ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich Digital Systems and Design Automation Group

HS 2022 Prof. L. Josipovi¢ / J. Xu
based on Prof. L. Thiele’s material

Discrete Event Systems

Solution to Exercise Sheet 11

1 Specifying Formal Properties Using Temporal Logic

Notation: w_valid is the valid signal of the write data channel; aw_valid is the valid signal of
the write address channel.

a) AG (valid — AF ready)

b) AG AF (ready)

c) AG ((valid A —ready) — AX valid)

d) AG ((valid A —ready) — (data & AX data))



2 Temporal Logic

a)

(i)
(i)
(i)
)

(iv

(iii)

Q = {07 ]‘7 2’ 3}
Q@ =1{0,3}

(AX @) holds for {2,3}, thus Q = {1,2}

(a AND EX NOT(a)) is true for states where a is true and there exists a direct successor
for which it is not. Only state 0 satisfy this (from it you can transition to 1, where a

does not hold). Moreover, state 0 is reachable for all states in this automaton (”from
all states there exists a path going through 0 at some point”). Hence Q = {0, 1,2, 3}

—AFZ =EG—-Z

We will first compute the function Qy, = EG —Z, which we can compute quite easily
(following the procedure given in the lecture), and take the negation in the end.

Qo =S\Z
Qiv1 = Qi 0 Pre(Qy, f)
k=min{i | Qiy1 = Q:}
Qar z = Z2\Qk

The main idea is that we start with the states that are not in Z. Then, at each itera-
tion, we create an intersection between the current set of states, and all predecessors
from which we can reach one of the states in the set. By doing this, we will remove
any states from which there exists some future, in which Z does not hold. We stop the
iteration once nothing changes anymore (we define k to be the first index for which
the set of states remains the same). Hence, we express have Qj = EG —Z. What is
left to do is to negate the final set (every state which is not present in Q).

We translate the procedure above directly into an algorithm:
Require: 9z, ¢y

wcur <~ ﬂﬁz
wnezt h wcur A wpre(wcurvf)
While '(/)cur #* q//negct dO

wcur <~ ¢nezt

wnezt <~ wcu’f‘ A ¢P7'6(wcur7f)
end while

return wAFZ = "wcur



3 Comparison of Finite Automata

a)

a(za, 'y, u) = ~wa—2'y—u+ —za2yu + TAZ WU+ TA—T U

/ / ! / /
Yp(rp,th,u) = ~xp—ap—u+ —xprmu+ xpry—u + rp—a’pu
b)

/ / /! / /! /
Yi(xa, 2y, xp,25) =(-xax’y + xa2)y) - (—xprs + 2—2R)
/ !/ !/ !
+(—xa—a'y + xa—2Yy) - (—xp—2y + xprp)
== AT 2T + T AT 22 + v a2 A + v AT 32

/ / / / / / / /
+TXATXP TR AR + TTATLATBTR T TATT 4TI Ty + TATT AT BT

¢) Computation of the reachable states is performed incrementally. Starts with the initial
state of the system 9x,(z4,2p) = ~zazp and then add the successors until reaching a
fix-point,

¢X1(xi47x/3) :on(x/AvxlB) + (a(anxB) : on(xAva) . "/}f(xAvx;be’xlB))
’ ! !/ ! ! !
=TT TR + TT TR + T, TR
= —ayo'ly + 2yl
Ux, (2!, 2y) ==yl + 2y —aly + 242y + -2yl

Yx, (@4, a'5) =242’y + 'y —a'y + 242’y + 2!y —2’s = ¥x, — the fix-point is reached!

= ‘1/)X(33AaxB) = TTATB + TATTB + XTATB + TXATTB

d) Here you first need to express the output function of each automaton, that is the feasible
combinations of states and outputs, ¥y, = ~Ta—ya +2aya and ¥y, = ~TRYB +TBYB.
Then the reachable outputs are the combination of the reachable states and the outputs
functions, that is,

Yy (ya,yp) =3(xa,2B) : ¥x g, - Vgy)
=YAYB + ~Ya—"YB + "YAYB + YA—YB

e) From the reachable output function, we see that these automata are not equivalent. Indeed,
there exists a reachable output admissible (¥y ((ya,ys) = (0,1)) = 1) for which y4 # yp.

Another way of looking at it: ¥y - (ya # yp) # 0 where (y4 # yp) = ~YAYB + Ya—YB.



