Approximate Agreement

Recap:
Byzantine Agreement

Recap:
Byzantine Agreement

* n parties, out of which f may be
byzantine

* Byzantine Agreement requires :

 Agreement: honest parties obtain
identical outputs

 Validity: the honest parties’ output
is one of their inputs

Recap:
Byzantine Agreement

* n parties, out of which f may be
byzantine

* Byzanti ires :
* Agreement: honest parties obtal
identical outputs

 Validity: the honest parties’ output
is one of their inputs

g-Agreement

Deterministic

Synchronous
protocols
networks N
f+1 communication
rounds
Asynchronous No deterministic
networks protocols
=> Variants

Approximate Agreement

* n parties, out of which f may be
byzantine

* Approximate Agreement requires,
for any given &:

» £-Agreement: honest parties obtain
e-close outputs

 Validity: honest parties’ outputs are
within the range of their inputs

Approximate
Agreement

(e = 0.5)

Approximate
Agreement

(e = 0.5)

Approximate
Agreement

(e = 0.005)

Algorithm outline

lterations:

honest iilolitS’ range
—

IA

Algorithm outline

In iteration i:
1. Distribute your value v. Let V denote the multiset of values received.

-100000, A.5, 10, 21, 20)

2. Obtain V' by discarding the outliers from V

1, .
3. Compute a new valuev' = > (min V' + max V")

Discarding
outliers

(a possible
approach)

What would the byzantine parties do?

V = (-100000, 4.5, 10, 20, 21)
V = (4.5, 10, 20, 21, +100000)
V = (4.5, 10, 15, 20, 21)

V=(4.5, 10, 20, 21)

f corrupted parties involved
=> discard the lowest f and the highest f values

Discarding V' = (260068, 4.5, 10, 20, 24)
outliers

V’ = (45, 10, 20, 21, +100000)

(a possible V= (45, 10, 15, 20, 24)
approach)

V' = (45, 10, 20, 21)

If even after discarding outliers, honest parties
have some common range :

Convergence?

If even after discarding outliers, honest parties
have some common range :

honest range

[Vi 1
Convergence? v
)

<

N
y
G

- honest range size

How many
iterations do

we need?

If the honest parties’ inputs are between A and B:

: : . B-A
e After 1 iteration, their values are (T)—close.

. . . B-A
e After 2 iterations, their values are (T)—close.

. . . B—A
* After k iterations, their values are (?)—close.

=>log, () iterations are sufficient

&E

/
7

I

A simple asynchronous algorithm

In iteration i:

Send your value v to everyone
via Reliable Broadcast and let
V denote the multiset of =

1.

n — f values received.

Obtain V' by discarding the

lowest f and the highest f
values from V

Compute a new value

VI

% (min V' + max V")

* e-Agreement:

» Two honest parties have (n - f)
+(n—f)-n=n-2fvaluesin
common.

At most 2f of these values are
discarded

* n—4f>0=>common rangi/

A simple asynchronous algorithm

In iteration i:

1.

Send your value v to everyone
via Reliable Broadcast and let
V denote the multiset of >

n — f values received.

Obtain V' by discarding the
lowest f and the highest f
values from V

Compute a new value

v/ = %(min V' + max V')

* e-Agreement:

Honest values: 4.5, 10, 10
e (180600, 4.5, 18)

. (45, 10, 10) ><

Yes, but we need to ensure common range,
even after discarding outliers.

sf<n/3

pOSSi ble? —> Witness technique

Witness technique

Code for party P with input v:
1. Send v to every party via Reliable Broadcast
2. When receiving n-f values (v4; from Py, ..., v,_¢ from P, _¢):

Reliable Broadcast guarantees that every party can receive these values as well.

— Let them know by sending a witness report
— (Vl, Pl' V2, Pz, reny Vn_f, Pn_f)

Witness technique

Code for party P with input v:

1. Send v to every party via Reliable Broadcast

2. When receiving n-f values (v, from Py, ..., v,_¢ from P, _¢):
Send (v1, Py, vy, Py, ..., vy, P_f) tO every party.

3. When receiving a witness report from P’:
When all values reported by P’ are received, mark P’ as a witness.

4. When n — f parties are marked as witnesses:
Output the values received via Reliable Broadcast.

Why do we
have enough

common
values?

* Each honest party has n — f witnesses
* Every two honest parties have at least:
(h=f)+(n—f)—n=n-2f>f
witnesses in common
—> at least one honest witness P in common

= they received the same n —f values in P’s
witness report

= in Approximate Agreement, even after
discarding outliers,

they end up with n — 3f > 0 values in common

> 4

I

Asynchronous protocol

In iteration i:

1.

Send your value v to everyone
using the Witness technique.
Let V denote the multiset of
> n — f values received.

Obtain V' by discarding the
lowest f and the highest f values
fromV

Compute a new value

v/ = %(min V' + max V')

@ Optimal

* Validity \/

* e-Agreement

v

* Approximate Agreement is interesting here:
#rounds does not depend on f.

Synchronous

* The asynchronous protocol works for f < n/3.

P,
prOtOCO| : (¢ f < n/2)is also possible, using signatures.

Optimal

z
Discarding outliers?

* n — 2f may be one value or less

* But:

eif n—f+ k values are
received

* At most k out of these
may be corrupted

N\

L)
“ N
Common range? \

* Corrupted values might be
Inconsistent

(-100000, 0, 1)
(0, 1, 100000)
* How do we guarantee consistency?
Weak Broadcast (with signatures)

Weak Broadcast

Code for sender S with input v:

1. Signvand send (v, o) to every party

Code for receiver P:

1.

If you received (v, o) from S,
forward it to every party

If > f parties confirmed (v, o) and
no other signed value was
received, output v.

Guarantees:

 If Sis honest, every
honest party outputs v.

* If honest P and P’ output
vand Vv, thenv=V.

How would
this guarantee

common

Synchronous protocol (f < n/2)

In iteration i:
1. Send your value v to everyone via Weak Broadcast.
Save the n — f + K received values in V.
1. Obtain V' by discarding the lowest k and the highest k values from V.

1, .
2. Compute your new value v’ = > (min V' 4+ maxV").

async
n p

Results so far

n/3p 7 q

2 - sync
n/2 X n

s there a best-of-both worlds?

* The parties are not aware of the type of network the protocol runs in.

* |s there a protocol that achieves Approximate Agreement secure against:
* f, < n/2 byzantine parties when the network is actually synchronous, and
* f, < n/3 < f byzantine parties when the network is actually asynchronous?

Yes!
If 2 -f; + £, < n (optimal).

async
n p

n/3> /// />< ><

Y - sync
n/3 n/2 X n

* Approximate Agreement:
e Allows an error of &, but:
e # synchronous rounds does not depend on f
* Has deterministic asynchronous protocols
* Synchronous protocol for f < n/2 (optimal)
* Asynchronous protocol for f < n/3 (optimal)

» Best-of-both worlds protocols .

* Happy holidays!

