Part 4 out of 4

Last week, we showed the equivalence of DFA, NFA and REX
is equivalent to

DFA $=$ NFA
)(
 REX

We also started to look at non-regular languages

Pumping lemma
If A is a regular language, then there exist a number p s.t.

Any string in A whose length is at least p
can be divided into three pieces $x y z$ s.t.

- $\quad x y^{i} z \in A$, for each $i \geq 0$ and
- $|y|>0$ and
- $|x y| \leq p$

To prove that a language A is not regular:
$1 \quad$ Assume that A is regular

2 Since A is regular, it must have a pumping length p

3 Find one string s in A whose length is at least p

4 For any split $s=x y z$,
Show that you cannot satisfy all three conditions

5 Conclude that s cannot be pumped

To prove that a language A is not regular:

1 Assume that A is regular

Since A is regular, it must have a pumping length p

3 Find one string s in A whose length is at least p

4 For any split $s=x y z$,
Show that you cannot satisfy all three conditions

5 Conclude that \boldsymbol{s} cannot be pumped $\longrightarrow \mathbf{A}$ is not regular

Wait...
 What happens if A is a finite language?!

Pumping lemma
If A is a regular language, then there exist a number p s.t.

Any string in A whose length is at least p
can be divided into three pieces $x y z$ s.t.

- $\quad x y^{i} z \in A$, for each $i \geq 0$ and
- $\quad|y|>0$ and
- $|x y| \leq p$

If \boldsymbol{A} is a regular language, then there exist a number p s.t.

As we saw two weeks ago, all finite languages are regular...

So what's p?
$p:=$ len(longest_string) +1
makes the lemma hold vacuously

Non-regular languages are not closed under most operations

This week is all about

Context-Free Languages

a superset of Regular Languages

