Roger Wattenhofer

Asynchronous Proof-of-Stake

Jakub Sliwinski, Roger Wattenhofer

ETH Zurich jsliwinski,wattenhofer@ethz.ch

Abstract. We introduce a new permissionless blockchain architecture called Cascade (Consensusless, Asynchronous, Scalable, Deterministic and Efficient). The protocol is completely asynchronous, and does rely on neither randomness nor proof-of-work. Transactions exhibit finality within one round trip of communication.

Cascade is consensusless and only satisfies a relaxed form of consensus by introducing a weaker termination property. Without full consensus, the protocol does not support certain applications, such as general smart contracts. However, many important applications do not require general

Jakub Sliwinski Distributed Computing ETH Zurich Zurich, Switzerland jsliwinski@ethz.ch Yann Vonlanthen Distributed Computing ETH Zurich Zurich, Switzerland yvonlanthen@ethz.ch Roger Wattenhofer Distributed Computing ETH Zurich Zurich, Switzerland wattenhofer@ethz.ch

Abstract—Digital money can be implemented efficiently by avoiding consensus. However, no-consensus implementations have drawbacks, as they cannot support smart contracts, and (even more fundamentally) they cannot deal with conflicting transactions.

We present a novel protocol that combines the benefits of an asynchronous, broadcast-based digital currency, with the capacity to perform consensus. This is achieved by selectively performing consensus a posteriori, i.e., only when absolutely necessary. Our on-demand consensus comes at the price of restricting the byzantine participants to be less than a one-fifth minority in the system, which we show to be the optimal threshold.

We formally prove the correctness of our system and present an open-source implementation, which inherits many features from the Ethereum ecosystem. access to her account, and neither Alice nor Bob getting paid. Also, no-consensus systems cannot support smart contracts.

So now we have a choice: either we use a total ordering currency which cannot scale to a high transaction throughput, or we use a parallel no-consensus verification system that is functionally restricted, and cannot support conflicting transactions.

In this paper we propose a system which has the best of both worlds. Our system achieves the unlimited throughput of noconsensus solutions as it first tries to verify every transaction without performing consensus. Only if a transaction cannot be verified on this "fast path", we invoke a consensus routine to resolve potential conflicts.

"I think there is a worldwide market for maybe five computers."

"I think there is a worldwide market for maybe five computers."

Fhomas Watson, 1943

(Smart Contract Enabled Blockchain)

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto satoshin@gmx.com www.bitcoin.org

"The problem of course is the payee can't verify that one of the owners did not double-spend the coin."

"We need a system for participants to agree on a single history of the order in which [transactions] were received."

no double-spending f single order

consensus

JOHN DOE OR JANE DOE 123 MAIN STREET ANYTOWN TN 01234	2670 87-823/64
PHONE 555-1212	19
Pay to the Order of	J\$
Bank of Yourtown	Dollars 🗗 structure and 6-73
For	

JOHN DOE OR JANE DOE 123 MAIN STREET ANYTOWN, TN 01234 PHONE 555-1212	2670 87-823/641 19
Pay to the Order of	s
Bank of Yourtown	Dollars 🗗 teouty and 6-73
For	MP

Blockchains Solve Double-Spending Problem

What About Network Outages?

Unchangeable Market Cap

Anonymous? Permissionless? Scalable = Secure? Asynchrony Finality Throughput Energy (PoW) Smart Contracts Unchangeable

Without Consensus

	$PBFT_{[3]}$	$H_{0neyBadger}$ $BFT_{[12]}$	$B_{roadcast}^{broadcast}$	Bit_{coin} Bit_{lendin} a_{nd} Bit_{lendin} a_{nd}	O _{uroboros[9]}	$A_{lgorand/4]}$	C _{ascade}
Permissionless				\checkmark	\checkmark	\checkmark	\checkmark
Proof-of-work free	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
Finality	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark
Asynchronous		\checkmark	\checkmark				\checkmark
Deterministic	\checkmark		\checkmark				\checkmark
Parallelizable			\checkmark				\checkmark
General smart contracts	\checkmark	\checkmark		\checkmark	\checkmark	✓	

Asynchronous* Throughput Finality Energy (PoS) Permissionless Scalable

Pankaj Khanchandani Adobe Systems Bangalore, India kpankaj@adobe.com

ETH Zurich Zurich, Switzerland schajan@ethz.ch

Zurich, Switzerland wangye@ethz.ch

Zurich, Switzerland wattenhofer@ethz.ch

rely (

ecure

frau

e the

less a

Iress

hardware and software provided synchronization primitives which allowed an unbounded consensus number, i.e., $n \to \infty$. However, a high consensus number is often also associated relementation cost and low parallelism, which

Abstract—The consensus number concept is used to determine the power of synchronization primitives in distributed systems.

Permissioned

Permissioned

Needed: 3 out of 4 signatures

PHONE 555-1212 19 Pay to the J\$ Order of J\$ Bank of Yourtown 6-73	
Pay to the Order of JS Dollars Elimet Bank of Yourtown Yourtown	
Dollars Dollars Bank of Yourtown 6-73	
	g
For	м
1:0123456781: 3765432#	

JOHN DOE OR JANE DOE 123 MAIN STREET ANYTOWN, TN 01234	2670 87-823/641
PHONE 555-1212	19
Pay to the Order of	I\$
Bank of Yourtown	Dollars f Bourty ontain 6-73
For	MP
10123456781 1982	

Usual Safety Condition Less than 1/3 Byzantine

Without Consensus

= confirm **exactly** one of Alice's tx

Cascade

= confirm **at most** one of Alice's tx

But: No Consensus

But: No Consensus

JOHN DOE OR JANE DOE 123 MAIN STREET ANYTOWN, TN 01234	2670 87-823/641
PHONE 555-1212	19
Pay to the Order of	J\$
Bank of Yourtown	Dollars 🗗 in teck ontain 6-73
For	MP
10123456781: 1982	

JOHN DOE OR JANE DOE 123 MAIN STREET ANYTOWN TN 01234	2670 87-823/64 1
PHONE 555-1212	19
Pay to the Order of	J\$
Bank of Yourtown	Dollars 🗗 storety omin 6-73
For	M
10123456781 1982	

JOHN DOE OR JANE DOE 123 MAIN STREET ANYTOWN TN 01234	2670 87-823/64
PHONE 555-1212	19
Pay to the Order of	\$
Bank of Yourtown	Dollars f Security ontain 6-73
For	M
10123456781 1982	

Tight Impossibility Result

A system with *n* servers cannot reach consensus with a fast path (1 communication round) if

 $f \ge n/5$ (asynchronous model) $f \ge n/4$ (synchronous model)

The Best of Both Worlds

Fast Path

Speed-up through parallelization Quick finality in the common path Consensus

Account sharing

Updating transactions

Smart contracts

Summary and Comparison

	Bitcoin and Ethereum	Algorand	Ouroboros	PBFT	Honey Badger BFT	Broadcast- based	CoD with PBFT	CoD with Honey Badger BFT
Energy-efficient		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Asynchronous					\checkmark	\checkmark		\checkmark
Parallelizable						\checkmark	\checkmark	\checkmark
Finality		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Permissionless	\checkmark	\checkmark	\checkmark					
Consensus	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark

Questions? Comments?

Roger Wattenhofer