
Digital Systems and Design Automation Group

HS 2022 Prof. L. Josipović / J. Xu
based on Prof. L. Thiele’s material

Discrete Event Systems
Solution to Exercise Sheet 10

1 Sets Representation

1.1 Warm-up

a) ψX = 1

b) N ∪ E = X ⇔ ψN + ψE = 1

c) N ∩ O = ∅ ⇔ ψN · ψO = 0

d) Q1 = E\O ⇔ ψQ1
= ψE · ψO

e) Q2 = (O ∩ E) ∪O = (O ∪O) ∩ (E ∪O)
= X ∩ (E ∪O)
= E ∪O

⇔ ψQ2
= ψE + ψO

1.2 Specification Composition

a) The specification for C1, C2 and C3 are the following:

C1 ψC1 = (x1 + x2 + x3)→ xs

ψC1 = (x1 + x2 + x3)xs + x1 · x2 · x3 = xs + x1 · x2 · x3
C2 ψC2 = x1 · x2 · x3 + x1 · x2 · x3 + x1 · x2 · x3 + x1 · x2 · x3
C3 ψC3 = xb → (xs · x1 · x2 · x3)

ψC3 = xb · xs · x1 · x2 · x3 + xb = xs · x1 · x2 · x3 + xb

b) The specification consists in satisfying all constraints at all times:

ψN = ψC1 · ψC2 · ψC3

2

2 Binary Decision Diagrams

2.1 Verification using BDDs

a) f2 : y = x1 + x2 + x3 + x1 + x2 + x3 + x1 + x2 + x3

b) for f1, we have

• case x1 = 0:
y|x1=0 = x2x3 + x2x3

– case x2 = 0:
y|x1=0,x2=0 = x3

– case x2 = 1:
y|x1=0,x2=1 = x3

• case x1 = 1:
y|x1=1 = x2 + x3 + x2x3

– case x2 = 0:
y|x1=1,x2=0 = 1

– case x2 = 1:
y|x1=1,x2=1 = x3

for f2, we have

• case x1 = 0:
y|x1=0 = x2 + x3 + x2 + x3

– case x2 = 0:
y|x1=0,x2=0 = x3 + 1 + x3 = x3

– case x2 = 1:
y|x1=0,x2=1 = 1 + x3 = x3

• case x1 = 1:
y|x1=1 = 1 + 1 + x2 + x3 = x2 + x3

– case x2 = 0:
y|x1=1,x2=0 = 1

– case x2 = 1:
y|x1=1,x2=1 = x3

The two ROBDDs have identical falls, therefore they are equivalent.

3

2.2 BDDs with Respect to Different Orderings

a) g = x1

{
x2
[
y1(y2)+y1(0)

]
+x2[y1(y2)+y1(0)]

}
+x1

{
x2
[
y1(0)+y1(y2)

]
+x2

[
y1(0)+y1(y2)

]}
b) The ROBDD for g is the following:

c) Using the new ordering π′, the Boole-Shannon decomposition becomes

g = x1

{
y1
[
x2(y2) + x2(y2)

]
+ y1[0]

}
+ x1

{
y1[0] + y1

[
x2(y2) + x2(y2)

]}
.

This is a better ordering as it leads to a ROBDD with fewer nodes with respect to π (6
instead of 9).

4

3 Inductive Invariant

Let us consider a finite automation M(Q, δ, q0, p), where Q is the set of states, δ is the transition
relation, q0 is the initial state, p : Q×{1, 0} is the output function, which maps a state to either
good (1) or bad (0). We are interested in checking whether all reachable states are in ”good
state”.

a) Consider our automation satisfies the following properties:

p(q0) := 1. (1)

∀ q, q′ ∈ Q, p(q) ∧ ψδ(q, q′)→ p(q′). (2)

Please show that, all reachable states are in ”good state”.

b) Does this hold vice versa? Consider that our automation has all its reachable states being
”good states”, can we use this to prove the above two properties? If not, try to sketch a
counter example.

Solution

a) Intuition for the proof:

(1) The system always starts with a ”good state”.

(2) The system always moves from a ”good state” to a ”good state”.

Formally speaking: We prove by induction
Base step: All states in Q0 are good states

∀q ∈ Q0 : p(q) = 1. (3)

Induction step: Assume that all states in Qi are good states, show that all states in
Qi+1 are good states.
From assumption, we have all states in Qi are good states:

∀q ∈ Qi : p(q) = 1. (4)

Using the transition relation (Qi+1 := {q′ : ∃ q, ψQi
(q) ∧ ψδ(q, q′)}), we can get

∀q′ ∈ Qi+1 : ∃q ∈ Qi, p(q) ∧ ψδ(q, q
′). (5)

Using Eq. 2, we get all the states in Qi+1 are good states.

∀q′ ∈ Qi+1 : p(q′) = 1. (6)

By induction, we can conclude that ∀i,∀q ∈ Qi, p(q) = 1. Since computation of the set
of states Qi eventually will reach fix-point, then we conclude that all reachable states
are ”good states”..

b) Vice-versa is not true.

A property that holds in all reachable states is called an invariant property (sometime also
referred to as a ”safety property”). A straightforward way of proving invariant property
is simply by performing reachability analysis. An invariant that holds these properties is
called an inductive invariant. Proving the inductive hypotheses is much cheaper than the
complete reachability analysis, i.e., it only requires to check the labels of the set of initial
states, and the transition relation. This trick often fails to prove a correct property (i.e.,
it reports false negative) in practice due to a phenomenon called induction leaking.

5

To illustrate this, consider a software program as the following:

i ∈ Z (7)

init : i← 2 (8)

next : i← 2i− 2 (9)

From here we can infer an invariant property (i.e. it holds in all reachable states of the

i = 2

i = 1

i = -1

"good"

property: i > 0
init: i := 2
trans: i := 2i - 2

"bad"

init

Reachable
States

i = -4

Unreachable
States

"bad"Induction Steps:

(1) Initial state is good

(2) Always move from good to good

"good"

program) that i is always greater than 0. This property, however, is not an inductive
invariant: if we plug in i = 1, then the value of i in the next state would be 0, which fails
the induction hypothesis (transition from a ”good state” to a ”bad state”).

6

