
Approximate Agreement

Recap:
Byzantine Agreement

1

1

11

0!

Recap:
Byzantine Agreement
• n parties, out of which f may be

byzantine
• Byzantine Agreement requires :

• Agreement: honest parties obtain
identical outputs
• Validity: the honest parties’ output

is one of their inputs

1

1

11

0!

Recap:
Byzantine Agreement
• n parties, out of which f may be

byzantine
• Byzantine Agreement requires :

• Agreement: honest parties obtain
identical outputs
• Validity: the honest parties’ output

is one of their inputs

Synchronous
networks

• Deterministic
protocols

• f+1 communication
rounds

Asynchronous
networks

• No deterministic
protocols

• => Variants

𝜀-Agreement

Approximate Agreement

• n parties, out of which f may be
byzantine
• Approximate Agreement requires,

for any given 𝜀:
• 𝜺-Agreement: honest parties obtain
𝜀-close outputs
• Validity: honest parties’ outputs are

within the range of their inputs

Approximate
Agreement

(𝜀 = 0.5)

20

21

104.5

-100000!

Approximate
Agreement

(𝜀 = 0.5)

15.5

15.3

15.1115.1

Approximate
Agreement

(𝜺 = 𝟎. 𝟎𝟎𝟓)

17

17.0015

17.00217.001

Algorithm outline
Iterations:

honest inputs’ range

…

≤ 𝜀

Algorithm outline
In iteration 𝑖:

1. Distribute your value v. Let V denote the multiset of values received.

(-100000, 4.5, 10, 21, 20)

2. Obtain V′ by discarding the outliers from V
3. Compute a new value v! = "

(minV
! +maxV′)

Discarding
outliers

(a possible
approach)

What would the byzantine parties do?

V = (-100000, 4.5, 10, 20, 21)

V = (4.5, 10, 20, 21, +100000)

V = (4.5, 10, 15, 20, 21)

V = (4.5, 10, 20, 21)

Discarding
outliers

(a possible
approach)

f corrupted parties involved
=> discard the lowest f and the highest f values

V’ = (-100000, 4.5, 10, 20, 21)

V’ = (4.5, 10, 20, 21, +100000)

V‘ = (4.5, 10, 15, 20, 21)

V’ = (4.5, 10, 20, 21)

Convergence?

If even after discarding outliers, honest parties
have some common range :

v"!

v#!

Convergence?

If even after discarding outliers, honest parties
have some common range :

v"!

v#!

honest range

≤ "
#
⋅ honest range size

How many
iterations do
we need?

If the honest parties’ inputs are between A and B:

• After 1 iteration, their values are !"#
$

–close.

• After 2 iterations, their values are !"#
%

–close.

…

• After k iterations, their values are !"#
$!

–close.

=> log$
! "#
&

iterations are sufficient

A simple asynchronous algorithm
In iteration 𝑖:

1. Send your value v to everyone
via Reliable Broadcast and let
V denote the multiset of ≥
n − f values received.

2. Obtain V′ by discarding the
lowest f and the highest f
values from V

3. Compute a new value
v! = "

#
(minV! +maxV′)

f < n/4?
• Validity
• 𝜀-Agreement:
• Two honest parties have (n - f)

+ (n – f) - n = n – 2f values in
common.
• At most 2f of these values are

discarded
• n – 4f > 0 => common range

A simple asynchronous algorithm
f < n/3?
• Validity
• 𝜀-Agreement:
Honest values: 4.5, 10, 10
• (-100000, 4.5, 10)
• (4.5, 10, 10)

In iteration 𝑖:
1. Send your value v to everyone

via Reliable Broadcast and let
V denote the multiset of ≥
n − f values received.

2. Obtain V′ by discarding the
lowest f and the highest f
values from V

3. Compute a new value
v! = "

#
(minV! +maxV′)

Is f < n/3
possible?

Yes, but we need to ensure common range,
even after discarding outliers.

Þ Witness technique

Witness technique

Code for party P with input v:
1. Send v to every party via Reliable Broadcast
2. When receiving n-f values (v' from P', … , v(") from P(")):

Reliable Broadcast guarantees that every party can receive these values as well.

Þ Let them know by sending a witness report
Þ (v!, P!, v", P", … , v#$%, P#$%)

Witness technique

Code for party P with input v:
1. Send v to every party via Reliable Broadcast
2. When receiving n-f values (v' from P', … , v(") from P(")):

Send (v', P', v$, P$, … , v("), P(")) to every party.
3. When receiving a witness report from P’:

When all values reported by P’ are received, mark P’ as a witness.
4. When n – f parties are marked as witnesses:

Output the values received via Reliable Broadcast.

Why do we
have enough
common
values?

• Each honest party has n – f witnesses
• Every two honest parties have at least:

(n – f) + (n – f) – n = n – 2f > f
witnesses in common

Þ at least one honest witness P in common
Þ they received the same n – f values in P’s

witness report
Þ in Approximate Agreement, even after

discarding outliers,
they end up with n – 3f > 0 values in common

Asynchronous protocol
In iteration 𝑖:

1. Send your value v to everyone
using the Witness technique.
Let V denote the multiset of
≥ n − f values received.

2. Obtain V′ by discarding the
lowest f and the highest f values
from V

3. Compute a new value
v! = "

#
(minV! +maxV′)

f < n/3?

• Validity
• 𝜀-Agreement

Optimal

Synchronous
protocol?

• Approximate Agreement is interesting here:
#rounds does not depend on f.

• The asynchronous protocol works for f < n/3.
• f < n/2 is also possible, using signatures.

Optimal

Issues when
f < n/2

Discarding outliers?
• n – 2f may be one value or less
• But:
• if n – f + k values are

received
• At most k out of these

may be corrupted

Issues when
f < n/2

Common range?
• Corrupted values might be

inconsistent
(-100000, 0, 1)

(0, 1, 100000)
• How do we guarantee consistency?

Weak Broadcast (with signatures)

Weak Broadcast

Code for sender S with input v:
1. Sign v and send (v, σ) to every party

Code for receiver P:
1. If you received (v, σ) from S,

forward it to every party
2. If > f parties confirmed (v, σ) and

no other signed value was
received, output v.

Guarantees:

• If S is honest, every
honest party outputs v.
• If honest P and P’ output

v and v’, then v = v’.

How would
this guarantee
common
range?

Synchronous protocol (f < n/2)

In iteration 𝑖:
1. Send your value v to everyone via Weak Broadcast.

Save the 𝐧 − 𝐟 + 𝐤 received values in V.
1. Obtain V′ by discarding the lowest 𝐤 and the highest 𝐤 values from V.
2. Compute your new value v! = "

#
(minV! +maxV′).

Results so far

n

n

n/3

n/2

async

sync

Is there a best-of-both worlds?

• The parties are not aware of the type of network the protocol runs in.

• Is there a protocol that achieves Approximate Agreement secure against:
• 𝐟𝐬 < 𝐧/𝟐 byzantine parties when the network is actually synchronous, and
• 𝐟𝐚 < 𝐧/𝟑 ≤ 𝐟𝐬 byzantine parties when the network is actually asynchronous?

Yes!
If 𝟐 ⋅ 𝐟𝐬 + 𝐟𝐚 < 𝐧 (optimal).

Results

n

n

n/3

n/2

async

sync
n/3

Summary

• Approximate Agreement:
• Allows an error of 𝜀, but:
• # synchronous rounds does not depend on f
• Has deterministic asynchronous protocols

• Synchronous protocol for f < n/2 (optimal)
• Asynchronous protocol for f < n/3 (optimal)

• Best-of-both worlds protocols
• Happy holidays!

