
1

High-Level Synthesis of
Dynamically Scheduled Circuits

Lana Josipović

December 2022

2

Hardware acceleration for
high parallelism and energy efficiency

How to perform hardware design?

3

High-Level Synthesis: From Programs to Circuits

A completely new type of users for HLS!

Software application programmers
A completely new type of applications for HLS!

General-purpose code

4

Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) {
acc += x[i] * c[n-i];

}

i

+

1

<

N

acc

Static
controller

2 stages

LD x[i] LD c[n-i]

*

+

Program functionality

Operation
schedule

5Program functionality

Operation
schedule

Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) {
acc += x[i] * c[n-i];

}

i

+

1

<

N

acc

Static
controller

2 stages

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Clock cycles

1

2

3

Lo
o

p
 it

e
ra

ti
o

n
s

Naïve schedule:

LD x[i] LD c[n-i]

*

+

6Program functionality

Operation
schedule

Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) {
acc += x[i] * c[n-i];

}

i

+

1

<

N

acc

Static
controller

2 stages

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

LD
regs

Clock cycles

1

2

3

Lo
o

p
 it

e
ra

ti
o

n
s

Naïve schedule:

LD x[i] LD c[n-i]

*

+

7Program functionality

Operation
schedule

Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) {
acc += x[i] * c[n-i];

}

i

+

1

<

N

acc

Static
controller

2 stages

C1 C2 C3 C4 C5 C6

mul

C7 C8 C9 C10 C11 C12

LD
regs

Clock cycles

1

2

3

Lo
o

p
 it

e
ra

ti
o

n
s

Naïve schedule:

LD x[i] LD c[n-i]

*

+

8Program functionality

Operation
schedule

Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) {
acc += x[i] * c[n-i];

}

i

+

1

<

N

acc

Static
controller

2 stages

C1 C2 C3 C4 C5 C6

mul

C7

add

C8 C9 C10 C11 C12

LD
regs

Clock cycles

1

2

3

Lo
o

p
 it

e
ra

ti
o

n
s

Naïve schedule:

LD x[i] LD c[n-i]

*

+

9Program functionality

Operation
schedule

Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) {
acc += x[i] * c[n-i];

}

i

+

1

<

N

acc

Static
controller

2 stages

C1 C2 C3 C4 C5 C6

mul

C7

add

C8 C9 C10 C11 C12

LD
regs

mul add
LD

regs

mul add
LD

regs

Clock cycles

1

2

3

Lo
o

p
 it

e
ra

ti
o

n
s

Naïve schedule:

LD x[i] LD c[n-i]

*

+

1

0Program functionality

Operation
schedule

Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) {
acc += x[i] * c[n-i];

}

i

+

1

<

N

acc

Static
controller

2 stages

C1 C2 C3 C4 C5 C6

mul

C7

add

C8 C9 C10 C11 C12

LD
regs

mul add
LD

regs

mul add
LD

regs

Clock cycles

1

2

3

Lo
o

p
 it

e
ra

ti
o

n
s

Naïve schedule:

LD x[i] LD c[n-i]

*

+

Low throughput: slow execution

1

1

Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) {
acc += x[i] * c[n-i];

} C1 C2 C3 C4 C5 C6

mul

C7

add

C8 C9 C10 C11 C12

LD
regs

mul add
LD

regs

mul add
LD

regs

C1 C2 C3 C4 C5 C6

mul

C7

add

C8 C9 C10 C11 C12

LD
regs

mul add
LD

regs

mul add
LD

regs

Clock cycles

1

2

3

Lo
o

p
 it

e
ra

ti
o

n
s

Clock cycles

1

2

3

Lo
o

p
 it

e
ra

ti
o

n
s

Naïve schedule:

Pipelined schedule:

High throughput: fast execution
Program functionality

Operation
schedule

i

+

1

<

N

acc

Static
controller

LD x[i] LD c[n-i]

*

+

1

2

• Dynamic scheduling
– Maximum parallelism: Only serialize memory accesses on actual dependencies

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

1: x[0]=5 → ld hist[5]; st hist[5];
2: x[1]=4 → ld hist[4]; st hist[4];
3: x[2]=4 → ld hist[4]; st hist[4];

RAW dependency
• Static scheduling (standard HLS tool)

– Inferior when memory accesses cannot be disambiguated at compile time

The Limitations of Static Scheduling

1

3

A Different Way to Do HLS

Static scheduling (standard HLS tool): decide
at compile time when each operation executes

Dynamic scheduling (our HLS approach): decide
at runtime when each operation executes

1

4

A Different Way to Do HLS

Static scheduling (standard HLS tool): decide
at compile time when each operation executes

Dynamic scheduling (our HLS approach): decide
at runtime when each operation executes

1

5

A Different Way to Do HLS

Static scheduling (standard HLS tool): decide
at compile time when each operation executes

Dynamic scheduling (our HLS approach): decide
at runtime when each operation executes

1

6

HLS of Dynamically Scheduled Circuits

1

7

HLS of Dynamically Scheduled Circuits

Pipelining

Resource sharing

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

1

8

Reaping the benefits of
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution

1

9

Component 1 Component 2

data

valid

ready

• We use the SELF (Synchronous ELastic Flow) protocol
– Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.

• Every component communicates via a pair of handshake signals

• Make scheduling decisions at runtime
– As soon as all conditions for execution are satisfied, an operation starts

Dataflow Circuits

2

0

Component 1 Component 2

data

valid

ready

• We use the SELF (Synchronous ELastic Flow) protocol
– Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.

• Every component communicates via a pair of handshake signals

• Make scheduling decisions at runtime
– As soon as all conditions for execution are satisfied, an operation starts

Dataflow Circuits

2

1

Component 1 Component 2

data

valid

ready

• We use the SELF (Synchronous ELastic Flow) protocol
– Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.

• Every component communicates via a pair of handshake signals

• Make scheduling decisions at runtime
– As soon as all conditions for execution are satisfied, an operation starts

Dataflow Circuits

2

2

Fork

Fork

Join

Branch Merge

Merge

Join

Branch

Dataflow Components

2

3

Fork

Fork

Join

Branch Merge

Merge

Join

Branch

Dataflow Components

2

4

Fork

Fork

Join

Branch Merge

Merge

Join

Branch

Dataflow Components

2

5

JoinFork

Fork

Branch Merge

Merge

Join

Branch

Dataflow Components

+ *

STORE

2

6

Branch

Branch

Dataflow Components

Fork

Fork

Merge

Merge

Join

Join

2

7

Merge

Join

Merge

Join

Dataflow Components

Fork

Fork

Branch

Branch

2

8

Merge

Join

Merge

Join

Dataflow Components

Fork

Fork

Branch

Branch

2

9

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

3

0

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

3

1

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

3

2

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

3

3

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

3

4

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

From Program to Dataflow Circuit

Single token on cycle, in-order
tokens in noncyclic paths

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee

Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

3

5

Backpressure from slow paths prevents pipelining

From Program to Dataflow Circuit

3

6

Reaping the benefits of
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution

3

7

Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

LD x[i]

Merge

Reg

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

Fork

Buffers as registers to break
combinational paths

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022

3

8

Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

FIFO

FIFO
FIFO

Buffers as FIFOs to regulate
throughput

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022

3

9

Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

FIFO

FIFO
FIFO

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

BEFORE
(without buffers)

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022

4

0

Inserting Buffers

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

FIFO

FIFO
FIFO

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

BEFORE
(without buffers)

NOW
(with buffers)

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022

4

1

• Model each program loop as a concurrent, choice-free Petri net (= marked graph)
— MILP model to optimize throughput of the choice-free Petri net under a clock period constraint

Optimizing Performance

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award

Target CP = 4 ns

+

+

Fork

Store

+
2 ns

2 ns

3 ns

1 ns

2 ns

4

2

• Model each program loop as a concurrent, choice-free Petri net (= marked graph)
— MILP model to optimize throughput of the choice-free Petri net under a clock period constraint

Optimizing Performance

Objective: maximize throughput for a target
period and minimize buffer slot count

𝒎𝒂𝒙: Ф − 𝛌 ∙

𝒄

𝑵𝒄

throughput

small const. buffer slots

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award

Target CP = 4 ns

+

+

Fork

Store

+
2 ns

2 ns

3 ns

1 ns

2 ns

4

3

• Model each program loop as a concurrent, choice-free Petri net (= marked graph)
— MILP model to optimize throughput of the choice-free Petri net under a clock period constraint

Optimizing Performance

Objective: maximize throughput for a target
period and minimize buffer slot count

Path constraints: add buffers to meet target
clock period

𝒕𝒄
𝒐𝒖𝒕 ≥ 𝒕𝒄

𝒊𝒏 − 𝑪𝑷 ∙ 𝑹𝒄

𝑪𝑷 ≥ 𝒕𝒄𝟐
𝒊𝒏 ≥ 𝒕𝒄𝟏

𝒐𝒖𝒕 +𝑫𝒖

in/out arrival time unit comb. delay

target period N-buff

𝑚𝑎𝑥: Ф − λ ∙

𝑐

𝑁𝑐

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award

Target CP = 4 ns

+

+

Fork

Store

+
2 ns

2 ns

3 ns

1 ns

2 ns

4

4

• Model each program loop as a concurrent, choice-free Petri net (= marked graph)
— MILP model to optimize throughput of the choice-free Petri net under a clock period constraint

Optimizing Performance

Objective: maximize throughput for a target
period and minimize buffer slot count

Path constraints: add buffers to meet target
clock period

𝒕𝒄
𝒐𝒖𝒕 ≥ 𝒕𝒄

𝒊𝒏 − 𝑪𝑷 ∙ 𝑹𝒄

𝑪𝑷 ≥ 𝒕𝒄𝟐
𝒊𝒏 ≥ 𝒕𝒄𝟏

𝒐𝒖𝒕 +𝑫𝒖

in/out arrival time unit comb. delay

target period N-buff

𝑚𝑎𝑥: Ф − λ ∙

𝑐

𝑁𝑐

+

+

Fork

Store

+
2 ns

2 ns

3 ns

1 ns

2 ns

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award

Target CP = 4 ns

4

5

• Model each program loop as a concurrent, choice-free Petri net (= marked graph)
— MILP model to optimize throughput of the choice-free Petri net under a clock period constraint

Optimizing Performance

Objective: maximize throughput for a target
period and minimize buffer slot count

Path constraints: add buffers to meet target
clock period

Throughput constraints: compute average
number of tokens in a channel

𝑚𝑎𝑥: Ф − λ ∙

𝑐

𝑁𝑐

𝐶𝑃 ≥ 𝑡𝑐2
𝑖𝑛 ≥ 𝑡𝑐1

𝑜𝑢𝑡 +𝐷𝑢

Ѳ𝒄 = 𝑩𝒃 + 𝒓𝒗 − 𝒓𝒖

𝑡𝑐
𝑜𝑢𝑡 ≥ 𝑡𝑐

𝑖𝑛 − 𝐶𝑃 ∙ 𝑅𝑐

token retiming

Ѳ𝒄 ≥ Ф + 𝑹𝒄 − 𝟏
channel occupancy

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award

Target CP = 4 ns

+

+

Fork

Store

+

4

6

+

+

Fork

Store

+

• Model each program loop as a concurrent, choice-free Petri net (= marked graph)
— MILP model to optimize throughput of the choice-free Petri net under a clock period constraint

Optimizing Performance

Objective: maximize throughput for a target
period and minimize buffer slot count

Path constraints: add buffers to meet target
clock period

Throughput constraints: compute average
number of tokens in a channel

𝑚𝑎𝑥: Ф − λ ∙

𝑐

𝑁𝑐

𝐶𝑃 ≥ 𝑡𝑐2
𝑖𝑛 ≥ 𝑡𝑐1

𝑜𝑢𝑡 +𝐷𝑢

Ѳ𝒄 = 𝑩𝒃 + 𝒓𝒗 − 𝒓𝒖

Ѳ𝒄 ≥ Ф + 𝑹𝒄 − 𝟏

𝑡𝑐
𝑜𝑢𝑡 ≥ 𝑡𝑐

𝑖𝑛 − 𝐶𝑃 ∙ 𝑅𝑐

token retiming

channel occupancy

Ɵc = 1

Ɵc = 1

Ɵc = 1

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award

Throughput: Ф = 1
Target CP = 4 ns

4

7

• Model each program loop as a concurrent, choice-free Petri net (= marked graph)
— MILP model to optimize throughput of the choice-free Petri net under a clock period constraint

Optimizing Performance

Objective: maximize throughput for a target
period and minimize buffer slot count

Path constraints: add buffers to meet target
clock period

Throughput constraints: compute average
number of tokens in a channel

𝑚𝑎𝑥: Ф − λ ∙

𝑐

𝑁𝑐

𝐶𝑃 ≥ 𝑡𝑐2
𝑖𝑛 ≥ 𝑡𝑐1

𝑜𝑢𝑡 +𝐷𝑢

Ѳ𝒄 = 𝑩𝒃 + 𝒓𝒗 − 𝒓𝒖

𝑡𝑐
𝑜𝑢𝑡 ≥ 𝑡𝑐

𝑖𝑛 − 𝐶𝑃 ∙ 𝑅𝑐

token retiming

Ѳ𝒄 ≥ Ф + 𝑹𝒄 − 𝟏
channel occupancy

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award

Throughput: Ф = 1
Target CP = 4 ns

+

+

Fork

Store

+

Ɵc = 1

Ɵc = 1

Ɵc = 1

4

8

• Model each program loop as a concurrent, choice-free Petri net (= marked graph)
— MILP model to optimize throughput of the choice-free Petri net under a clock period constraint

Optimizing Performance

Objective: maximize throughput for a target
period and minimize buffer slot count

Path constraints: add buffers to meet target
clock period

Throughput constraints: compute average
number of tokens in a channel

Buffer sizing: add buffer slots to avoid
backpressure and maximize throughput

𝑚𝑎𝑥: Ф − λ ∙

𝑐

𝑁𝑐

Ѳ𝑐 = 𝐵𝑏 + 𝑟𝑣 − 𝑟𝑢

𝑵𝒄 ≥ Ѳ𝒄 + Ѳ𝑐
°

channel emptiness

buffer slots

𝐶𝑃 ≥ 𝑡𝑐2
𝑖𝑛 ≥ 𝑡𝑐1

𝑜𝑢𝑡 +𝐷𝑢

𝑡𝑐
𝑜𝑢𝑡 ≥ 𝑡𝑐

𝑖𝑛 − 𝐶𝑃 ∙ 𝑅𝑐

Ѳ𝑐 ≥ Ф + 𝑅𝑐 − 1

Throughput: Ф = 1

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award

Target CP = 4 ns

+

+

Fork

Store

+

Ɵc = 1

Ɵc = 1

Ɵc = 1

4

9

+

+

Fork

Store

+

Ɵc = 1

Ɵc = 1

Ɵc = 1

• Model each program loop as a concurrent, choice-free Petri net (= marked graph)
— MILP model to optimize throughput of the choice-free Petri net under a clock period constraint

Optimizing Performance

Objective: maximize throughput for a target
period and minimize buffer slot count

Path constraints: add buffers to meet target
clock period

Throughput constraints: compute average
number of tokens in a channel

Buffer sizing: add buffer slots to avoid
backpressure and maximize throughput

𝑚𝑎𝑥: Ф − λ ∙

𝑐

𝑁𝑐

Ѳ𝑐 = 𝐵𝑏 + 𝑟𝑣 − 𝑟𝑢

𝐶𝑃 ≥ 𝑡𝑐2
𝑖𝑛 ≥ 𝑡𝑐1

𝑜𝑢𝑡 +𝐷𝑢

𝑡𝑐
𝑜𝑢𝑡 ≥ 𝑡𝑐

𝑖𝑛 − 𝐶𝑃 ∙ 𝑅𝑐

Nc = 2

channel emptiness

buffer slots

Ѳ𝑐 ≥ Ф + 𝑅𝑐 − 1

𝑵𝒄 ≥ Ѳ𝒄 + Ѳ𝑐
°

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award

Target CP = 4 ns
Throughput: Ф = 1

5

0

• Model each program loop as a concurrent, choice-free Petri net (= marked graph)
— MILP model to optimize throughput of the choice-free Petri net under a clock period constraint

Optimizing Performance

Objective: maximize throughput for a target
period and minimize buffer slot count

Path constraints: add buffers to meet target
clock period

Throughput constraints: compute average
number of tokens in a channel

Buffer sizing: add buffer slots to avoid
backpressure and maximize throughput

𝑚𝑎𝑥: Ф − 𝜆 ∙

𝑐

𝑁𝑐

Ѳ𝑐 = 𝐵𝑏 + 𝑟𝑣 − 𝑟𝑢

𝐶𝑃 ≥ 𝑡𝑐2
𝑖𝑛 ≥ 𝑡𝑐1

𝑜𝑢𝑡 +𝐷𝑢

𝑡𝑐
𝑜𝑢𝑡 ≥ 𝑡𝑐

𝑖𝑛 − 𝐶𝑃 ∙ 𝑅𝑐

𝑁𝑐 ≥ Ѳ𝑐 + Ѳ𝑐
°

Ѳ𝑐 ≥ Ф + 𝑅𝑐 − 1

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award

Target CP = 3 ns

+

+

Fork

Store

+
2 ns

2 ns

3 ns

1 ns

2 ns

5

1

+

+

Fork

Store

+
2 ns

2 ns

3 ns

1 ns

2 ns

• Model each program loop as a concurrent, choice-free Petri net (= marked graph)
— MILP model to optimize throughput of the choice-free Petri net under a clock period constraint

Optimizing Performance

Objective: maximize throughput for a target
period and minimize buffer slot count

Path constraints: add buffers to meet target
clock period

Throughput constraints: compute average
number of tokens in a channel

Buffer sizing: add buffer slots to avoid
backpressure and maximize throughput

𝑚𝑎𝑥: Ф − 𝜆 ∙

𝑐

𝑁𝑐

Ѳ𝑐 = 𝐵𝑏 + 𝑟𝑣 − 𝑟𝑢

𝐶𝑃 ≥ 𝑡𝑐2
𝑖𝑛 ≥ 𝑡𝑐1

𝑜𝑢𝑡 +𝐷𝑢

𝑡𝑐
𝑜𝑢𝑡 ≥ 𝑡𝑐

𝑖𝑛 − 𝐶𝑃 ∙ 𝑅𝑐

𝑁𝑐 ≥ Ѳ𝑐 + Ѳ𝑐
°

Ѳ𝑐 ≥ Ф + 𝑅𝑐 − 1

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award

Target CP = 3 ns

5

2

+

+

Fork

Store

+

• Model each program loop as a concurrent, choice-free Petri net (= marked graph)
— MILP model to optimize throughput of the choice-free Petri net under a clock period constraint

Optimizing Performance

Objective: maximize throughput for a target
period and minimize buffer slot count

Path constraints: add buffers to meet target
clock period

Throughput constraints: compute average
number of tokens in a channel

Buffer sizing: add buffer slots to avoid
backpressure and maximize throughput

𝑚𝑎𝑥: Ф − 𝜆 ∙

𝑐

𝑁𝑐

Ѳ𝑐 = 𝐵𝑏 + 𝑟𝑣 − 𝑟𝑢

𝐶𝑃 ≥ 𝑡𝑐2
𝑖𝑛 ≥ 𝑡𝑐1

𝑜𝑢𝑡 +𝐷𝑢

𝑡𝑐
𝑜𝑢𝑡 ≥ 𝑡𝑐

𝑖𝑛 − 𝐶𝑃 ∙ 𝑅𝑐Ɵc = 1/2

Ɵc = 1/2

Ɵc = 1/2

Ɵc = 1/2

𝑁𝑐 ≥ Ѳ𝑐 + Ѳ𝑐
°

Ѳ𝑐 ≥ Ф + 𝑅𝑐 − 1

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award

Throughput: Ф = 1/2
Target CP = 3 ns

5

3

+

+

Fork

Store

+

• Model each program loop as a concurrent, choice-free Petri net (= marked graph)
— MILP model to optimize throughput of the choice-free Petri net under a clock period constraint

Optimizing Performance

Objective: maximize throughput for a target
period and minimize buffer slot count

Path constraints: add buffers to meet target
clock period

Throughput constraints: compute average
number of tokens in a channel

Buffer sizing: add buffer slots to avoid
backpressure and maximize throughput

𝑚𝑎𝑥: Ф − 𝜆 ∙

𝑐

𝑁𝑐

Ѳ𝑐 = 𝐵𝑏 + 𝑟𝑣 − 𝑟𝑢

𝐶𝑃 ≥ 𝑡𝑐2
𝑖𝑛 ≥ 𝑡𝑐1

𝑜𝑢𝑡 +𝐷𝑢

𝑡𝑐
𝑜𝑢𝑡 ≥ 𝑡𝑐

𝑖𝑛 − 𝐶𝑃 ∙ 𝑅𝑐

Nc = 1

𝑁𝑐 ≥ Ѳ𝑐 + Ѳ𝑐
°

Ѳ𝑐 ≥ Ф + 𝑅𝑐 − 1

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award

Target CP = 3 ns
Throughput: Ф = 1/2

Ɵc = 1/2

Ɵc = 1/2

Ɵc = 1/2

Ɵc = 1/2

5

4

Reaping the benefits of
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution

5

5

• Static HLS: share units between operations which execute in different clock cycles

• Dynamic HLS: share units based on their average utilization with tokens

Saving Resources through Sharing

M1

for (i = 0; i < N; i++) {
a[i] = a[i]*x;
b[i] = b[i]*y;

}

* *

M2

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee

5

6

• Static HLS: share units between operations which execute in different clock cycles

• Dynamic HLS: share units based on their average utilization with tokens

Saving Resources through Sharing

for (i = 0; i < N; i++) {
a[i] = a[i]*x;
b[i] = b[i]*y;

}

Sharing not possible without

damaging throughput

M1 M2

Units fully utilized

(high throughput)

Use choice-free Petri net model
to decide what to share

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee

5

7

• Static HLS: share units between operations which execute in different clock cycles

• Dynamic HLS: share units based on their average utilization with tokens

Saving Resources through Sharing

for (i = 0; i < N; i++) {
a[i] = a[i]*x;
b[i] = b[i]*y;

}

Sharing possible without

damaging throughput

M1 M1/2M2

Units underutilized

(low throughput)

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee

Use choice-free Petri net model
to decide what to share

5

8

Backpressure from slow paths prevents pipelining

Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

5

9

Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

Buffers for high throughput

6

0

RAW dependency
not honored!

Inserting Buffers

What about memory?

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

1: x[0]=5 → ld hist[5]; st hist[5];
2: x[1]=4 → ld hist[4]; st hist[4];
3: x[2]=4 → ld hist[4]; st hist[4];

RAW dependency

6

1

Reaping the benefits of
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution

6

2

• Traditional processor LSQs allocate memory instructions in program order

• Dataflow circuits have no notion of program order

We Need a Load-Store Queue (LSQ)!

Processor
datapath

(out of order)

Memory
Ordering

(load-store
queue)

Instruction
fetch & decode

(in order)

loop: lw $t2, 0($t4)

lw $t3, 100($t4)

mul $t5, $t2, $t3

addi $t5, $t5, $t1

sw $t5, 100($t4)

addi $t1, $t1, 4

bne $t6, $t1, loop

How to supply program
order to the LSQ?

store x[i]

load y[i]

…

Dataflow (out of order)

Memory

…

…
…

…
… ???

load x[0]

load x[i]

Ordering

(load-store
queue)

6

3

• Traditional processor LSQs allocate memory instructions in program order

• Dataflow circuits have no notion of program order

We Need a Load-Store Queue (LSQ)!

Processor
datapath

(out of order)

Memory
Ordering

(load-store
queue)

Instruction
fetch & decode

(in order)

loop: lw $t2, 0($t4)

lw $t3, 100($t4)

mul $t5, $t2, $t3

addi $t5, $t5, $t1

sw $t5, 100($t4)

addi $t1, $t1, 4

bne $t6, $t1, loop

store x[i]

load y[i]

…

Dataflow (out of order)

Memory

…

…
…

…
…

load x[0]

load x[i]

Ordering

(load-store
queue)

Dynamic knowledge of
basic block sequence

from the dataflow circuit

Dynamic order info

6

4

Dataflow Circuit with the LSQ

High-throughput pipeline with
memory dependencies honored

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

1: x[0]=5 → ld hist[5]; st hist[5];
2: x[1]=4 → ld hist[4]; st hist[4];
3: x[2]=4 → ld hist[4]; st hist[4];

RAW dependency

6

5

Reaping the benefits of
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution

6

6

MergeMerge

Load

Exit

Store

Store

...

Branch

Speculator

++

Fork

+

...

• Contain speculation in a region of the circuit delimited by special components
– Issue speculative tokens (pieces of data which might or might not be correct)

– Squash and replay in case of misspeculation

Speculation in Dataflow Circuits

data + handshake
speculative tag

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019

6

7

MergeMerge

Load

Exit

Store

Store

...

Branch

Commit

Commit

Speculator

++

Fork

+

...

Commit

Speculation in Dataflow Circuits

• Contain speculation in a region of the circuit delimited by special components
– Issue speculative tokens (pieces of data which might or might not be correct)

– Squash and replay in case of misspeculation

data + handshake
speculative tag

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019

6

8

MergeMerge

Load

Exit

Store

Store

...
Branch

Commit

Commit

Commit

Save

Save

Save

...

Speculator

++

Fork

+

Speculation in Dataflow Circuits

• Contain speculation in a region of the circuit delimited by special components
– Issue speculative tokens (pieces of data which might or might not be correct)

– Squash and replay in case of misspeculation

data + handshake
speculative tag

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019

6

9

MergeMerge

Load

Exit

Store

Store

...
Branch

Commit

Commit

Commit

Save

Save

Save

...

Speculator

++

Fork

+

Speculation in Dataflow Circuits

• Contain speculation in a region of the circuit delimited by special components
– Issue speculative tokens (pieces of data which might or might not be correct)

– Squash and replay in case of misspeculation

data + handshake
speculative tag

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019

7

0

HLS of Dynamically Scheduled Circuits

Static HLS vs. dynamic HLS?

7

1

Dynamatic: An Open-Source HLS Compiler

• From C/C++ to synthesizable dataflow circuit description

Josipović, Guerrieri, and Ienne. Dynamatic: From C/C++ to Dynamically Scheduled Circuits. FPGA 2020

But… dataflow computation is resource-expensive!

Reduced execution time in irregular benchmarks
(speedup of up to 14.9X)

7

2

The Cost of Dataflow Computation

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

for (i=0; i<N; i++) {
a[i] = a[i]*c;

}

c

7

3

The Cost of Dataflow Computation

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

Distributed dataflow handshake
mechanism: resource and

frequency overhead

7

4

The Cost of Dataflow Computation

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

Do we need expensive
dataflow logic everywhere?

7

5

Removing Excessive Dynamism

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

Data is
never stalled

Possible
stall

7

6

Removing Excessive Dynamism

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

Data is
never stalled

Possible
stall

Restrict the generality of dataflow
logic whenever it is not needed

7

7

Removing Excessive Dynamism

How to guarantee correctness of
simplifications for any possible

circuit behavior?

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

Data is
never stalled

Possible
stall

7

8

Proving Properties to Eliminate Excessive Dynamism

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

For each channel: prove the absence of backpressure
(remove logic to compute the ready signal)

AG (valid → ready)

7

9

Proving Properties to Eliminate Excessive Dynamism

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

For each channel: prove the absence of backpressure
(remove logic to compute the ready signal)

AG (valid → ready)

For each pair of channels: prove trigger equivalence
(remove logic to compute one of the valid signals)

AG (valid1 ↔valid2)

8

0

Proving Properties to Eliminate Excessive Dynamism

Up to 50% area reduction without a
performance penalty

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.

Merge

Buff 1

1

Load a[i]

Branch

N

+

<
Store a[i]

Fork

*

Fork

FIFO

c

For each channel: prove the absence of backpressure
(remove logic to compute the ready signal)

AG (valid → ready)

For each pair of channels: prove trigger equivalence
(remove logic to compute one of the valid signals)

AG (valid1 ↔valid2)

But it is very slow (~hrs)…

8

1

Ensuring Scalability by Compositional Verification

for (i = 0; i < N; i++)
...

for (i = 0; i < N; i++)
...

Loop 1

• Decompose circuit into regions whose properties can be verified independently

• Abstract the complexity of other regions into simpler nodes that have the same
properties as the circuit they encapsulate

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.

Loop 2

8

2

Ensuring Scalability by Compositional Verification

for (i = 0; i < N; i++)
...

for (i = 0; i < N; i++)
...

Loop 1

• Decompose circuit into regions whose properties can be verified independently

• Abstract the complexity of other regions into simpler nodes that have the same
properties as the circuit they encapsulate

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.

Loop 2

Loop 1

Loop 2

Abstract loop 2,
check loop 1

Abstract loop 1,
check loop 2

Up to 8X reduction in checking time

8

3

DYNAMO: Digital Systems and Design Automation Group

Enable diverse users to accelerate compute-intensive
applications on hardware platforms

8

4

MSc & BSc Projects and Theses

• Use Petri nets to describe circuits and their behaviors
– Component modelling

– Performance and area optimizations

• Use model checking to prove circuit properties and improve their quality
– Checking more complex properties

– Dealing with scalability issues

• And many other topics...

• Check link on last slide for (non-exhaustive) list of projects!

Come work with us! ☺

8

5

New Course in Spring 2023: Synthesis of Digital Circuits

• Algorithms, tools, and methods to generate circuits from high-level programs

– How does ‘classic’ HLS work?

• Recent advancements and current challenges of HLS for FPGAs

– What is HLS still missing?

• Course organization

– First part: lectures+exercises

– Second part: practical work + seminar-like discussions

• Link to Course Catalogue info (2023)

Hope to see you there! ☺

https://www.vorlesungen.ethz.ch/Vorlesungsverzeichnis/lerneinheit.view?lerneinheitId=170698&semkez=2023S&ansicht=LEHRVERANSTALTUNGEN&lang=en

8

6

Thanks! ☺

Link

Research group Project list 2023

Link

https://dynamo.ethz.ch/
https://docs.google.com/document/d/1Xtw-5ue-Xx76MbcecJwP6mRXqMMtaNHHXwZ5GpqAlwI/edit?usp=sharing

	Slide 1: High-Level Synthesis of Dynamically Scheduled Circuits
	Slide 2
	Slide 3: High-Level Synthesis: From Programs to Circuits
	Slide 4: Standard HLS
	Slide 5: Standard HLS
	Slide 6: Standard HLS
	Slide 7: Standard HLS
	Slide 8: Standard HLS
	Slide 9: Standard HLS
	Slide 10: Standard HLS
	Slide 11: Standard HLS
	Slide 12: The Limitations of Static Scheduling
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71: Dynamatic: An Open-Source HLS Compiler
	Slide 72: The Cost of Dataflow Computation
	Slide 73: The Cost of Dataflow Computation
	Slide 74: The Cost of Dataflow Computation
	Slide 75: Removing Excessive Dynamism
	Slide 76: Removing Excessive Dynamism
	Slide 77: Removing Excessive Dynamism
	Slide 78: Proving Properties to Eliminate Excessive Dynamism
	Slide 79: Proving Properties to Eliminate Excessive Dynamism
	Slide 80: Proving Properties to Eliminate Excessive Dynamism
	Slide 81: Ensuring Scalability by Compositional Verification
	Slide 82: Ensuring Scalability by Compositional Verification
	Slide 83: DYNAMO: Digital Systems and Design Automation Group
	Slide 84: MSc & BSc Projects and Theses
	Slide 85
	Slide 86

