
Digital Systems and Design Automation Group

HS 2022 Prof. L. Josipović / J. Xu
based on Prof. L. Thiele’s material

Discrete Event Systems
Solution to Exercise Sheet 11

1 Specifying Formal Properties Using Temporal Logic

Notation: w valid is the valid signal of the write data channel; aw valid is the valid signal of
the write address channel.

a) AG pvalidÑ AF readyq

b) AG AF preadyq

c) AG ppvalid ^␣readyq Ñ AX validq

d) AG ppvalid^␣readyq Ñ pdataØ AX dataqq



2 Temporal Logic

a) (i) Q “ t0, 1, 2, 3u

(ii) Q “ t0, 3u

(iii) (AX a) holds for t2, 3u, thus Q “ t1, 2u

(iv) (a AND EX NOT(a)) is true for states where a is true and there exists a direct successor
for which it is not. Only state 0 satisfy this (from it you can transition to 1, where a
does not hold). Moreover, state 0 is reachable for all states in this automaton (”from
all states there exists a path going through 0 at some point”). Hence Q “ t0, 1, 2, 3u

b) (i) ␣AFZ ” EG␣Z

(ii) We will first compute the function Qk |ù EG␣Z, which we can compute quite easily
(following the procedure given in the lecture), and take the negation in the end.

Q0 “ SzZ

Qi`1 “ Qi X PrepQi, fq

k “ minti | Qi`1 “ Qiu

QAF Z “ ZzQk

The main idea is that we start with the states that are not in Z. Then, at each itera-
tion, we create an intersection between the current set of states, and all predecessors
from which we can reach one of the states in the set. By doing this, we will remove
any states from which there exists some future, in which Z does not hold. We stop the
iteration once nothing changes anymore (we define k to be the first index for which
the set of states remains the same). Hence, we express have Qk |ù EG␣Z. What is
left to do is to negate the final set (every state which is not present in Qk).

(iii) We translate the procedure above directly into an algorithm:

Require: ψZ , ψf

ψcur Ð ␣ψZ
ψnext Ð ψcur ^ ψPrepψcur,fq

while ψcur ‰ ψnext do
ψcur Ð ψnext
ψnext Ð ψcur ^ ψPrepψcur,fq

end while
return ψAFZ “ ␣ψcur

2



3 Comparison of Finite Automata

a)

ψApxA, x
1
A, uq “ ␣xA␣x

1
A␣u`␣xAx

1
Au` xAx

1
Au` xA␣x

1
A␣u

ψBpxB , x
1
B , uq “ ␣xB␣x

1
B␣u`␣xBx

1
Bu` xBx

1
B␣u` xB␣x

1
Bu

b)

ψf pxA, x
1
A, xB , x

1
Bq “p␣xAx

1
A ` xAx

1
Aq ¨ p␣xBx

1
B ` xB␣x

1
Bq

`p␣xA␣x
1
A ` xA␣x

1
Aq ¨ p␣xB␣x

1
B ` xBx

1
Bq

“␣xAx
1
A␣xBx

1
B `␣xAx

1
AxB␣x

1
B ` xAx

1
A␣xBx

1
B ` xAx

1
AxB␣x

1
B

`␣xA␣x
1
A␣xB␣x

1
B `␣xA␣x

1
AxBx

1
B ` xA␣x

1
A␣xB␣x

1
B ` xA␣x

1
AxBx

1
B

c) Computation of the reachable states is performed incrementally. Starts with the initial
state of the system ψX0

pxA, xBq “ ␣xAxB and then add the successors until reaching a
fix-point,

ψX1
px1
A, x

1
Bq “ψX0

px1
A, x

1
Bq ` pDpxA, xBq : ψX0

pxA, xBq ¨ ψf pxA, x
1
A, xB , x

1
Bqq

“ ␣x1
Ax

1
B `␣x

1
Ax

1
B ` x

1
A␣x

1
B

“ ␣x1
Ax

1
B ` x

1
A␣x

1
B

ψX2
px1
A, x

1
Bq “␣x

1
Ax

1
B ` x

1
A␣x

1
B ` x

1
Ax

1
B `␣x

1
A␣x

1
B

ψX3
px1
A, x

1
Bq “␣x

1
Ax

1
B ` x

1
A␣x

1
B ` x

1
Ax

1
B `␣x

1
A␣x

1
B “ ψX2

Ñ the fix-point is reached!

ñ ψXpxA, xBq “ ␣xAxB ` xA␣xB ` xAxB `␣xA␣xB

d) Here you first need to express the output function of each automaton, that is the feasible
combinations of states and outputs, ψgA “ ␣xA␣yA` xAyA and ψgB “ ␣xByB ` xB␣yB .
Then the reachable outputs are the combination of the reachable states and the outputs
functions, that is,

ψY pyA, yBq “pDpxA, xBq : ψX ¨ ψgA ¨ ψgB q

“ yAyB `␣yA␣yB `␣yAyB ` yA␣yB

e) From the reachable output function, we see that these automata are not equivalent. Indeed,
there exists a reachable output admissible (ψY ppyA, yBq “ p0, 1qq “ 1) for which yA ‰ yB .

Another way of looking at it: ψY ¨ pyA ‰ yBq ‰ 0 where pyA ‰ yBq “ ␣yAyB ` yA␣yB .

3


