
Discrete Event Systems
Verification of Finite Automata (Part 1)

Most materials from Lothar Thiele and Romain Jacob

ETH Zurich (D-ITET)

November 24, 2022

Lana Josipović
Digital Systems and Design Automation Group
dynamo.ethz.ch

What are finite automata useful for?

2

What are finite automata useful for?

specification

▪ Digital circuits
▪ Protocols (e.g. BGP)

3

What are finite automata useful for?

specification

simulation▪ Digital circuits
▪ Protocols (e.g. BGP)

▪ Anything specified
with automata

4

What are finite automata useful for?

specification

simulation
synthesis of
software or hardware▪ Digital circuits

▪ Protocols (e.g. BGP)
▪ Anything specified

with automata
▪ Hardware components
▪ Network configurations

5

What are finite automata useful for?

specification

simulation
synthesis of
software or hardware

verification

▪ Digital circuits
▪ Protocols (e.g. BGP)

▪ Anything specified
with automata

6

▪ Digital circuits
▪ Network configurations

Verification of Finite Automata

Questions:
• Does the system specification model the desired behavior correctly?

• Do implementation and specification describe the same behavior?

• Can the system enter an undesired (or dangerous) state?

7

Verification of Finite Automata

Questions:
• Does the system specification model the desired behavior correctly?

• Do implementation and specification describe the same behavior?

• Can the system enter an undesired (or dangerous) state?

Possible solutions:
• Simulation (sometimes also called validation or testing)

8

Verification of Finite Automata

Questions:
• Does the system specification model the desired behavior correctly?

• Do implementation and specification describe the same behavior?

• Can the system enter an undesired (or dangerous) state?

Possible solutions:
• Simulation (sometimes also called validation or testing)

• Unless the simulation is exhaustive, i.e., all possible input sequences are tested, the result is not
trustworthy.

• In general, simulation can only show the presence of errors but not the absence (correctness).

9

Verification of Finite Automata

Questions:
• Does the system specification model the desired behavior correctly?

• Do implementation and specification describe the same behavior?

• Can the system enter an undesired (or dangerous) state?

Possible solutions:
• Simulation (sometimes also called validation or testing)

• Unless the simulation is exhaustive, i.e., all possible input sequences are tested, the result is not
trustworthy.

• In general, simulation can only show the presence of errors but not the absence (correctness).

• Formal analysis (sometimes also called verification)
• Formal (unambiguous) proof of correctness.

10

Verification of Finite Automata

• Due to the finite number of states, proving properties of a finite state machine can be done by
enumeration.

• As computer systems have finite memory, properties of processors (and embedded systems in
general) could be shown in principle.

11

finite automaton

combinatorial
gates

registers

input events output events

Verification of Finite Automata

• Due to the finite number of states, proving properties of a finite state machine can be done by
enumeration.

• As computer systems have finite memory, properties of processors (and embedded systems in
general) could be shown in principle.

• But is enumeration a reasonable approach in practice?

finite automaton

memory number of
states

8 Bit 256

32 Bit 4.109

1KBit 10300

1MBit 10300 000

1GBit 10300 000 000

atoms in the universe is about 1082

combinatorial
gates

registers

input events output events

12

Verification of Finite Automata

• There have been major breakthroughs in recent years on the verification of finite automata
with very large state spaces. Prominent methods are based on

• transformation to a Boolean Satisfiability (SAT) problem (not covered in this course) and

• symbolic model checking via binary decision diagrams (covered in this course).

13

Verification of Finite Automata

• There have been major breakthroughs in recent years on the verification of finite automata
with very large state spaces. Prominent methods are based on

• transformation to a Boolean Satisfiability (SAT) problem (not covered in this course) and

• symbolic model checking via binary decision diagrams (covered in this course).

• Symbolic model checking is a method of verifying temporal properties of finite (and
sometimes infinite) state systems that relies on a symbolic representation of sets, typically as
Binary Decision Diagrams (BDD’s).

• Verification is used in industry for proving the correctness of complex digital circuits (control,
arithmetic units, cache coherence), safety-critical software and embedded systems (traffic
control, train systems, security protocols).

14

Verification Scenarios

comparison
reference system data structure

system under test data structure

Comparison of specification and implementation

15

𝑦 = 𝑥1 + 𝑥2 ⋅ 𝑥3

Example

Verification Scenarios

comparison
reference system data structure

system under test data structure

Comparison of specification and implementation

property

system under test data structure

fixed-point calculation

Proving properties

16

The device
can always be
switched off.”

“

𝑦 = 𝑥1 + 𝑥2 ⋅ 𝑥3

Example

17

Efficient state
representation

Computing
reachability

Proving
properties

▪ Set of states as Boolean function
▪ Binary Decision Diagram representation

▪ Leverage efficient state representation
▪ Explore successor sets of states

▪ Temporal logic (CTL)
▪ Encoding as reachability problem

18

Efficient state
representation

Computing
reachability

Proving
properties

▪ Set of states as Boolean function
▪ Binary Decision Diagram representation

▪ Leverage efficient state representation
▪ Explore successor sets of states

▪ Temporal logic (CTL)
▪ Encoding as reachability problem

This week

Binary Decision Diagrams (BDD)

• Concept
• Data structure that allows to represent

Boolean functions.

• The representation is unique for a given
ordering of variables. If the ordering of
variables is fixed, we call it an
ordered BDD (OBDD).

• Structure
• BDDs contain “decision nodes” which are

labeled with variable names.

• Edges are labeled with input values.

• Leaves are labeled with output values.

19

𝑓 = 𝑥1 + 𝑥2 + 𝑥3

x1

x2

x3

0 1

False (0)
True (1)

Binary Decision Diagrams (BDD)

• Concept
• Data structure that allows to represent

Boolean functions.

• The representation is unique for a given
ordering of variables. If the ordering of
variables is fixed, we call it an
ordered BDD (OBDD).

• Structure
• BDDs contain “decision nodes” which are

labeled with variable names.

• Edges are labeled with input values.

• Leaves are labeled with output values.

20

𝑓 = 𝑥1 + 𝑥2 + 𝑥3

x1

x2

x3

0 1

False (0)
True (1)

𝑓 1,0,1 =?

Binary Decision Diagrams (BDD)

• Concept
• Data structure that allows to represent

Boolean functions.

• The representation is unique for a given
ordering of variables. If the ordering of
variables is fixed, we call it an
ordered BDD (OBDD).

• Structure
• BDDs contain “decision nodes” which are

labeled with variable names.

• Edges are labeled with input values.

• Leaves are labeled with output values.

21

𝑓 = 𝑥1 + 𝑥2 + 𝑥3

x1

x2

x3

0 1

False (0)
True (1)

𝑓(1,0,1) = 𝑡𝑟𝑢𝑒

𝑓 0,0,1 =?

Binary Decision Diagrams (BDD)

• Concept
• Data structure that allows to represent

Boolean functions.

• The representation is unique for a given
ordering of variables. If the ordering of
variables is fixed, we call it an
ordered BDD (OBDD).

• Structure
• BDDs contain “decision nodes” which are

labeled with variable names.

• Edges are labeled with input values.

• Leaves are labeled with output values.

22

𝑓 = 𝑥1 + 𝑥2 + 𝑥3

x1

x2

x3

0 1

False (0)
True (1)

𝑓(1,0,1) = 𝑡𝑟𝑢𝑒

𝑓 0,0,1 = 𝑡𝑟𝑢𝑒

Binary Decision Diagrams (BDD)

• Concept
• Data structure that allows to represent

Boolean functions.

• The representation is unique for a given
ordering of variables. If the ordering of
variables is fixed, we call it an
ordered BDD (OBDD).

• Structure
• BDDs contain “decision nodes” which are

labeled with variable names.

• Edges are labeled with input values.

• Leaves are labeled with output values.

23

𝑓 = 𝑥1 + 𝑥2 + 𝑥3

𝑔 = (𝑥1+𝑥2) ⋅ 𝑥3

x1

x2

x3

0 1

False (0)
True (1)

x1

x2

x3

0 1

𝑓(1,0,1) = 𝑡𝑟𝑢𝑒

𝑓 0,0,1 = 𝑡𝑟𝑢𝑒

Binary Decision Diagrams (BDD)

• Concept
• Data structure that allows to represent

Boolean functions.

• The representation is unique for a given
ordering of variables. If the ordering of
variables is fixed, we call it an
ordered BDD (OBDD).

• Structure
• BDDs contain “decision nodes” which are

labeled with variable names.

• Edges are labeled with input values.

• Leaves are labeled with output values.

24

𝑓 = 𝑥1 + 𝑥2 + 𝑥3

𝑔 = (𝑥1+𝑥2) ⋅ 𝑥3

x1

x2

x3

0 1

False (0)
True (1)

x1

x2

x3

0 1

𝑓(1,0,1) = 𝑡𝑟𝑢𝑒

𝑓 0,0,1 = 𝑡𝑟𝑢𝑒

𝑔 0,1,0 = ?

Binary Decision Diagrams (BDD)

• Concept
• Data structure that allows to represent

Boolean functions.

• The representation is unique for a given
ordering of variables. If the ordering of
variables is fixed, we call it an
ordered BDD (OBDD).

• Structure
• BDDs contain “decision nodes” which are

labeled with variable names.

• Edges are labeled with input values.

• Leaves are labeled with output values.

25

𝑓 = 𝑥1 + 𝑥2 + 𝑥3

𝑔 = (𝑥1+𝑥2) ⋅ 𝑥3

x1

x2

x3

0 1

False (0)
True (1)

x1

x2

x3

0 1

𝑓(1,0,1) = 𝑡𝑟𝑢𝑒

𝑓 0,0,1 = 𝑡𝑟𝑢𝑒

𝑔 0,1,0 = 𝑓𝑎𝑙𝑠𝑒

Basic concept of verification using BDDs

• BDDs represent Boolean functions.

• Therefore, they can be used to describe sets of states and transformation relations.

• Due to the unique representation of Boolean functions, reduced ordered BDDs (ROBDD) can
be used to proof equivalence between Boolean functions or between sets of states.

• BDDs can easily and efficiently be manipulated.

26

Decomposition

BDDs are based on the Boole-Shannon-Decomposition:

A Boolean function has two co-factors for each variable, one for each evaluation
• 𝑓ȁ𝑥=0 : remaining function for 𝑥 = 0

• 𝑓ȁ𝑥=1 : remaining function for 𝑥 = 1

Logic Boolean Binary

OR + ∨

AND ⋅ ∧

NOT ഥX ¬ or ഥX

𝑥 = 1𝑥 = 0

𝑓 ቚ
𝑥=1

𝑓 ቚ
𝑥=0

𝑥

𝑓

27

𝑓 = ҧ𝑥 ⋅ 𝑓 ቚ
𝑥=0

+ 𝑥 ⋅ 𝑓 ቚ
𝑥=1

Decomposition

BDDs are based on the Boole-Shannon-Decomposition:

A Boolean function has two co-factors for each variable, one for each evaluation
• 𝑓ȁ𝑥=0 : remaining function for 𝑥 = 0

• 𝑓ȁ𝑥=1 : remaining function for 𝑥 = 1

Logic Boolean Binary

OR + ∨

AND ⋅ ∧

NOT ഥX ¬ or ഥX

𝑥 = 1𝑥 = 0

𝑓 ቚ
𝑥=1

𝑓 ቚ
𝑥=0

𝑥

𝑓

28

𝑓 = ҧ𝑥 ⋅ 𝑓 ቚ
𝑥=0

+ 𝑥 ⋅ 𝑓 ቚ
𝑥=1

𝑓 = 𝑥1 + 𝑥2 + 𝑥3

Decomposition

BDDs are based on the Boole-Shannon-Decomposition:

A Boolean function has two co-factors for each variable, one for each evaluation
• 𝑓ȁ𝑥=0 : remaining function for 𝑥 = 0

• 𝑓ȁ𝑥=1 : remaining function for 𝑥 = 1

Logic Boolean Binary

OR + ∨

AND ⋅ ∧

NOT ഥX ¬ or ഥX

𝑥 = 1𝑥 = 0

𝑓 ቚ
𝑥=1

𝑓 ቚ
𝑥=0

𝑥

𝑓

29

𝑓 = ҧ𝑥 ⋅ 𝑓 ቚ
𝑥=0

+ 𝑥 ⋅ 𝑓 ቚ
𝑥=1

= 𝑥1 ⋅ 1 + ഥ𝑥1 ⋅ (𝑥2 + 𝑥3)

x1

1

𝑓 = 𝑥1 + 𝑥2 + 𝑥3

𝑓 ቚ
𝑥1=1

𝑓 ቚ
𝑥1=0

Decomposition

BDDs are based on the Boole-Shannon-Decomposition:

A Boolean function has two co-factors for each variable, one for each evaluation
• 𝑓ȁ𝑥=0 : remaining function for 𝑥 = 0

• 𝑓ȁ𝑥=1 : remaining function for 𝑥 = 1

Logic Boolean Binary

OR + ∨

AND ⋅ ∧

NOT ഥX ¬ or ഥX

𝑥 = 1𝑥 = 0

𝑓 ቚ
𝑥=1

𝑓 ቚ
𝑥=0

𝑥

𝑓

30

𝑓 = ҧ𝑥 ⋅ 𝑓 ቚ
𝑥=0

+ 𝑥 ⋅ 𝑓 ቚ
𝑥=1

x1

x2

1

𝑓 = 𝑥1 + 𝑥2 + 𝑥3

𝑥2 + ഥ𝑥2 ⋅ 𝑥3

= 𝑥1 ⋅ 1 + ഥ𝑥1 ⋅ (𝑥2 + 𝑥3)

Decomposition

BDDs are based on the Boole-Shannon-Decomposition:

A Boolean function has two co-factors for each variable, one for each evaluation
• 𝑓ȁ𝑥=0 : remaining function for 𝑥 = 0

• 𝑓ȁ𝑥=1 : remaining function for 𝑥 = 1

Logic Boolean Binary

OR + ∨

AND ⋅ ∧

NOT ഥX ¬ or ഥX

𝑥 = 1𝑥 = 0

𝑓 ቚ
𝑥=1

𝑓 ቚ
𝑥=0

𝑥

𝑓

31

𝑓 = ҧ𝑥 ⋅ 𝑓 ቚ
𝑥=0

+ 𝑥 ⋅ 𝑓 ቚ
𝑥=1

x3

0

x1

x2

1

𝑓 = 𝑥1 + 𝑥2 + 𝑥3

𝑥2 + ഥ𝑥2 ⋅ 𝑥3

= 𝑥1 ⋅ 1 + ഥ𝑥1 ⋅ (𝑥2 + 𝑥3)

32

Boole-Shannon Decomposition Example

𝑓 𝑎, 𝑏, 𝑐 = ത𝑎 ⋅ 𝑏 + 𝑐 + ത𝑏 ⋅ 𝑐

𝑎 → 𝑏 → 𝑐Ordering:

33

Boole-Shannon Decomposition Example

𝑓 𝑎, 𝑏, 𝑐 = ത𝑎 ⋅ 𝑏 + 𝑐 + ത𝑏 ⋅ 𝑐

𝑎 → 𝑏 → 𝑐Ordering:

a

𝑓 ቚ
𝑎=0

= 𝑏 + 𝑐 + ത𝑏 ⋅ 𝑐 𝑓 ቚ
𝑎=1

= ത𝑏 ⋅ 𝑐

34

Boole-Shannon Decomposition Example

𝑓 𝑎, 𝑏, 𝑐 = ത𝑎 ⋅ 𝑏 + 𝑐 + ത𝑏 ⋅ 𝑐

𝑎 → 𝑏 → 𝑐Ordering:

a

𝑓 ቚ
𝑎=0

= 𝑏 + 𝑐 + ത𝑏 ⋅ 𝑐 𝑓 ቚ
𝑎=1

= ത𝑏 ⋅ 𝑐

b

1

b

0

𝑓 ቚ
𝑎=0,𝑏=0

= 𝑐

𝑓 ቚ
𝑎=0,𝑏=1

= 1

𝑓 ቚ
𝑎=1,𝑏=0

= 𝑐

𝑓 ቚ
𝑎=1,𝑏=1

= 0

35

Boole-Shannon Decomposition Example

𝑓 𝑎, 𝑏, 𝑐 = ത𝑎 ⋅ 𝑏 + 𝑐 + ത𝑏 ⋅ 𝑐

𝑎 → 𝑏 → 𝑐Ordering:

a

𝑓 ቚ
𝑎=0

= 𝑏 + 𝑐 + ത𝑏 ⋅ 𝑐 𝑓 ቚ
𝑎=1

= ത𝑏 ⋅ 𝑐

b

c

1

b

0

c

0 10

𝑓 ቚ
𝑎=0,𝑏=0

= 𝑐

𝑓 ቚ
𝑎=0,𝑏=1

= 1

𝑓 ቚ
𝑎=1,𝑏=0

= 𝑐

𝑓 ቚ
𝑎=1,𝑏=1

= 0

1

36

Boole-Shannon Decomposition Example

𝑓 𝑎, 𝑏, 𝑐 = ത𝑎 ⋅ 𝑏 + 𝑐 + ത𝑏 ⋅ 𝑐

𝑎 → 𝑏 → 𝑐Ordering:

a

𝑓 ቚ
𝑎=0

= 𝑏 + 𝑐 + ത𝑏 ⋅ 𝑐 𝑓 ቚ
𝑎=1

= ത𝑏 ⋅ 𝑐

b

c

1

b

0

c

0 10

𝑓 ቚ
𝑎=0,𝑏=0

= 𝑐

𝑓 ቚ
𝑎=0,𝑏=1

= 1

𝑓 ቚ
𝑎=1,𝑏=0

= 𝑐

𝑓 ቚ
𝑎=1,𝑏=1

= 0

Does variable order
matter?

1

Variable Order

• If we fix the ordering of variables, BDDs are called OBBDs (Ordered Binary Decision Diagrams).

• The ordering is essential for the size of a BDD.

37

𝑓 = 𝑎 ⋅ 𝑏 + 𝑐 ⋅ 𝑑 + 𝑒

𝑎 → 𝑏 → 𝑐 → 𝑑 → 𝑒 𝑎 → 𝑐 → 𝑒 → 𝑏 → 𝑑

Calculating with BDDs

• SIMPLIFY: Given BDD for 𝑓, determine simplified BDD for 𝑓.
• Eliminate redundant nodes.

• Merge equivalent leaves (0 and 1)

• Merge isomorphic nodes, i.e., nodes that represent the same Boolean function.

• A BDD that can not be further simplified is called a reduced BDD.
A reduced OBDD (also denoted as ROBDD) is a unique representation of a given Boolean function.

38

Calculating with BDDs

• SIMPLIFY: Given BDD for 𝑓, determine simplified BDD for 𝑓.
• Eliminate redundant nodes.

• Merge equivalent leaves (0 and 1)

• Merge isomorphic nodes, i.e., nodes that represent the same Boolean function.

• A BDD that can not be further simplified is called a reduced BDD.
A reduced OBDD (also denoted as ROBDD) is a unique representation of a given Boolean function.

39

a

b

1

1

b

c

0

0

1

c

0

𝑓 = ത𝑎 ⋅ 𝑏 + 𝑐 + ത𝑏 ⋅ 𝑐

Calculating with BDDs

• SIMPLIFY: Given BDD for 𝑓, determine simplified BDD for 𝑓.
• Eliminate redundant nodes.

• Merge equivalent leaves (0 and 1)

• Merge isomorphic nodes, i.e., nodes that represent the same Boolean function.

• A BDD that can not be further simplified is called a reduced BDD.
A reduced OBDD (also denoted as ROBDD) is a unique representation of a given Boolean function.

40

a

b

1

1

b

c

0

0

1

c

0

a

b b

c

01

c

𝑓 = ത𝑎 ⋅ 𝑏 + 𝑐 + ത𝑏 ⋅ 𝑐

Merge leaves

Calculating with BDDs

• SIMPLIFY: Given BDD for 𝑓, determine simplified BDD for 𝑓.
• Eliminate redundant nodes.

• Merge equivalent leaves (0 and 1)

• Merge isomorphic nodes, i.e., nodes that represent the same Boolean function.

• A BDD that can not be further simplified is called a reduced BDD.
A reduced OBDD (also denoted as ROBDD) is a unique representation of a given Boolean function.

41

a

b

1

1

b

c

0

0

1

c

0

a

b b

c

01

c

a

b b

1 0

c

𝑓 = ത𝑎 ⋅ 𝑏 + 𝑐 + ത𝑏 ⋅ 𝑐

Merge leaves Merge nodes

Calculating with BDDs

• RESTRICT: Given BDD for 𝑓, determine BDD for 𝑓ȁ𝑥=𝑘.

• Delete all edges that represent 𝑥 = ത𝑘;

• For every pair of edges (𝑎 − 𝑥 , 𝑥 − 𝑏) include a new edge (𝑎 − 𝑏) and remove the old ones;

• Remove all nodes that represent 𝑥.

42

Calculating with BDDs

• RESTRICT: Given BDD for 𝑓, determine BDD for 𝑓ȁ𝑥=𝑘.

• Delete all edges that represent 𝑥 = ത𝑘;

• For every pair of edges (𝑎 − 𝑥 , 𝑥 − 𝑏) include a new edge (𝑎 − 𝑏) and remove the old ones;

• Remove all nodes that represent 𝑥.

43

𝑓 = ത𝑎 ⋅ 𝑏 + 𝑐 + ത𝑏 ⋅ 𝑐

a

b b

1 0

c

Restrict 𝑓 ቚ
𝑏=1

Calculating with BDDs

• RESTRICT: Given BDD for 𝑓, determine BDD for 𝑓ȁ𝑥=𝑘.

• Delete all edges that represent 𝑥 = ത𝑘;

• For every pair of edges (𝑎 − 𝑥 , 𝑥 − 𝑏) include a new edge (𝑎 − 𝑏) and remove the old ones;

• Remove all nodes that represent 𝑥.

44

a

b b

1 0

Restrict 𝑓 ቚ
𝑏=1

𝑓 = ത𝑎 ⋅ 𝑏 + 𝑐 + ത𝑏 ⋅ 𝑐

a

b b

1 0

c

Calculating with BDDs

• RESTRICT: Given BDD for 𝑓, determine BDD for 𝑓ȁ𝑥=𝑘.

• Delete all edges that represent 𝑥 = ത𝑘;

• For every pair of edges (𝑎 − 𝑥 , 𝑥 − 𝑏) include a new edge (𝑎 − 𝑏) and remove the old ones;

• Remove all nodes that represent 𝑥.

45

a

b b

1 0

a

1 0

Restrict 𝑓 ቚ
𝑏=1

𝑓 = ത𝑎 ⋅ 𝑏 + 𝑐 + ത𝑏 ⋅ 𝑐

a

b b

1 0

c

• APPLY: Given BDDs for 𝑓 and 𝑔, determine a BDD for 𝑓 ⋄ 𝑔 for some operation ⋄.
• Combine the two BDDs recursively based

on the following relation:

• Boolean functions can be converted to BDDs step by step using APPLY.

Calculating with BDDs

𝑥 = 1𝑥 = 0

𝑓 ቚ
𝑥=0

⋄ 𝑔 ቚ
𝑥=0

𝑥

𝑓 ⋄ 𝑔

𝑓 ቚ
𝑥=1

⋄ 𝑔 ቚ
𝑥=1

46

Calculating with BDDs

• Quantifiers are constructed by APPLY and RESTRICT:

47

Calculating with BDDs

• Quantifiers are constructed by APPLY and RESTRICT:

48

a

b

01

𝑓(𝑎, 𝑏) = ത𝑎 ⋅ 𝑏

Calculating with BDDs

• Quantifiers are constructed by APPLY and RESTRICT:

49

a

b

01

𝑓(𝑎, 𝑏) = ത𝑎 ⋅ 𝑏 𝑔 𝑎 = ∃𝑏: 𝑓 𝑎, 𝑏 = ത𝑎

Calculating with BDDs

• Quantifiers are constructed by APPLY and RESTRICT:

50

a

b

01

𝑓(𝑎, 𝑏) = ത𝑎 ⋅ 𝑏 𝑔 𝑎 = ∃𝑏: 𝑓 𝑎, 𝑏 = ത𝑎

a

01

Calculating with BDDs

• Quantifiers are constructed by APPLY and RESTRICT:

51

a

b

01

𝑓(𝑎, 𝑏) = ത𝑎 ⋅ 𝑏 𝑔 𝑎 = ∃𝑏: 𝑓 𝑎, 𝑏 = ത𝑎

a

01

ℎ 𝑎 = ∀𝑏: 𝑓 𝑎, 𝑏 = 0

Calculating with BDDs

• Quantifiers are constructed by APPLY and RESTRICT:

52

a

b

01

𝑓(𝑎, 𝑏) = ത𝑎 ⋅ 𝑏 𝑔 𝑎 = ∃𝑏: 𝑓 𝑎, 𝑏 = ത𝑎

a

01

ℎ 𝑎 = ∀𝑏: 𝑓 𝑎, 𝑏 = 0

a

0

Comparison using BDDs

• Boolean (combinatorial) circuits: Compare specification and implementation,
or compare two implementations.

• Method:
• Representation of the two systems in ROBDDs, e.g., by applying the APPLY operator repeatedly.

• Compare the structures of the ROBDDs.

• Example:

compare

APPLY

APPLY

53

Sets and Relations

• Representation of a subset 𝐴 ⊆ 𝐸:

54

E

A

Sets and Relations

• Representation of a subset 𝐴 ⊆ 𝐸:
• Binary encoding 𝜎 𝑒 of all elements 𝑒 ∈ 𝐸

55

E

A

Sets and Relations

• Representation of a subset 𝐴 ⊆ 𝐸:
• Binary encoding 𝜎 𝑒 of all elements 𝑒 ∈ 𝐸

• Subset 𝐴 is represented by 𝑎 ∈ 𝐴 ⇔ 𝜓𝐴(𝜎 𝑎)

characteristic function
of subset A

56

E

A

Sets and Relations

• Representation of a subset 𝐴 ⊆ 𝐸:
• Binary encoding 𝜎 𝑒 of all elements 𝑒 ∈ 𝐸

• Subset 𝐴 is represented by 𝑎 ∈ 𝐴 ⇔ 𝜓𝐴(𝜎 𝑎)

• Stepwise construction of the BDD corresponding to some subsets.

characteristic function
of subset A

57

E

A

Sets and Relations

• Example:

58

? E
e1

e2

e3e0

Sets and Relations

• Example:

59

E

A

e1

e2

e3e0

60

𝝈(𝒆) x1 x0

Zürich 0 0

Sydney 0 1

Beijing 1 0

Paris 1 1

𝐸

𝑧
𝑠

𝑝 𝑏

Sets and Relations

Capitals?

European cities?

European capitals?

𝜓𝐴 𝑥1, 𝑥0 = ?

𝜓𝐵 𝑥1, 𝑥0 = ?

𝜓𝑐 𝑥1, 𝑥0 = ?

61

𝝈(𝒆) x1 x0

Zürich 0 0

Sydney 0 1

Beijing 1 0

Paris 1 1

𝐸

𝑧
𝑠

𝑝 𝑏

Sets and Relations

𝜓𝐴(𝑥1, 𝑥0) = 𝑥1Capitals?

European cities?

European capitals?

A

𝜓𝐴 𝑥1, 𝑥0 = ?

𝜓𝐵 𝑥1, 𝑥0 = ?

𝜓𝑐 𝑥1, 𝑥0 = ?

62

𝝈(𝒆) x1 x0

Zürich 0 0

Sydney 0 1

Beijing 1 0

Paris 1 1

𝐸

𝑧
𝑠

𝑝 𝑏

Sets and Relations

𝜓𝐴(𝑥1, 𝑥0) = 𝑥1

𝜓𝐵 𝑥1, 𝑥0 = ഥ𝑥0 ⋅ ഥ𝑥1+ 𝑥0 ⋅ 𝑥1

Capitals?

European cities?

European capitals?

A

B

𝜓𝐴 𝑥1, 𝑥0 = ?

𝜓𝐵 𝑥1, 𝑥0 = ?

𝜓𝑐 𝑥1, 𝑥0 = ?

63

𝝈(𝒆) x1 x0

Zürich 0 0

Sydney 0 1

Beijing 1 0

Paris 1 1

Sets and Relations

𝜓𝐴(𝑥1, 𝑥0) = 𝑥1

𝜓𝐵 𝑥1, 𝑥0 = ഥ𝑥0 ⋅ ഥ𝑥1+ 𝑥0 ⋅ 𝑥1

𝐶 = 𝐴 ∩ 𝐵 𝜓𝑐 𝑥1, 𝑥0 = 𝑥0 ⋅ 𝑥1

Capitals?

European cities?

European capitals?

𝜓𝐴 𝑥1, 𝑥0 = ?

𝜓𝐵 𝑥1, 𝑥0 = ?

𝜓𝑐 𝑥1, 𝑥0 = ?

𝐸

𝑧
𝑠

𝑝 𝑏
A

B

C

Selecting a “good” encoding
is both important and difficult

64

In previous example Subset 𝐴 of all capitals is represented by 𝜓𝐴 = 𝑥1

▪ No need to iterate through all capitals to verify
that some property holds (e.g. “All capitals have a parliament.”)

▪ We can use the (compact) representation of the set.

For a state space
encoded with 𝑁 bits

Represent up to 2𝑁 states

Selecting a “good” encoding
is both important and difficult

65

In previous example Subset 𝐴 of all capitals is represented by 𝜓𝐴 = 𝑥1

▪ No need to iterate through all capitals to verify
that some property holds (e.g. “All capitals have a parliament.”)

▪ We can use the (compact) representation of the set.

For a state space
encoded with 𝑁 bits

Represent up to 2𝑁 states

But... Selecting a good encoding
is difficult in practice.

Representing state efficiently

▪ It is one challenge of ML: How to efficiently encode the inputs?

66

Efficient state
representation

Computing
reachability

Proving
properties

▪ Set of states as Boolean function
▪ Binary Decision Diagram representation

▪ Leverage efficient state representation
▪ Explore successor sets of states

▪ Temporal logic (CTL)
▪ Encoding as reachability problem

Sets and Relations using BDDs

• Representation of a relation 𝑅 ⊆ 𝐴 × 𝐵
• Binary encoding 𝜎 𝑎 , 𝜎(𝑏) of all elements 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵

• Representation of 𝑅

67

characteristic function
of the relation 𝑅

𝑎, 𝑏 ∈ 𝑅 ⇔ 𝜓𝑅(𝜎 𝑎 , 𝜎 𝑏)

Sets and Relations using BDDs

• Representation of a relation 𝑅 ⊆ 𝐴 × 𝐵
• Binary encoding 𝜎 𝑎 , 𝜎(𝑏) of all elements 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵

• Representation of 𝑅

• Example:

68

characteristic function
of the relation 𝑅

𝑎, 𝑏 ∈ 𝑅 ⇔ 𝜓𝑅(𝜎 𝑎 , 𝜎 𝑏)

𝜓𝛿 𝜎(𝑞), 𝜎(𝑞′) = 𝜓𝛿 𝑞, 𝑞′ describe state transitions
return 1 if there is a transition
𝑞 → 𝑞′, 0 otherwise

𝜓𝛿 𝑞0, 𝑞1 = 1

𝜓𝛿 𝑞0, 𝑞3 = 0

To simplify notation

Reachability of States

• Problem: Is a state 𝑞 ∈ 𝑄 reachable by a sequence of state transitions?

• Method:
• Represent set of states and the transformation relation as ROBDDs.

• Use these representations to transform from one set of states to another. Set 𝑄𝑖 corresponds to the
set of states reachable after 𝑖 transitions.

• Iterate the transformation until a fixed-point is reached, i.e., until the set of states does not change
anymore (steady-state).

• Example:

69

𝑄3= {𝑞0, 𝑞1, 𝑞2}𝑄2= {𝑞0, 𝑞1, 𝑞2}𝑄1= {𝑞0, 𝑞1}𝑄0= {𝑞0}

Drawing state-diagrams is not feasible in general.

70

Drawing state-diagrams is not feasible in general.

1. Work with sets of states
2. Use characteristic functions to represent sets of states
3. Use ROBDDs to encode characteristic functions

71

Reachability of States

• Transformation of sets of states:
• Determine the set of all direct successor states of a given set of states 𝑄 by means of the

transformation function 𝛿:

72

𝑄′ = 𝑆𝑢𝑐 𝑄, 𝛿 = 𝑞′ ∃𝑞 ∶ 𝜓𝑄 𝑞 ⋅ 𝜓𝛿(𝑞, 𝑞
′)}

Characteristic function
of current state set 𝑄

Transition function 𝑞 → 𝑞′

Set of successor states:

𝑄′ = 𝑆𝑢𝑐 𝑄0, 𝛿 = {𝑞1}

𝑄0 = {𝑞0}

• Transformation of sets of states:
• Determine the set of all direct successor states of a given set of states 𝑄 by means of the

transformation function 𝛿:

Reachability of States

set of all states set of all states

states with at least
one outgoing
transition

states with at least
one incoming
transition

73

𝑄′ = 𝑆𝑢𝑐 𝑄, 𝛿 = 𝑞′ ∃𝑞 ∶ 𝜓𝑄 𝑞 ⋅ 𝜓𝛿(𝑞, 𝑞
′)}

Characteristic function
of current state set 𝑄

Transition function 𝑞 → 𝑞′

Set of successor states:

Reachability of States

• Transformation of sets of states:
• Determine the set of all direct successor states of a given set of states 𝑄 by means of the

transformation function 𝛿:

set of all states set of all states

states with at least
one outgoing
transition

states with at least
one incoming
transition

74

𝑄′ = 𝑆𝑢𝑐 𝑄, 𝛿 = 𝑞′ ∃𝑞 ∶ 𝜓𝑄 𝑞 ⋅ 𝜓𝛿(𝑞, 𝑞
′)}

Characteristic function
of current state set 𝑄

Transition function 𝑞 → 𝑞′

Set of successor states:

Reachability of States

• Transformation of sets of states:
• Determine the set of all direct successor states of a given set of states 𝑄 by means of the

transformation function 𝛿:

set of all states set of all states

states with at least
one outgoing
transition

states with at least
one incoming
transition

75

𝑄′ = 𝑆𝑢𝑐 𝑄, 𝛿 = 𝑞′ ∃𝑞 ∶ 𝜓𝑄 𝑞 ⋅ 𝜓𝛿(𝑞, 𝑞
′)}

Characteristic function
of current state set 𝑄

Transition function 𝑞 → 𝑞′

Set of successor states:

Reachability of States

• Transformation of sets of states:
• Determine the set of all direct successor states of a given set of states 𝑄 by means of the

transformation function 𝛿:

Efficient to compute
with ROBDDs

ℎ 𝑞, 𝑞′ = 𝜓𝑄 𝑞 ⋅ 𝜓𝛿(𝑞, 𝑞
′)

𝜓𝑄′ 𝑞′ = (∃𝑞 ∶ ℎ 𝑞, 𝑞′)

76

𝑄′ = 𝑆𝑢𝑐 𝑄, 𝛿 = 𝑞′ ∃𝑞 ∶ 𝜓𝑄 𝑞 ⋅ 𝜓𝛿(𝑞, 𝑞
′)}Set of successor states:

Reachability of States

• Fixed-point iteration
• Start with the initial state, then determine the set of states that can be reached in one or more steps.

77

𝑄𝑖+1 = 𝑄𝑖 ∪ 𝑆𝑢𝑐 𝑄𝑖, 𝛿

𝑄0 = {𝑞0}

until 𝑄𝑖+1 = 𝑄𝑖

𝜓𝑄𝑖+1 𝑞′ = 𝜓𝑄𝑖 𝑞
′ + (∃𝑞 ∶ 𝜓𝑄𝑖 𝑞 ⋅ 𝜓𝛿 𝑞, 𝑞′)

𝑞′ is already in 𝑄𝑖 There is a state 𝑞 in 𝑄𝑖 with
transition 𝑞 → 𝑞′

Characteristic function of
next set of reached states

𝑄′ = 𝑆𝑢𝑐 𝑄0, 𝛿 = {𝑞1}

𝑄0 = {𝑞0}

𝑄1 = 𝑄0 ∪ 𝑆𝑢𝑐 𝑄0, 𝛿 = {𝑞0, 𝑞1}

Reachability of States

• Fixed-point iteration
• Start with the initial state, then determine the set of states that can be reached in one or more steps.

78

𝑄𝑖+1 = 𝑄𝑖 ∪ 𝑆𝑢𝑐 𝑄𝑖, 𝛿

𝑄0 = {𝑞0}

until 𝑄𝑖+1 = 𝑄𝑖

𝜓𝑄𝑖+1 𝑞′ = 𝜓𝑄𝑖 𝑞
′ + (∃𝑞 ∶ 𝜓𝑄𝑖 𝑞 ⋅ 𝜓𝛿 𝑞, 𝑞′)Characteristic function of

next set of reached states

𝑞′ is already in 𝑄𝑖 There is a state 𝑞 in 𝑄𝑖 with
transition 𝑞 → 𝑞′

• Due to the finite number of states, the fixed-point exists and is reached in a finite number of steps

(at most the diameter of the state diagram).

• Determine whether the fixed-point is reached or not can be done by comparing the ROBDDs of
the current set of reachable states.

Reachability of States - Example

79

𝝈(𝒒) x1 x0

q0 0 0

q1 0 1

q2 1 0

q3 1 1

State encoding
𝑥1, 𝑥0 = 𝜎(𝑞)

Reachability of States - Example

80

𝝈(𝒒) x1 x0

q0 0 0

q1 0 1

q2 1 0

q3 1 1

State encoding
𝑥1, 𝑥0 = 𝜎(𝑞)

x1 x0 x1’ x0’

0 0 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 1 0

1 1 0 0

entries where
𝜓𝛿 𝑞, 𝑞′ = 1 only

Transition relation encoding

𝜓𝛿 𝑞, 𝑞′ = 𝑥0′ ⋅ 𝑥0 ⋅ 𝑥1 + 𝑥1
′ + 𝑥1 ⋅ 𝑥1

′ + 𝑥0 ⋅ 𝑥0
′ ⋅ 𝑥1′

As a Boolean function

𝜓𝛿(𝑞, 𝑞
′)

𝑞0 → 𝑞1

𝑞2 → 𝑞2

Reachability of States - Example

81

𝝈(𝒒) x1 x0

q0 0 0

q1 0 1

q2 1 0

q3 1 1

State encoding
𝑥1, 𝑥0 = 𝜎(𝑞)

Transition relation encoding

𝜓𝛿 𝑞, 𝑞′ = 𝑥0′ ⋅ 𝑥0 ⋅ 𝑥1 + 𝑥1
′ + 𝑥1 ⋅ 𝑥1

′ + 𝑥0 ⋅ 𝑥0
′ ⋅ 𝑥1′

As a Boolean function

𝜓𝛿(𝑞, 𝑞
′)

𝜓𝑄𝑖+1 𝑞′ = 𝜓𝑄𝑖 𝑞
′ + (∃𝑞 ∶ 𝜓𝑄𝑖 𝑞 ⋅ 𝜓𝛿 𝑞, 𝑞′)

Compute reachable states:

Reachability of States - Example

82

𝝈(𝒒) x1 x0

q0 0 0

q1 0 1

q2 1 0

q3 1 1

State encoding
𝑥1, 𝑥0 = 𝜎(𝑞)

Transition relation encoding

𝜓𝛿 𝑞, 𝑞′ = 𝑥0′ ⋅ 𝑥0 ⋅ 𝑥1 + 𝑥1
′ + 𝑥1 ⋅ 𝑥1

′ + 𝑥0 ⋅ 𝑥0
′ ⋅ 𝑥1′

As a Boolean function

𝜓𝛿(𝑞, 𝑞
′)

𝜓𝑄𝑖+1 𝑞′ = 𝜓𝑄𝑖 𝑞
′ + (∃𝑞 ∶ 𝜓𝑄𝑖 𝑞 ⋅ 𝜓𝛿 𝑞, 𝑞′)

Compute reachable states:

𝜓𝑄
0
𝑞 = 𝑥1 ⋅ 𝑥0𝑄0 = {𝑞0}

Reachability of States - Example

83

𝝈(𝒒) x1 x0

q0 0 0

q1 0 1

q2 1 0

q3 1 1

State encoding
𝑥1, 𝑥0 = 𝜎(𝑞)

Transition relation encoding

𝜓𝛿 𝑞, 𝑞′ = 𝑥0′ ⋅ 𝑥0 ⋅ 𝑥1 + 𝑥1
′ + 𝑥1 ⋅ 𝑥1

′ + 𝑥0 ⋅ 𝑥0
′ ⋅ 𝑥1′

As a Boolean function

𝜓𝛿(𝑞, 𝑞
′)

𝜓𝑄𝑖+1 𝑞′ = 𝜓𝑄𝑖 𝑞
′ + (∃𝑞 ∶ 𝜓𝑄𝑖 𝑞 ⋅ 𝜓𝛿 𝑞, 𝑞′)

Compute reachable states:

𝜓𝑄
0
𝑞 = 𝑥1 ⋅ 𝑥0

𝜓𝑄1 𝑞′ = 𝑥1
′ ⋅ 𝑥0

′ + (∃𝑞 ∶ 𝑥1 ⋅ 𝑥0 ⋅ 𝜓𝛿 𝑞, 𝑞′)

𝑄1 = 𝑄0 ∪ {𝑞1}
= {𝑞0, 𝑞1}

Reachability of States - Example

84

𝝈(𝒒) x1 x0

q0 0 0

q1 0 1

q2 1 0

q3 1 1

State encoding
𝑥1, 𝑥0 = 𝜎(𝑞)

Transition relation encoding

𝜓𝛿 𝑞, 𝑞′ = 𝑥0′ ⋅ 𝑥0 ⋅ 𝑥1 + 𝑥1
′ + 𝑥1 ⋅ 𝑥1

′ + 𝑥0 ⋅ 𝑥0
′ ⋅ 𝑥1′

As a Boolean function

𝜓𝛿(𝑞, 𝑞
′)

𝜓𝑄𝑖+1 𝑞′ = 𝜓𝑄𝑖 𝑞
′ + (∃𝑞 ∶ 𝜓𝑄𝑖 𝑞 ⋅ 𝜓𝛿 𝑞, 𝑞′)

Compute reachable states:

𝜓𝑄
0
𝑞 = 𝑥1 ⋅ 𝑥0

𝜓𝑄1 𝑞′ = 𝑥1
′ ⋅ 𝑥0

′ + (∃𝑞 ∶ 𝑥1 ⋅ 𝑥0 ⋅ 𝜓𝛿 𝑞, 𝑞′)

𝑞0: 𝑥0=0, 𝑥1=0

= 𝑥1
′ ⋅ 𝑥0

′ + 𝑥1
′ ⋅ 𝑥0

′ = 𝑥1
′

From BDDs and quantifiers:

The only non-zero term is for
𝑥0=0, 𝑥1=0 (see next slide)

∃𝑥: 𝑓 = 𝑓 ቚ
𝑥=0

+ 𝑓 ቚ
𝑥=1

𝑄1 = 𝑄0 ∪ {𝑞1}
= {𝑞0, 𝑞1}

Reachability of States – Example (BDD Calculation)

85

𝜓𝑄𝑖+1 𝑞′ = 𝜓𝑄𝑖 𝑞
′ + (∃𝑞 ∶ 𝜓𝑄𝑖 𝑞 ⋅ 𝜓𝛿 𝑞, 𝑞′)

𝜓𝑄
0
𝑞 = 𝑥1 ⋅ 𝑥0

𝜓𝑄1 𝑞′ = 𝑥1
′ ⋅ 𝑥0

′ + (∃𝑞 ∶ 𝑥1 ⋅ 𝑥0 ⋅ 𝜓𝛿 𝑞, 𝑞′)

𝑓ȁ𝑥0=0 = 𝑥1 ⋅ 1 ⋅ (𝑥0′ ⋅ 0 ⋅ 𝑥1 + 𝑥1
′ + 𝑥1 ⋅ 𝑥1

′ + 1 ⋅ 𝑥0
′ ⋅ 𝑥1′) = 𝑥1 ⋅ (𝑥0′ ⋅ 𝑥1 ⋅ 𝑥1

′ + 𝑥0
′ ⋅ 𝑥1′)

From BDDs and quantifiers:

∃𝑥: 𝑓 = 𝑓 ቚ
𝑥=0

+ 𝑓 ቚ
𝑥=1

𝑓ȁ𝑥0=0,𝑥1=0 = 1 ⋅ (𝑥0′ ⋅ 0 ⋅ 𝑥1
′ + 𝑥0

′ ⋅ 𝑥1′)= 𝑥0
′ ⋅ 𝑥1′

𝑓 ቚ
𝑥0=1

= 𝑥1 ⋅ 0 ⋅ (𝑥0′ ⋅ 1 ⋅ 𝑥1 + 𝑥1
′ + 𝑥1 ⋅ 𝑥1

′ + 0 ⋅ 𝑥0
′ ⋅ 𝑥1′) = 0

𝑓ȁ𝑥0=0,𝑥1=1 = 0 ⋅ (𝑥0′ ⋅ 1 ⋅ 𝑥1
′ + 𝑥0

′ ⋅ 𝑥1′)= 0

∃𝑞: 𝑓 → ∃𝑥1∃𝑥0: 𝑓

∃𝑥1∃𝑥0: 𝑓= 𝑥0
′ ⋅ 𝑥1′ Plug into Eq1 to compute 𝜓𝑄1 𝑞′

Eq1:

∃𝑥0: 𝑓

∃𝑥1: 𝑓 ቚ
𝑥
0
=0

Reachability of States - Example

86

𝝈(𝒒) x1 x0

q0 0 0

q1 0 1

q2 1 0

q3 1 1

State encoding
𝑥1, 𝑥0 = 𝜎(𝑞)

Transition relation encoding

𝜓𝛿 𝑞, 𝑞′ = 𝑥0′ ⋅ 𝑥0 ⋅ 𝑥1 + 𝑥1
′ + 𝑥1 ⋅ 𝑥1

′ + 𝑥0 ⋅ 𝑥0
′ ⋅ 𝑥1′

As a Boolean function

𝜓𝛿(𝑞, 𝑞
′)

𝜓𝑄𝑖+1 𝑞′ = 𝜓𝑄𝑖 𝑞
′ + (∃𝑞 ∶ 𝜓𝑄𝑖 𝑞 ⋅ 𝜓𝛿 𝑞, 𝑞′)

Compute reachable states:

𝜓𝑄1 𝑞′ = 𝑥1
′

𝜓𝑄2 𝑞′ = 𝑥1
′ +(∃𝑞 ∶ 𝑥1 ⋅ 𝜓𝛿 𝑞, 𝑞′)

𝑄2 = 𝑄1 ∪ {𝑞1, 𝑞2}
= {𝑞0, 𝑞1, 𝑞2}

Reachability of States - Example

87

𝝈(𝒒) x1 x0

q0 0 0

q1 0 1

q2 1 0

q3 1 1

State encoding
𝑥1, 𝑥0 = 𝜎(𝑞)

Transition relation encoding

𝜓𝛿 𝑞, 𝑞′ = 𝑥0′ ⋅ 𝑥0 ⋅ 𝑥1 + 𝑥1
′ + 𝑥1 ⋅ 𝑥1

′ + 𝑥0 ⋅ 𝑥0
′ ⋅ 𝑥1′

As a Boolean function

𝜓𝛿(𝑞, 𝑞
′)

𝜓𝑄𝑖+1 𝑞′ = 𝜓𝑄𝑖 𝑞
′ + (∃𝑞 ∶ 𝜓𝑄𝑖 𝑞 ⋅ 𝜓𝛿 𝑞, 𝑞′)

Compute reachable states:

𝜓𝑄1 𝑞′ = 𝑥1
′

𝜓𝑄2 𝑞′ = 𝑥1
′ +(∃𝑞 ∶ 𝑥1 ⋅ 𝜓𝛿 𝑞, 𝑞′)

= 𝑥1
′ + 𝑥1

′ ⋅ 𝑥0
′ + 𝑥1

′ ⋅ 𝑥0
′ = 𝑥1

′ + 𝑥0
′

𝑞0: 𝑥0=0, 𝑥1=0
𝑞1: 𝑥0=1, 𝑥1=0

𝑄2 = 𝑄1 ∪ {𝑞1, 𝑞2}
= {𝑞0, 𝑞1, 𝑞2}

Reachability of States - Example

88

𝝈(𝒒) x1 x0

q0 0 0

q1 0 1

q2 1 0

q3 1 1

State encoding
𝑥1, 𝑥0 = 𝜎(𝑞)

Transition relation encoding

𝜓𝛿 𝑞, 𝑞′ = 𝑥0′ ⋅ 𝑥0 ⋅ 𝑥1 + 𝑥1
′ + 𝑥1 ⋅ 𝑥1

′ + 𝑥0 ⋅ 𝑥0
′ ⋅ 𝑥1′

As a Boolean function

𝜓𝛿(𝑞, 𝑞
′)

𝜓𝑄𝑖+1 𝑞′ = 𝜓𝑄𝑖 𝑞
′ + (∃𝑞 ∶ 𝜓𝑄𝑖 𝑞 ⋅ 𝜓𝛿 𝑞, 𝑞′)

Compute reachable states:

𝜓𝑄2 𝑞′ = 𝑥1
′ + 𝑥0

′

𝜓𝑄3 𝑞′ = 𝑥1
′ + 𝑥0

′ + (∃𝑞 ∶ (𝑥1 + 𝑥0) ⋅ 𝜓𝛿 𝑞, 𝑞′)

= 𝑥1
′ + 𝑥0

′ + 𝑥1
′ + 𝑥0

′ = 𝑥1
′ + 𝑥0

′

𝑞0, 𝑞1, 𝑞2

𝑄3 = 𝑄2 ∪ {𝑞1, 𝑞2}
= {𝑞0, 𝑞1, 𝑞2}

It’s always a reachability problem

89

Or rather The goal is to transform the problem at hand
to encode it as a reachability problem.

Because these can be solved very efficiently

1. Work with sets of states
2. Use characteristic functions to represent sets of states
3. Use ROBDDs to encode characteristic functions

It’s always a reachability problem

90

Or rather The goal is to transform the problem at hand
to encode it as a reachability problem.

Because these can be solved very efficiently

1. Work with sets of states
2. Use characteristic functions to represent sets of states
3. Use ROBDDs to encode characteristic functions

Comparison of finite automata

1. Compute the set of jointly reachable states
2. Compare the output values of two finite automata
3. …

Your turn to practice!
after the break

91

1. Familiarise yourself with the equivalence
“set of states” ≡ “characteristic functions”

2. Express system properties using
characteristic functions

3. Draw and simplify BDDs to compare
a specification and an implementation

92

Efficient state
representation

Computing
reachability

Proving
properties

▪ Set of states as Boolean function
▪ Binary Decision Diagram representation

▪ Leverage efficient state representation
▪ Explore successor sets of states

▪ Temporal logic (CTL)
▪ Encoding as reachability problem

Next week

