Approximate Agreement

Recap:

Byzantine Agreement

Recap:

Byzantine Agreement

- n parties, out of which f may be byzantine
- Byzantine Agreement requires :
- Agreement: honest parties obtain identical outputs
- Validity: the honest parties' output is one of their inputs

Recap:
 Byzantine Agreement

- n parties, out of which f may be byzantine
- Byzantine Agreement requires :
- Agreement: honest parties obtain
identical outputs
- Validity: the honest parties' output is one of their inputs

Synchronous networks	- Deterministic protocols $\mathrm{f}+1$ communication rounds
Asynchronous networks	-No deterministic protocols $=>$ Variants

Approximate Agreement

- n parties, out of which f may be byzantine
- Approximate Agreement requires, for any given ε :
- ε-Agreement: honest parties obtain ε-close outputs
- Validity: honest parties' outputs are within the range of their inputs

Approximate Agreement $(\varepsilon=0.5)$

Approximate Agreement
$(\varepsilon=0.5)$

Approximate Agreement $(\varepsilon=0.005)$

Algorithm outline

Iterations:

Algorithm outline

In iteration i :

1. Distribute your value v. Let V denote the multiset of values received.

$$
(-100000,4.5,10,21,20)
$$

2. Obtain V^{\prime} by discarding the outliers from V
3. Compute a new value $v^{\prime}=\frac{1}{2}\left(\min V^{\prime}+\max V^{\prime}\right)$

What would the byzantine parties do?

Discarding outliers

(a possible approach)

$$
\begin{gathered}
V=(-100000,4.5,10,20,21) \\
V=(4.5,10,20,21,+100000) \\
V=(4.5,10,15,20,21) \\
V=(4.5,10,20,21)
\end{gathered}
$$

f corrupted parties involved

=> discard the lowest f and the highest f values

Discarding outliers

$$
\begin{gathered}
V^{\prime}=(-100000,4.5,10,20, z 1) \\
V^{\prime}=(4.5,10,20,21,+100000) \\
V^{\prime}=(4.5,10,15,20,21) \\
V^{\prime}=(4.5,10,20,21)
\end{gathered}
$$

If even after discarding outliers, honest parties have some common range :

Convergence?

If even after discarding outliers, honest parties have some common range :

Convergence?

How many iterations do we need?

If the honest parties' inputs are between A and B :

- After 1 iteration, their values are $\left(\frac{B-A}{2}\right)$-close.
- After 2 iterations, their values are $\left(\frac{B-A}{4}\right)$-close.
- After k iterations, their values are $\left(\frac{B-A}{2^{k}}\right)$-close.
$=>\log _{2}\left(\frac{B-A}{\varepsilon}\right)$ iterations are sufficient

A simple asynchronous algorithm

In iteration i :

1. Send your value v to everyone via Reliable Broadcast and let V denote the multiset of \geq $\mathrm{n}-\mathrm{f}$ values received.
2. Obtain V^{\prime} by discarding the lowest \mathbf{f} and the highest f values from V
3. Compute a new value

$$
\mathrm{v}^{\prime}=\frac{1}{2}\left(\min V^{\prime}+\max V^{\prime}\right)
$$

$\mathrm{f}<\mathrm{n} / 4$?

- Validity
- ε-Agreement:
- Two honest parties have ($\mathrm{n}-\mathrm{f}$) $+(n-f)-n=n-2 f$ values in common.
- At most $2 f$ of these values are discarded
- $\mathrm{n}-4 \mathrm{f}>0=>$ common range

A simple asynchronous algorithm

In iteration i :

1. Send your value v to everyone via Reliable Broadcast and let V denote the multiset of \geq n - f values received.
2. Obtain V^{\prime} by discarding the lowest \mathbf{f} and the highest f values from V
3. Compute a new value

$$
\mathrm{v}^{\prime}=\frac{1}{2}\left(\min \mathrm{~V}^{\prime}+\max \mathrm{V}^{\prime}\right)
$$

$\mathrm{f}<\mathrm{n} / 3$?

- Validity
- ε-Agreement:

Honest values: 4.5, 10, 10

- (-100000, 4.5, 10)
- $(4.5,10,10)$

Is $\mathrm{f}<\mathrm{n} / 3$ possible?

Yes, but we need to ensure common range, even after discarding outliers.
\Rightarrow Witness technique

Witness technique

Code for party P with input v :

1. Send v to every party via Reliable Broadcast
2. When receiving n-f values (v_{1} from P_{1}, \ldots, v_{n-f} from P_{n-f}):

Reliable Broadcast guarantees that every party can receive these values as well.
\Rightarrow Let them know by sending a witness report

$$
\Rightarrow\left(v_{1}, P_{1}, v_{2}, P_{2}, \ldots, v_{n-f}, P_{n-f}\right)
$$

Witness technique

Code for party P with input v :

1. Send v to every party via Reliable Broadcast
2. When receiving n-f values (v_{1} from P_{1}, \ldots, v_{n-f} from P_{n-f}):

Send ($\mathrm{v}_{1}, \mathrm{P}_{1}, \mathrm{v}_{2}, \mathrm{P}_{2}, \ldots, \mathrm{v}_{\mathrm{n}-\mathrm{f}}, \mathrm{P}_{\mathrm{n}-\mathrm{f}}$) to every party.
3. When receiving a witness report from P^{\prime} :

When all values reported by P^{\prime} are received, mark P^{\prime} as a witness.
4. When $n-f$ parties are marked as witnesses:

Output the values received via Reliable Broadcast.

- Each honest party has $n-f$ witnesses
- Every two honest parties have at least:

Why do we

 have enough common values?$$
(n-f)+(n-f)-n=n-2 f>f
$$

witnesses in common

\Rightarrow at least one honest witness P in common
\Rightarrow they received the same $n-f$ values in P's witness report
\Rightarrow in Approximate Agreement, even after discarding outliers,
they end up with $n-3 f>0$ values in common

Asynchronous protocol

In iteration i :

1. Send your value v to everyone using the Witness technique. Let V denote the multiset of $\geq \mathrm{n}$ - f values received.
2. Obtain V^{\prime} by discarding the lowest \mathbf{f} and the highest \mathbf{f} values from V
3. Compute a new value

$$
\mathrm{v}^{\prime}=\frac{1}{2}\left(\min \mathrm{~V}^{\prime}+\max \mathrm{V}^{\prime}\right)
$$

$\mathbf{f}<\mathbf{n} / \mathbf{3}$? Optimal

- Validity $\sqrt{ }$
- ε-Agreement

Synchronous protocol?

- Approximate Agreement is interesting here: \#rounds does not depend on f.
- The asynchronous protocol works for $\mathrm{f}<\mathrm{n} / 3$.
$-f<n / 2$ is also possible, using signatures.
Optimal

Discarding outliers?

- n - 2 f may be one value or less

Issues when

$f<n / 2$

- But:
- if $n-f+k$ values are received
- At most k out of these may be corrupted

Issues when $\mathrm{f}<\mathrm{n} / 2$

Common range?

- Corrupted values might be inconsistent
(-100000, 0, 1)
$(\theta, 1,100000)$
- How do we guarantee consistency? Weak Broadcast (with signatures)

Weak Broadcast

Code for sender S with input v :

1. Sign v and send (v, σ) to every party

Code for receiver P :

1. If you received (v, σ) from S, forward it to every party
2. If $>f$ parties confirmed (v, σ) and no other signed value was received, output v .

Guarantees:

- If S is honest, every honest party outputs v.
- If honest P and P^{\prime} output v and v^{\prime}, then $v=v^{\prime}$.

How would this guarantee common range?

Synchronous protocol ($\mathrm{f}<\mathrm{n} / 2$)

In iteration i :

1. Send your value v to everyone via Weak Broadcast.

Save the $\mathbf{n}-\mathbf{f}+\mathbf{k}$ received values in V.

1. Obtain V^{\prime} by discarding the lowest \mathbf{k} and the highest \mathbf{k} values from V.
2. Compute your new value $v^{\prime}=\frac{1}{2}\left(\min V^{\prime}+\max V^{\prime}\right)$.

Is there a best-of-both worlds?

- The parties are not aware of the type of network the protocol runs in.
- Is there a protocol that achieves Approximate Agreement secure against:
- $\mathbf{f}_{\mathbf{s}}<\mathbf{n} / \mathbf{2}$ byzantine parties when the network is actually synchronous, and
- $\mathbf{f}_{\mathrm{a}}<\mathbf{n} / \mathbf{3} \leq \mathbf{f}_{\mathbf{s}}$ byzantine parties when the network is actually asynchronous?

$$
\begin{gathered}
\text { Yes! } \\
\text { If } \mathbf{2} \cdot \mathbf{f}_{\mathbf{s}}+\mathbf{f}_{\mathbf{a}}<\mathbf{n} \text { (optimal). }
\end{gathered}
$$

Summary

- Approximate Agreement:
- Allows an error of ε, but:
- \# synchronous rounds does not depend on f
- Has deterministic asynchronous protocols
- Synchronous protocol for $\mathrm{f}<\mathrm{n} / 2$ (optimal)
- Asynchronous protocol for $\mathrm{f}<\mathrm{n} / 3$ (optimal)
- Best-of-both worlds protocols
- Happy holidays!

