Approximate Agreement

Recap: Byzantine Agreement

Recap: Byzantine Agreement

- n parties, out of which f may be byzantine
- Byzantine Agreement requires :
 - Agreement: honest parties obtain identical outputs

0/

99

n n

n n

• Validity: the honest parties' output is one of their inputs

Recap: Byzantine Agreement

- n parties, out of which f may be byzantine
- Byzantine Agreement requires :
 Agreement: honest parties obtain identical outputs

• Validity: the honest parties' output is one of their inputs

Synchronous networks	 Deterministic protocols f+1 communication rounds
Asynchronous networks	 No deterministic protocols => Variants

Approximate Agreement

- n parties, out of which f may be byzantine
- Approximate Agreement requires, for any given ε :
 - ε-Agreement: honest parties obtain
 ε-close outputs
 - Validity: honest parties' outputs are within the range of their inputs

Approximate Agreement

 $(\varepsilon = 0.5)$

20 1 -100000! 21 **n n** 99 **n n** · 4.5 · 10

Approximate Agreement

 $(\varepsilon = 0.5)$

Approximate Agreement

Algorithm outline

Algorithm outline

In iteration *i*:

1. Distribute your value v. Let V denote the multiset of values received.

- 2. Obtain V' by discarding the outliers from V
- 3. Compute a new value $v' = \frac{1}{2}(\min V' + \max V')$

Discarding outliers

(a possible approach)

What would the byzantine parties do?

$$V = (-100000, 4.5, 10, 20, 21)$$

$$V = (4.5, 10, 20, 21, +100000)$$

$$V = (4.5, 10, 15, 20, 21)$$

$$V = (4.5, 10, 15, 20, 21)$$

Discarding outliers

(a possible approach) f corrupted parties involved
=> discard the lowest f and the highest f values

$$V' = (-100000, 4.5, 10, 20, 21)$$

$$V' = (4.5, 10, 20, 21, +100000)$$

$$V' = (4.5, 10, 15, 20, 21)$$

$$V' = (4.5, 10, 15, 20, 21)$$

If **even after discarding outliers**, honest parties have some common range :

 v_1'

 v_2'

Convergence?

If **even after discarding outliers**, honest parties have some common range :

How many iterations do we need?

If the honest parties' inputs are between A and B:

- After 1 iteration, their values are $\left(\frac{B-A}{2}\right)$ -close.
- After 2 iterations, their values are $\left(\frac{B-A}{4}\right)$ -close.
- After k iterations, their values are $\left(\frac{B-A}{2^k}\right)$ -close.

$$\Rightarrow \log_2\left(\frac{B-A}{\varepsilon}\right)$$
 iterations are sufficient

A simple **asynchronous** algorithm

In iteration *i*:

- 1. Send your value v to everyone via Reliable Broadcast and let V denote the multiset of \geq n - f values received.
- 2. Obtain V' by discarding the lowest **f** and the highest **f** values from V
- Compute a new value 3.

$$\mathbf{v}' = \frac{1}{2} (\min \mathbf{V}' + \max \mathbf{V}')$$

f < n/4?
• Validity</pre>

- *ɛ*-Agreement:
 - Two honest parties have (n f) +(n-f) - n = n - 2f values in common.
 - At most 2f of these values are discarded
 - n − 4f > 0 => common range

A simple **asynchronous** algorithm

In iteration *i*:

- 1. Send your value v to everyone via Reliable Broadcast and let V denote the multiset of \geq n - f values received.
- 2. Obtain V' by discarding the lowest **f** and the highest **f** values from V
- Compute a new value 3.

$$\mathbf{v}' = \frac{1}{2}(\min \mathbf{V}' + \max \mathbf{V}')$$

f < n/3?
• Validity</pre>

- *ɛ*-Agreement:

Honest values: 4.5, 10, 10

• (-100000, 4.5, 10)

ls f < n/3 possible?

Yes, but we need to ensure common range, even after discarding outliers.

 \Rightarrow Witness technique

Witness technique

Code for party P with input v:

- 1. Send v to every party via Reliable Broadcast
- 2. When receiving n-f values (v_1 from P_1 , ..., v_{n-f} from P_{n-f}):

Reliable Broadcast guarantees that every party can receive these values as well.

 $\Rightarrow \text{Let them know by sending a witness report} \\ \Rightarrow (v_1, P_1, v_2, P_2, \dots, v_{n-f}, P_{n-f})$

Witness technique

Code for party P with input v:

- 1. Send v to every party via Reliable Broadcast
- 2. When receiving n-f values (v_1 from $P_1, ..., v_{n-f}$ from P_{n-f}): Send ($v_1, P_1, v_2, P_2, ..., v_{n-f}, P_{n-f}$) to every party.
- When receiving a witness report from P': When all values reported by P' are received, mark P' as a witness.
- When n f parties are marked as witnesses:
 Output the values received via Reliable Broadcast.

Why do we have enough common values?

- Each honest party has n f witnesses
- Every two honest parties have at least:

$$(n - f) + (n - f) - n = n - 2f > f$$

witnesses in common

- \Rightarrow at least one honest witness P in common
- \Rightarrow they received the same n f values in P's witness report
 - ⇒ in Approximate Agreement, even after discarding outliers,

they end up with n - 3f > 0 values in common

Asynchronous protocol

In iteration *i*:

- 1. Send your value v to everyone using the Witness technique. Let V denote the multiset of $\ge n - f$ values received.
- Obtain V' by discarding the lowest **f** and the highest **f** values from V
- 3. Compute a new value

$$\mathbf{v}' = \frac{1}{2} \left(\min \mathbf{V}' + \max \mathbf{V}' \right)$$

• Validity
$$\checkmark$$

• ε -Agreement \checkmark

Synchronous protocol?

- Approximate Agreement is interesting here: #rounds does not depend on f.
- The asynchronous protocol works for f < n/3.
 f < n/2 is also possible, using signatures.

Optimal

Issues when f < n/2

Discarding outliers?

- n 2f may be one value or less
- But:
 - if n f + k values are received
 - At most k out of these may be corrupted

lssues when f < n/2

Common range?

 Corrupted values might be inconsistent

> (-100000, 0, 1) (0, 1, 100000)

• How do we guarantee consistency? Weak Broadcast (with signatures)

Weak Broadcast

Code for sender S with input v:

1. Sign v and send (v, σ) to every party

Code for receiver P:

- 1. If you received (v, σ) from S, forward it to every party
- 2. If > f parties confirmed (v, σ) and no other signed value was received, output v.

Guarantees:

- If S is honest, every honest party outputs v.
- If honest P and P' output v and v', then v = v'.

Synchronous protocol (f < n/2)

In iteration *i*:

- 1. Send your value v to everyone via Weak Broadcast. Save the $\mathbf{n} - \mathbf{f} + \mathbf{k}$ received values in V.
- 1. Obtain V' by discarding the lowest \mathbf{k} and the highest \mathbf{k} values from V.
- 2. Compute your new value $v' = \frac{1}{2}(\min V' + \max V')$.

Is there a best-of-both worlds?

- The parties are not aware of the type of network the protocol runs in.
- Is there a protocol that achieves Approximate Agreement secure against:
 - $f_s < n/2$ byzantine parties when the network is actually $\ensuremath{\textit{synchronous}},$ and
 - $f_a < n/3 \leq f_s$ by zantine parties when the network is actually asynchronous?

Yes! If $\mathbf{2} \cdot \mathbf{f_s} + \mathbf{f_a} < \mathbf{n}$ (optimal).

Summary

- Approximate Agreement:
 - Allows an error of ε , but:
 - # synchronous rounds does not depend on f
 - Has deterministic asynchronous protocols
 - Synchronous protocol for f < n/2 (optimal)
 - Asynchronous protocol for f < n/3 (optimal)
- Best-of-both worlds protocols
- Happy holidays!

