
Networked Systems Group (NSG)

HS 2022 Prof. L. Vanbever / R. Schmid
based on Prof. R. Wattenhofer’s material

Discrete Event Systems
Exercise Sheet 3

1 From DFA to Regular Expression

First generate the GNFA:

1

2

3s

e

ε

ε

a

b

b a ∪ b
a

Then begin by ripping out any node. We start by removing node 2:

1 3s

e

ε

b(a ∪ b)

a

b ∪ a(a ∪ b)

b

a

Then, we remove node 3:

1s

e

ε

b(a ∪ b) ∪ a(b ∪ a(a ∪ b))

b ∪ aa

Finally, we remove node 1 and derive the corresponding regular expression:

s e
(b(a ∪ b) ∪ a(b ∪ a(a ∪ b)))∗(b ∪ aa)

Note that we could have ripped out states in any particular order. However, some orders lead to
smaller results than others:

1-2-3:
(
b((a ∪ b)b)∗︸ ︷︷ ︸

s→t

)
∪
((
a ∪ (b((a ∪ b)b)∗(a ∪ b)a)︸ ︷︷ ︸

s→(3)

)(
ba ∪ (a((a ∪ b)b)∗(a ∪ b)a)︸ ︷︷ ︸

loop at (3)

)∗(
a((a ∪ b)b)∗︸ ︷︷ ︸

(3)→t

))

1-3-2:
(
∅︸︷︷︸

s→t

)
∪
(
b ∪ (a(ba)∗(a ∪ bb))︸ ︷︷ ︸

s→(2)

)(
(a ∪ b)b ∪ (a ∪ b)a(ba)∗(a ∪ bb)︸ ︷︷ ︸

loop at (2)

)∗(
ε︸︷︷︸

(2)→t

)
2-1-3:

(
(b(a ∪ b))∗b︸ ︷︷ ︸

s→t

)
∪
(

(b(a ∪ b))∗a︸ ︷︷ ︸
s→(3)

)(
(b ∪ a(a ∪ b))(b(a ∪ b))∗a︸ ︷︷ ︸

loop at (3)

)∗(
(a ∪ (b ∪ a(a ∪ b)))(b(a ∪ b))∗b︸ ︷︷ ︸

(3)→t

)
2-3-1:

(
∅︸︷︷︸

s→t

)
∪
(

ε︸︷︷︸
s→(1)

)(
b(a ∪ b) ∪ a(b ∪ a(a ∪ b))︸ ︷︷ ︸

loop at (1)

)∗(
b ∪ aa︸ ︷︷ ︸
(1)→t

)
3-1-2:

(
∅︸︷︷︸

s→t

)
∪
(

(ab)∗(b ∪ aa)︸ ︷︷ ︸
s→(2)

)(
(a ∪ b)(ab)∗(b ∪ aa)︸ ︷︷ ︸

loop at (2)

)∗(
ε︸︷︷︸

(2)→t

)
3-2-1:

(
∅︸︷︷︸

s→t

)
∪
(

ε︸︷︷︸
s→(1)

)(
ab ∪ (b ∪ aa)(a ∪ b)︸ ︷︷ ︸

loop at (1)

)∗(
b ∪ aa︸ ︷︷ ︸
(1)→t

)
Hint: The annotations indicate where each of these subformulas can be found in the last step.
Generally, it is a good idea to start ripping out states based on their in-degree multiplied with
their out-degree, as this is the amount of edges they will affect. One can count loops as both in-
and outgoing edges because they complicate the resulting formulas as well.

2 Transforming Automata [Exam HS14]

The regular expression can be obtained from the finite automaton using the transformation
presented in the script. After ripping out state q2, the corresponding GNFA looks like this:

s q1 q3 a
ε

1

01∗0

ε

11∗0

0

After also removing state q1, the GNFA looks as follows.

s q3 a
(01∗0)∗1 ε

0 ∪ 11∗0(01∗0)∗1

Eliminating the last state q3 yields the final solution, which is (01∗0)∗1(0 ∪ 11∗0(01∗0)∗1)∗.

Note: Ripping out the interior states in a different order yields a distinct yet equivalent regular
expression. The order q3, q2, q1, for example, results in ((0 ∪ 10∗1)1∗0)∗10∗.

2

3 Pumping Lemma

The Pumping Lemma in a Nutshell

Given a language L, assume for contradiction that L is regular and has the pumping length
p. Construct a suitable word w ∈ L with |w| ≥ p (“there exists w ∈ L”) and show that for
all divisions of w into three parts, w = xyz, with |x| ≥ 0, |y| ≥ 1, and |xy| ≤ p, there exists
a pumping exponent i ≥ 0 such that w′ = xyiz /∈ L. If this is the case, L is not regular.

a) We claim that L1 is not regular and prove our claim with the pumping lemma recipe:

1. Assume for contradiction that L1 was regular.

2. There must exist some p, s.t. any word w ∈ L1 with |w| ≥ p is pumpable.

3. Choose the string w = 1p02p ∈ L1 with length |w| > p.

4. Consider all ways to split w = xyz s.t. |xy| ≤ p and |y| ≥ 1.
→ Hence, y ∈ 1+.

5. Observe that xy0z /∈ L1 – a contradiction to p being a valid pumping length.

6. Consequently, L1 cannot be regular.

b) Language L2 can be shown to be non-regular using the pumping lemma. We will showcase
how this might look without using the recipe presented above:
Assume for contradiction that L2 is regular and let p be the corresponding pumping length.
Choose w to be the word 0110p1p. Because w is an element of L2 and has length more than
p, the pumping lemma guarantees that w can be split into three parts, w = xyz, where
|xy| ≤ p and for any i ≥ 0, we have xyiz ∈ L2. In order to obtain the contradiction, we
must prove that for every possible partition into three parts w = xyz where |xy| ≤ p, the
word w cannot be pumped. We therefore consider the various cases.

(1) If y starts anywhere within the first three symbols (i.e. 011) of w, deleting y (pumping
with i = 0) creates a word with an illegal prefix (e.g. 1 0p 1p for y = 01).

(2) If y consists of only 0s from the second block, the word w′ = xy2z has more 0s than
1s in the last |w′| − 3 symbols and hence c 6= d.

Note that y cannot contain 1s from the second block because of the requirement |xy| ≤ p.
We have shown that for all possible divisions of w into three parts, the pumped word is
not in L2. Therefore, L2 cannot be regular and we have a contradiction.

Be Careful!

The argumentation above is based on the closure properties of regular languages and only
works in the direction presented. That is, for an operator � ∈ {∪,∩, •}, we have:

If L1 and L2 are regular, then L = L1 � L2 is also regular.

If either L1 or L2 or both are non-regular, we cannot deduce the non-regularity of L or
vice-versa. Moreover, L being regular does not imply that L1 and L2 are regular as well.
This may sound counter-intuitive which is why we give examples for the three operators.

• L = L1 ∪ L2: Let L1 be any non-regular language and L2 its complement. Then
L = Σ∗ is regular.

• L = L1∩L2: Let L1 be any non-regular language and L2 its complement. Then L = ∅
is regular.

• L = L1 • L2: Let L1 = {a∗} (a regular language) and L2 = {ap | p is prime} (a
non-regular language) then L = {aaa∗} is regular.

Hence, to prove that a language Lx is non-regular, you assume it to be regular for contra-
diction. Then you combine it with a regular language Lr to obtain a language L = Lx �Lr.
If L is non-regular, Lx could not have been regular either.

3

4 Pumping Lemma Revisited

a) Let us assume that L is regular and show that this results in a contradiction.

We have seen that any regular language fulfills the pumping lemma. This means, there
exists a number p, such that every word w ∈ L with |w| ≥ p can be written as w = xyz
with |xy| ≤ p and |y| ≥ 1, such that xyiz ∈ L for all i ≥ 0.

In order to obtain the contradiction, we need to find at least one word w ∈ L with |w| ≥ p
that does not adhere to the above proposition. We choose w = xyz = 1p

2

and consider the
case i = 2 for which the Pumping Lemma claims w′ = xy2z ∈ L.

We can relate the lengths of w = xyz and w′ = xy2z as follows.

p2 = |w| = |xyz| < |w′| = |xy2z| ≤ p2 + p < p2 + 2p+ 1 = (p+ 1)2

So we have p2 < |w′| < (p + 1)2 which implies that |w′| cannot be a square number since
it lies between two consecutive square numbers. Hence, w′ /∈ L and L cannot be regular.

b) Consider the alphabet Σ = {a1, a2, ..., an} and the language L = ∪ni=1a
∗
i = a∗1∪a∗2∪· · ·∪a∗n.

In other words, each word of the language L contains an arbitrary number of just one
symbol ai. The language is regular, as it is the union of regular languages, and the smallest
possible pumping number p for L is 1. But any DFA needs at least n+ 2 states to accept
the empty word, distinguish the n different characters of the alphabet, and for a failing
state. Thus, for a DFA, we cannot deduce any information from p about the minimum
number of states. The same argument holds for an NFA.

5 Minimum Pumping Length

To begin with, observe that the minimum pumping length p of a language L = L1∪L2 is at most
p ≤ max{p1, p2}, where p1 and p2 are the minimum pumping lengths of L1 and L2, respectively.
This holds because if there is already a string w that is pumpable in L1, then w will also be
pumpable in L. Hence, let L1 = 1∗0+1+0∗ and L2 = 111+0+.

• The minimum pumping length of L2 cannot be 4 because 1110 cannot be pumped. Now
consider the string s that belongs to L2 and that has a size of 5. If s = 11110, then it
can be divided into xyz where x = 111, y = 1 and z = 0 and thus can be pumped. If
s = 11100, then it can be divided into xyz where x = 111, y = 0 and z = 0 and thus can
be pumped. Similarly, all longer words can be pumped. The minimum pumping length for
L2 is thus 5.

• A string s of size 3 and belonging to L1 can always be pumped.

Considering the word 1110, observe that it can also not be pumped in L = L1∪L2. In conclusion,
the minimum pumping length of L is 5.

6 The art of being regular

We use the pumping lemma to show that L is not regular. To begin with, consider the equivalent
language L = {a#b | a = 2b} and assume (for a contradiction) that L is regular. Hence,
the pumping lemma holds and there is some valid pumping number p. We choose the string
w = 100p#10p where a = 100p is equal to 2b (b = 10p) for p ≥ 0. Since |w| > p, we know that
w must be pumpable for some split w = xyz. Following |xy| ≤ p, we must consider two cases:

a) x = ε, y ∈ 10∗: Arithmetic is wrong for xy0z. Left side is 0 but the right side isn’t.

b) x ∈ 10∗, y ∈ 0+: Arithmetic is wrong for xy0z. Decreased left side but not right. In
particular, it is no longer the case that a > b (required since b 6= 0).

Hence, we conclude that the pumping lemma does not hold for the language L, which can thus
not be regular.

4

Bonus tasks: – solutions provided by student Angéline Pouget in HS20

• Determine whether L = {x#y | x+ y = 3y} is context-free.

To begin with, we observe that

L = {x#y | x+ y = 3y}
= {x#y | x = 2y}
= {w0#w | w ∈ 1(0 ∪ 1)∗}.

We prove that L = {w0#w | w ∈ 1(0 ∪ 1)∗} is not context-free using the tandem-pumping
lemma. First, we assume for contradiction that L is context-free and hence there is a
number p such that any string in L of length ≥ p is tandem-pumpable within a substring
of length p. We choose w = 1p0p and thereby consider the word α = w0#w = 1p0p0#1p0p

with |α| ≥ p.

We now want to split α = uvxyz with |vy| ≥ 1, |vxy| ≤ p and uvixyiz ∈ L for all i ≥ 0.
Because we have |vxy| ≤ p, there are the following options:

– # /∈ vxy (vxy = 1m or vxy = 0m with 1 ≤ m ≤ p or vxy = 1n0s with n + s ≤ p).
Any one of these sequences can either be before or after the # but independent of this
choice, if we pump v and y and choose for example i = 0, we will have α′ = w′0#w′′

with w′ 6= w and hence α′ /∈ L.

– # ∈ vxy. In this case, we can choose x = # because we know that there is only one
and therefore this cannot be the pumpable part. This leaves us with v = 0n and
y = 1s with 1 ≤ n + s ≤ p − 1 and if we for example set i = 0 this leaves us with
α′ = 1p0p+1−n#1p−s0p which is /∈ L.

Because we have now considered all possible splits of this word into α = uvxyz, we can
safely say that language L is not context-free.

• Show whether L′ = {x#y | x+ reverse(y) = 3 · reverse(y)} is context-free.
The reverse()-function takes an integer as a bitstring and reverses the order of its bits.

Let w′ = reverse(w). Applying the same transformations as above, we obtain

L′ = {x#y | x = 2 · reverse(y)} = {w0#w′ | w ∈ 1(0 ∪ 1)∗}.

We can show that this language is context-free by drawing a push-down automaton that
accepts this language. This automaton is depicted below with “>” representing stack
operations “→”.

We could have alternatively shown that the language is context-free by providing a context
free grammar (V,Σ, R, S) such as the following:

– V = {S}

5

– Σ = {0, 1,#}
– R : S → 1S1 | 0S0 | 0#

– S = S

6

