ETH

Eidgendssische Technische Hochschule Ziirich

Swiss Federal Institute of Technology Zurich Networked Systems Group (NSG)

HS 2022 Prof. L. Vanbever / R. Schmid
based on Prof. R. Wattenhofer’s material

Discrete Event Systems
Exercise Sheet 3

1 From DFA to Regular Expression
First generate the GNFA:
b

€
a
b alUb
a
€

Then begin by ripping out any node. We start by removing node 2:
b(aUb)

bUa(aUb)
6
— : I
b

—

©

O

Then, we remove node 3:

blaUb)Ua(bUa(aUb))

|

@5?

Finally, we remove node 1 and derive the corresponding regular expression:

|

@ (b(aUb)Ua(bUa(aUb)))*(bU aa) @

Note that we could have ripped out states in any particular order. However, some orders lead to
smaller results than others:

1-2-3: (b((aUDb)b)*)U((a U (b((aUb)b)*(aUb)a))(baU (a((aUb)b)*(aU b)a))* (a((aUb)b)*))

s—t s—(3) loop at (3) (3)—t

1-3-2: (&)U(bU(a(ba)*(anb)))((an)bU(an)a(ba)*(anb))*(\sf/)

st 5—(2) loop at (2) (2)—t

2-1-3: ((b(aUb))*b)U((blaUb))*a)((bUalaUb))(blaU b))*a)*((a U(bUa(aUb)))(b(aUb))*d)

s—t s—(3) loop at (3) (3)—t
2-3-1: (\()L/)U(\i/)(b(aub)Ua(bUa(an)))*(bUaa)
s—t s—(1) loop at (1) 1)t
3-1-2: (&)U((ab)*(bUaa))((an)(ab)*(bUaa))*(\5—:/)
s s—(2) loop at (2) (2)—t
3-2-1: (&)U(\5//)(abU(bUaa)(an))*(bUaa)

s—t s—(1) loop at (1) (1)—t

Hint: The annotations indicate where each of these subformulas can be found in the last step.
Generally, it is a good idea to start ripping out states based on their in-degree multiplied with
their out-degree, as this is the amount of edges they will affect. One can count loops as both in-
and outgoing edges because they complicate the resulting formulas as well.

2 Transforming Automata [Exam HS14|

The regular expression can be obtained from the finite automaton using the transformation
presented in the script. After ripping out state g2, the corresponding GNFA looks like this:

01*0 0
1
~(O (T
11*0

After also removing state g1, the GNFA looks as follows.

0uU11*0(01*0)*

Tor=u

Eliminating the last state g5 yields the final solution, which is (01*0)*1(0 U 11*0(01*0)*1)*.

Note: Ripping out the interior states in a different order yields a distinct yet equivalent regular
expression. The order g3, g2, g1, for example, results in ((0 U 10*1)1*0)*10*.

3 Pumping Lemma

The Pumping Lemma in a Nutshell

Given a language L, assume for contradiction that L is regular and has the pumping length
p. Construct a suitable word w € L with |w| > p (“there exists w € L”) and show that for
all divisions of w into three parts, w = xyz, with |z| > 0, |y| > 1, and |zy| < p, there exists
a pumping exponent i > 0 such that w’ = zy’z ¢ L. If this is the case, L is not regular.

a) We claim that L; is not regular and prove our claim with the pumping lemma recipe:

Assume for contradiction that L; was regular.

There must exist some p, s.t. any word w € L; with |w| > p is pumpable.
Choose the string w = 1702 € Ly with length |w| > p.

Consider all ways to split w = zyz s.t. |zy| < p and |y| > 1.

— Hence, y € 17,

- W

5. Observe that 24°z ¢ L; — a contradiction to p being a valid pumping length.
6. Consequently, L1 cannot be regular.

b) Language Lo can be shown to be non-regular using the pumping lemma. We will showcase
how this might look without using the recipe presented above:
Assume for contradiction that Lo is regular and let p be the corresponding pumping length.
Choose w to be the word 0110P1P. Because w is an element of Ly and has length more than
p, the pumping lemma guarantees that w can be split into three parts, w = zyz, where
lzy| < p and for any i > 0, we have xy’z € Ly. In order to obtain the contradiction, we
must prove that for every possible partition into three parts w = zyz where |zy| < p, the
word w cannot be pumped. We therefore consider the various cases.

(1) If y starts anywhere within the first three symbols (i.e. 011) of w, deleting y (pumping
with ¢ = 0) creates a word with an illegal prefix (e.g. 107 1P for y = 01).

(2) If y consists of only Os from the second block, the word w’ = zy?2 has more Os than
1s in the last |w’| — 3 symbols and hence ¢ # d.
Note that y cannot contain 1s from the second block because of the requirement |zy| < p.

We have shown that for all possible divisions of w into three parts, the pumped word is
not in Lo. Therefore, Lo cannot be regular and we have a contradiction.

Be Careful!

The argumentation above is based on the closure properties of regular languages and only
works in the direction presented. That is, for an operator ¢ € {U,N, e}, we have:

If L and Lo are regular, then L = L ¢ Lo is also regular.

If either Li or Ly or both are non-regular, we cannot deduce the non-regularity of L or
vice-versa. Moreover, L being regular does not imply that L; and Ly are regular as well.
This may sound counter-intuitive which is why we give examples for the three operators.

e . = Ly U Ly: Let L; be any non-regular language and Lo its complement. Then
L = ¥* is regular.

e I =L1NLy: Let Ly be any non-regular language and Lo its complement. Then L = ()
is regular.
e L = L; e Ly Let L1 = {a*} (a regular language) and Ly = {a? | p is prime} (a
non-regular language) then L = {aaa*} is regular.
Hence, to prove that a language L, is non-regular, you assume it to be regular for contra-

diction. Then you combine it with a regular language L, to obtain a language L = L, ¢ L.
If L is non-regular, L, could not have been regular either.

4 Pumping Lemma Revisited

a) Let us assume that L is regular and show that this results in a contradiction.

We have seen that any regular language fulfills the pumping lemma. This means, there
exists a number p, such that every word w € L with |w| > p can be written as w = zyz
with |zy| < p and |y| > 1, such that zy*z € L for all ¢ > 0.

In order to obtain the contradiction, we need to find at least one word w € L with |w| > p
that does not adhere to the above proposition. We choose w = zyz = 17” and consider the
case i = 2 for which the Pumping Lemma claims w’ = xy%z € L.

We can relate the lengths of w = xyz and w’ = xy?z as follows.

P’ = lwl = |oyz| < Jw'| = |ay?e| <p* +p<p’+2p+1=(p+1)°
So we have p? < |w'| < (p + 1)? which implies that |w’| cannot be a square number since
it lies between two consecutive square numbers. Hence, w’ ¢ L and L cannot be regular.

b) Consider the alphabet ¥ = {a1, ag, ..., a,, } and the language L = U af = ajUalU---Ua}.
In other words, each word of the language L contains an arbitrary number of just one
symbol a;. The language is regular, as it is the union of regular languages, and the smallest
possible pumping number p for L is 1. But any DFA needs at least n + 2 states to accept
the empty word, distinguish the n different characters of the alphabet, and for a failing
state. Thus, for a DFA, we cannot deduce any information from p about the minimum
number of states. The same argument holds for an NFA.

5 Minimum Pumping Length

To begin with, observe that the minimum pumping length p of a language L = L1 U Lo is at most
p < max{p1,p2}, where p; and ps are the minimum pumping lengths of L; and Lo, respectively.
This holds because if there is already a string w that is pumpable in L, then w will also be
pumpable in L. Hence, let L; = 1*0t170* and L, = 111107

e The minimum pumping length of Lo cannot be 4 because 1110 cannot be pumped. Now
consider the string s that belongs to Lo and that has a size of 5. If s = 11110, then it
can be divided into zyz where z = 111, y = 1 and z = 0 and thus can be pumped. If
s = 11100, then it can be divided into xyz where x = 111, y = 0 and z = 0 and thus can
be pumped. Similarly, all longer words can be pumped. The minimum pumping length for
L2 is thus 5.

e A string s of size 3 and belonging to L1 can always be pumped.

Considering the word 1110, observe that it can also not be pumped in L = L; UL5. In conclusion,
the minimum pumping length of L is 5.

6 The art of being regular

We use the pumping lemma to show that L is not regular. To begin with, consider the equivalent
language L = {a#b | a = 2b} and assume (for a contradiction) that L is regular. Hence,
the pumping lemma holds and there is some valid pumping number p. We choose the string
w = 100P#10P where a = 1007 is equal to 2b (b = 10P) for p > 0. Since |w| > p, we know that
w must be pumpable for some split w = zyz. Following |zy| < p, we must consider two cases:

a) z =¢, y € 10*: Arithmetic is wrong for 2y"z. Left side is 0 but the right side isn’t.

b) z € 10*, y € 0": Arithmetic is wrong for xy°z. Decreased left side but not right. In
particular, it is no longer the case that a > b (required since b # 0).

Hence, we conclude that the pumping lemma does not hold for the language L, which can thus
not be regular.

Bonus tasks: — solutions provided by student Angéline Pouget in HS20

e Determine whether L = {x#ty | +y = 3y} is context-free.

To begin with, we observe that

L=A{a#y|z+y=3y}
={a#y |z =2y}
={wl#w |w e 1(0U1)*}.

We prove that L = {w0#w | w € 1(0U1)*} is not context-free using the tandem-pumping
lemma. First, we assume for contradiction that L is context-free and hence there is a
number p such that any string in L of length > p is tandem-pumpable within a substring
of length p. We choose w = 1P0P and thereby consider the word a = w0#w = 1PQP0#1P0P
with |a| > p.

We now want to split @ = uvryz with |vy| > 1, |[vry| < p and wvlzy’z € L for all i > 0.
Because we have |vzy| < p, there are the following options:

— # ¢ vy (vey = 1™ or vay = 0™ with 1 < m < p or vy = 1"0° with n + s < p).
Any one of these sequences can either be before or after the # but independent of this

choice, if we pump v and y and choose for example ¢ = 0, we will have o = w'0#w”
with w’ # w and hence o/ ¢ L.

— # € vzxy. In this case, we can choose x = # because we know that there is only one
and therefore this cannot be the pumpable part. This leaves us with v = 0™ and
y=1°with 1 <n+s < p-—1 and if we for example set i = 0 this leaves us with
o' = 1POPHLI=741P=50P which is ¢ L.

Because we have now considered all possible splits of this word into @ = uvzyz, we can
safely say that language L is not context-free.

o Show whether L' = {x#ty | x + reverse(y) = 3 - reverse(y)} is context-free.
The reverse()-function takes an integer as a bitstring and reverses the order of its bits.

Let w’ = reverse(w). Applying the same transformations as above, we obtain
L' ={afty | x =2 reverse(y)} = {w0#w' | w € 1(0U1)*}.

We can show that this language is context-free by drawing a push-down automaton that
accepts this language. This automaton is depicted below with “>” representing stack
operations “—”.

We could have alternatively shown that the language is context-free by providing a context
free grammar (V, 3, R, S) such as the following:

-V ={5)

- E:{Oal,#}
~ R: S 181|080 04
~S5=5

