Discrete Event Systems

Solution to Exercise Sheet 11

1 Specifying Formal Properties Using Temporal Logic

Notation: w_valid is the valid signal of the write data channel; aw_valid is the valid signal of the write address channel.
a) AG (valid $\rightarrow \mathbf{A F}$ ready)
b) AG AF (ready)
c) $\mathbf{A G}(($ valid $\wedge \neg$ ready $) \rightarrow \mathbf{A X}$ valid $)$
d) $\mathbf{A G}(($ valid $\wedge \neg$ ready $) \rightarrow(d a t a \leftrightarrow \mathbf{A X} d a t a))$

2 Temporal Logic

a) (i) $Q=\{0,1,2,3\}$
(ii) $Q=\{0,3\}$
(iii) ($\mathrm{AX} a$) holds for $\{2,3\}$, thus $Q=\{1,2\}$
(iv) ($a \operatorname{AND} \operatorname{EX} \operatorname{NOT}(a)$) is true for states where a is true and there exists a direct successor for which it is not. Only state 0 satisfy this (from it you can transition to 1 , where a does not hold). Moreover, state 0 is reachable for all states in this automaton ("from all states there exists a path going through 0 at some point"). Hence $Q=\{0,1,2,3\}$
b) (i) $\neg \mathrm{AF} Z \equiv \mathrm{EG} \neg Z$
(ii) We will first compute the function $Q_{k} \models \mathrm{EG} \neg Z$, which we can compute quite easily (following the procedure given in the lecture), and take the negation in the end.

$$
\begin{aligned}
Q_{0} & =S \backslash Z \\
Q_{i+1} & =Q_{i} \cap \operatorname{Pre}\left(Q_{i}, f\right) \\
k & =\min \left\{i \mid Q_{i+1}=Q_{i}\right\} \\
Q_{\mathrm{AF} Z} & =Z \backslash Q_{k}
\end{aligned}
$$

The main idea is that we start with the states that are not in Z. Then, at each iteration, we create an intersection between the current set of states, and all predecessors from which we can reach one of the states in the set. By doing this, we will remove any states from which there exists some future, in which Z does not hold. We stop the iteration once nothing changes anymore (we define k to be the first index for which the set of states remains the same). Hence, we express have $Q_{k} \models \mathrm{EG} \neg Z$. What is left to do is to negate the final set (every state which is not present in Q_{k}).
(iii) We translate the procedure above directly into an algorithm:

Require: ψ_{Z}, ψ_{f}

```
\(\psi_{c u r} \leftarrow \neg \psi_{Z}\)
\(\psi_{\text {next }} \leftarrow \psi_{\text {cur }} \wedge \psi_{\text {Pre }\left(\psi_{c u r}, f\right)}\)
while \(\psi_{\text {cur }} \neq \psi_{\text {next }}\) do
    \(\psi_{\text {cur }} \leftarrow \psi_{\text {next }}\)
    \(\psi_{\text {next }} \leftarrow \psi_{\text {cur }} \wedge \psi_{\text {Pre }\left(\psi_{c u r}, f\right)}\)
end while
return \(\psi_{\mathrm{AF} Z}=\neg \psi_{\text {cur }}\)
```


3 Comparison of Finite Automata

a)

$$
\begin{aligned}
& \psi_{A}\left(x_{A}, x_{A}^{\prime}, u\right)=\neg x_{A} \neg x_{A}^{\prime} \neg u+\neg x_{A} x_{A}^{\prime} u+x_{A} x_{A}^{\prime} u+x_{A} \neg x_{A}^{\prime} \neg u \\
& \psi_{B}\left(x_{B}, x_{B}^{\prime}, u\right)=\neg x_{B} \neg x_{B}^{\prime} \neg u+\neg x_{B} x_{B}^{\prime} u+x_{B} x_{B}^{\prime} \neg u+x_{B} \neg x_{B}^{\prime} u
\end{aligned}
$$

b)

$$
\begin{aligned}
\psi_{f}\left(x_{A}, x_{A}^{\prime}, x_{B}, x_{B}^{\prime}\right) & =\left(\neg x_{A} x_{A}^{\prime}+x_{A} x_{A}^{\prime}\right) \cdot\left(\neg x_{B} x_{B}^{\prime}+x_{B} \neg x_{B}^{\prime}\right) \\
& +\left(\neg x_{A} \neg x_{A}^{\prime}+x_{A} \neg x_{A}^{\prime}\right) \cdot\left(\neg x_{B} \neg x_{B}^{\prime}+x_{B} x_{B}^{\prime}\right) \\
& =\neg x_{A} x_{A}^{\prime} \neg x_{B} x_{B}^{\prime}+\neg x_{A} x_{A}^{\prime} x_{B} \neg x_{B}^{\prime}+x_{A} x_{A}^{\prime} \neg x_{B} x_{B}^{\prime}+x_{A} x_{A}^{\prime} x_{B} \neg x_{B}^{\prime} \\
& +\neg x_{A} \neg x_{A}^{\prime} \neg x_{B} \neg x_{B}^{\prime}+\neg x_{A} \neg x_{A}^{\prime} x_{B} x_{B}^{\prime}+x_{A} \neg x_{A}^{\prime} \neg x_{B} \neg x_{B}^{\prime}+x_{A} \neg x_{A}^{\prime} x_{B} x_{B}^{\prime}
\end{aligned}
$$

c) Computation of the reachable states is performed incrementally. Starts with the initial state of the system $\psi_{X_{0}}\left(x_{A}, x_{B}\right)=\neg x_{A} x_{B}$ and then add the successors until reaching a fix-point,

$$
\begin{aligned}
\psi_{X_{1}}\left(x_{A}^{\prime}, x_{B}^{\prime}\right)= & \psi_{X_{0}}\left(x_{A}^{\prime}, x_{B}^{\prime}\right)+\left(\exists\left(x_{A}, x_{B}\right): \psi_{X_{0}}\left(x_{A}, x_{B}\right) \cdot \psi_{f}\left(x_{A}, x_{A}^{\prime}, x_{B}, x_{B}^{\prime}\right)\right) \\
& =\neg x_{A}^{\prime} x_{B}^{\prime}+\neg x_{A}^{\prime} x_{B}^{\prime}+x_{A}^{\prime} \neg x_{B}^{\prime} \\
& =\neg x_{A}^{\prime} x_{B}^{\prime}+x_{A}^{\prime} \neg x_{B}^{\prime} \\
\psi_{X_{2}}\left(x_{A}^{\prime}, x_{B}^{\prime}\right)= & \neg x_{A}^{\prime} x_{B}^{\prime}+x_{A}^{\prime} \neg x_{B}^{\prime}+x_{A}^{\prime} x_{B}^{\prime}+\neg x_{A}^{\prime} \neg x_{B}^{\prime} \\
\psi_{X_{3}}\left(x_{A}^{\prime}, x_{B}^{\prime}\right)= & \neg x_{A}^{\prime} x_{B}^{\prime}+x_{A}^{\prime} \neg x_{B}^{\prime}+x_{A}^{\prime} x_{B}^{\prime}+\neg x_{A}^{\prime} \neg x_{B}^{\prime}=\psi_{X_{2}} \quad \rightarrow \text { the fix-point is reached! }
\end{aligned}
$$

$$
\Rightarrow \quad \psi_{X}\left(x_{A}, x_{B}\right)=\neg x_{A} x_{B}+x_{A} \neg x_{B}+x_{A} x_{B}+\neg x_{A} \neg x_{B}
$$

d) Here you first need to express the output function of each automaton, that is the feasible combinations of states and outputs, $\psi_{g_{A}}=\neg x_{A} \neg y_{A}+x_{A} y_{A}$ and $\psi_{g_{B}}=\neg x_{B} y_{B}+x_{B} \neg y_{B}$. Then the reachable outputs are the combination of the reachable states and the outputs functions, that is,

$$
\begin{aligned}
\psi_{Y}\left(y_{A}, y_{B}\right)= & \left(\exists\left(x_{A}, x_{B}\right): \psi_{X} \cdot \psi_{g_{A}} \cdot \psi_{g_{B}}\right) \\
& =y_{A} y_{B}+\neg y_{A} \neg y_{B}+\neg y_{A} y_{B}+y_{A} \neg y_{B}
\end{aligned}
$$

e) From the reachable output function, we see that these automata are not equivalent. Indeed, there exists a reachable output admissible $\left(\psi_{Y}\left(\left(y_{A}, y_{B}\right)=(0,1)\right)=1\right)$ for which $y_{A} \neq y_{B}$. Another way of looking at it: $\psi_{Y} \cdot\left(y_{A} \neq y_{B}\right) \neq 0$ where $\left(y_{A} \neq y_{B}\right)=\neg y_{A} y_{B}+y_{A} \neg y_{B}$.

