

• E: Set of error states

• O: Set of states with memory overflow O

E6

5
7

41

32

(d) Describe Q1, the set of error states which are not an overflow,

in terms of sets and characteristic functions.

For each state x in Q1: “x is not in set O” and “x is in set E”

Set of states satisfies this property: 𝑄1 = 𝐸\O

Ψ𝑄1 = Ψ𝐸 ∙ Ψ𝑂

*Characteristic function ΨN(σ(s)): evaluates to 1 if s ∈ N, and 0 otherwise.

“if A then B” is the same as “(not A) or B”

N

Q1.1 Set Operations and Characteristic Functions

14

Program states classified in sets

• X: Set of all states

• N: Set of normal states

• E: Set of error states

• O: Set of states with memory overflow O

E6

5
7

41

32

(e) Describe Q2, the set of states that satisfies O ⇒ E, i.e., the set of

states for which this property holds, in terms of sets and characteristic

functions.

Hint: O ⇒ E reads O implies E, in other words, if a state is in O, then it

is in E.

The same problem as (c).

What happened for all states that are not in O?

*Characteristic function ΨN(σ(s)): evaluates to 1 if s ∈ N, and 0 otherwise.

“if A then B” is the same as “(not A) or B”

Q1.2 Specifications in Boolean Encoding

15

Bus

1 2 3

Node 1 Node 2 Node 3

S

Sink

Sensor nodes

Sensor network

(C1) When one or more nodes are using the bus, the sink must be awake to receive data.

(C2) No more than one node can use the bus at the same time.

(C3) When the network is in bootstrapping mode, then the sink must be awake, and the

nodes cannot use the bus.

Your turn! Describe (1) the 3 constraints using the

binary variables, and (2) the complete specification

We can use binary variables to indicate the state of the system:

• x1 = 1: node 1 is using the bus

• x2 = 1: node 2 is using the bus

• x3 = 1: node 3 is using the bus

• xs = 1: the sink is awake

• xb = 1: the system is bootstrapping

“if A then B” is the same as “(not A) or B”

Q1.2 Specifications in Boolean Encoding

16

Bus

1 2 3

Node 1 Node 2 Node 3

S

Sink

Sensor nodes

Sensor network

We can use binary variables to indicate the state of the system:

• x1 = 1: node 1 is using the bus

• x2 = 1: node 2 is using the bus

• x3 = 1: node 3 is using the bus

• xs = 1: the sink is awake

• xb = 1: the system is bootstrapping

(C1) When one or more nodes are using the bus, the sink must be awake to receive data.

If “one or more nodes are using the bus” then “the sink is awake”

Not (“not (no node is using the bus)” and “the sink is not awake”)

x1 ∙ x2 ∙ x3 ∙ 𝑥𝑠

“if A then B” is the same as “(not A) or B”

Q1.2 Specifications in Boolean Encoding

17

Bus

1 2 3

Node 1 Node 2 Node 3

S

Sink

Sensor nodes

Sensor network

We can use binary variables to indicate the state of the system:

• x1 = 1: node 1 is using the bus

• x2 = 1: node 2 is using the bus

• x3 = 1: node 3 is using the bus

• xs = 1: the sink is awake

• xb = 1: the system is bootstrapping

x1 ∙ x2 ∙ x3 + x1 ∙ x2 ∙ x3+ x1 ∙ x2 ∙ x3+ x1 ∙ x2 ∙ x3

(C2) No more than one node can use the bus at the same time.

“exactly one node is using the bus” or “no node is using the bus”

“if A then B” is the same as “(not A) or B”

Q1.2 Specifications in Boolean Encoding

18

Bus

1 2 3

Node 1 Node 2 Node 3

S

Sink

Sensor nodes

Sensor network

We can use binary variables to indicate the state of the system:

• x1 = 1: node 1 is using the bus

• x2 = 1: node 2 is using the bus

• x3 = 1: node 3 is using the bus

• xs = 1: the sink is awake

• xb = 1: the system is bootstrapping

(C3) When the network is in bootstrapping mode, then the sink must be awake, and the

nodes cannot use the bus.

If “the system is bootstrapping” then (“the sink is awake” and “no nodes is using the bus”)

Not (“the system is bootstrapping” and (“the sink is not awake” or “one or more nodes is using the bus”))

“if A then B” is the same as “(not A) or B”

Q2.1: Combinational Equivalence Checking (CEC) Using BDDs

19

We want to check that the circuit implements the functionality of F1.

Can we just test the two circuits with all possible inputs?

Not scalable for large designs!

For a 64-bit input circuit. It takes about ~70 years to

verify the design, assuming we have a 2GHz CPU,

that checks one input in every clock cycle

ROBDD-based method has linear complexity (in the

best case) with respect to the number of variables

Q2.1: Combinational Equivalence Checking (CEC) Using BDDs

20

We want to check that the circuit implements the functionality of F1.

(a) Derive the Boolean function of the circuit diagram:

(b) Draw the ROBDD of F1 (evaluation order x1 <

x2 < x3)*.

*x1 < x2 means we evaluate x1 before x2

Q2.1: Combinational Equivalence Checking (CEC) Using BDDs

21

x1

Root node: same as F1

x2

Expression when set x1 = 0

x2

Expression when set x1 = 1

x3

when set x1 = 0, x2 = 0

x3

when set x1 = 0, x2 = 1

x3

when set x1 = 1, x2 = 0

x3

when set x1 = 1, x2 = 1

0 1 1 0 1 1 0 1

Q2.1: Combinational Equivalence Checking (CEC) Using BDDs

22

x1

x2 x2

x3 x3x3

10 10 110 1

Q2.1: Combinational Equivalence Checking (CEC) Using BDDs

23

We want to check that the circuit implements the functionality of F1.

(a) Derive the Boolean function of the circuit diagram:

(c) Draw the ROBDD of F2, are the two functions

identical?

(b) Draw the ROBDD of F1 (evaluation order x1 <

x2 < x3).

Q2.2: ROBDDs with Different Orderings

24

(b) Draw the ROBDD of the function above, with the following two variable orderings:

Which of the following have fewer decision nodes?

(a) Compute the Boole-Shannon expansion of G, with respect to the following ordering:

Q2.2: ROBDDs with Different Orderings

25

(b) ROBDDs:

(a) Boole-Shannon expansion of G:

