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Introduction

Computation is everywhere, but what is computation really? In this lecture we
will discuss the power and limitations of computation.

Understanding computation lies at the heart of many exciting scientific and
social developments. Computational thinking is more than programming a com-
puter – rather it is thinking in abstractions. Consequently, computational think-
ing has become a fundamental skill for everyone, not just computer scientists.
For example, designing an electronic circuit relates directly to computation.
Mathematical functions which can easily be computed but not inverted are at
the heart of understanding data security and privacy. Machine learning on the
other hand has given us fascinating new tools to teach machines how to learn
function parameters. Thanks to clever heuristics, machines now appear to be
capable of solving complex cognitive tasks. In this class, we study all these and
more problems together with the fundamental theory of computation.

While computation is predominantly an engineering discipline, some of our
insights are going to be philosophical. One may even claim that this class is
going to discuss all major connections between computation and philosophy.

The weekly lectures will be based on blackboard discussions and program-
ming demos, supported by a script and coding examples. The course uses
Python as a programming language. Python is popular and intuitive, a pro- → notebook

gramming language that looks and feels like human instructions. The lecture
will feature weekly exercises, paper and Python.

Have fun!

1
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Chapter 1

Algorithms

The term “computer” used to be a job description for a person doing the same
tedious computations over and over, hopefully without error. When electrical
computers became available, these human computers often transitioned to be-
come computer programmers. Instead of doing the computations themselves,
they told the computer what to do.

Definition 1.1 (Algorithm). An algorithm is a sequence of computational
instructions that solves a class of problems. Often the algorithm computes an
output for a given input, i.e., a mathematical function.

Remarks:

• While the number of algorithms is theoretically unlimited, surprisingly
many problems can be solved with just a few algorithmic paradigms
that we will review in this chapter. A simple yet powerful algorithmic
concept is recursion. Let us start with an example.

1.1 Recursion

You have won an all-you-can-carry run through an electronics store. The rules
are simple: Whatever you manage to carry, you can have for free. Being well-
prepared you bring a high-capacity backpack to the event. Which items should
you put into your backpack such that you can carry the maximum possible value
out of the store?

Problem 1.2 (Knapsack). An item is an object that has a name, a weight and → notebook

a value. Given a list of items and a knapsack with a weight capacity, what
is the maximal value that can be packed into the knapsack?

Remarks:

• An algorithm solving Knapsack computes a function; the inputs of
this function are the set of possible items and the capacity limit of
the knapsack, the output is the maximal possible value.

• A simple way to solve Knapsack is to check for every item whether it
should be packed into the knapsack or not, expressed as the following
recursion:

2
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1.1. RECURSION 3

→ notebook
1 def knapsack(items, capacity):

2 if len(items) == 0:

3 return 0

4 first, *rest = items

5 take = 0

6 if first.weight <= capacity:

7 take = knapsack(rest, capacity-first.weight) + first.value

8 skip = knapsack(rest, capacity)

9 return max(take, skip)

Algorithm 1.3: A recursive solution to Knapsack.

Remarks:

• Algorithm 1.3 may look like pseudo-code, but really is correct Python.

• In Lines 7 and 8, the algorithm calls itself. This is called a recursion.

Definition 1.4 (Recursion). An algorithm that splits up a problem into sub-
problems and invokes itself on the sub-problem is called a recursive algorithm.
A recursion ends when reaching a simple base case that can be solved directly.
Also, see Definition 1.4.

Remarks:

• In mathematics, we find a similar structure in some prominent induc-
tive functions such as the Fibonacci function.

• Recursive algorithms are often easy to comprehend, but not necessar-
ily fast.

• How can we measure “fast”?

Definition 1.5 (Time Complexity). The time complexity of an algorithm is
the number of basic arithmetic operations (+, −, ×, ÷, etc.) performed by the
algorithm with respect to the size n of the given input.

Remarks:

• Each variable assignment, if statement, iteration of a for loop, com-
parison (==, <, >, etc.) or return statement also counts as one
basic arithmetic operation, and so do function calls (len(), max(),
knapsack()).

• Unfortunately, there is no agreement on how the size of the input
should be measured. Often the input size n is the number of input
items. If input items get large themselves (e.g., the input may be a
single but huge number), n refers to the number of bits needed to
represent the input.

https://colab.research.google.com/drive/1VFJIe3Bx_H45ZiSWQdg9divsRzhkpZ9-#scrollTo=Pw6vu8x3RaPY&line=3&uniqifier=1


4 CHAPTER 1. ALGORITHMS

• We are usually satisfied if we know an approximate and asymptotic
time complexity. The time complexity should be a simple function
of n, just expressing the biggest term as n goes to infinity, ignor-
ing constant factors. Such an asymptotic time complexity can be
expressed by the “big O” notation.

Definition 1.6 (O-notation). The O-notation is used to denote a set of func-
tions with similar asymptotic growth. More precisely,

O(f(n)) =

{
g(n)

∣∣∣∣ lim
n→∞

g(n)

f(n)
<∞

}
.

Remarks:

• In other words, O(f(n)) is the set of functions g(n) that asymptoti-
cally do not grow much faster than f(n).

• For example, O(1) includes all constants and O(n) means “linear in
the input size n”.

• In other words, the O-notation is quite crude, but nevertheless useful,
both in theory and practice.

• Other useful asymptotic notations are Ω() for lower bounds, but also
o(), ω(), Θ(), etc.

Lemma 1.7. The time complexity of Algorithm 1.3 is O(2n).

Proof. Each call of the knapsack()-procedure performs constantly many ba-
sic arithmetic operations itself and makes (at most) two additional calls to
the knapsack()-procedure. Hence, it suffices to count the total number of
knapsack()-invocations. We get 1 invocation on the first item, at most 2 on
the second, 4 on the third, . . . , and 2n−1 on the last. Hence, there are less than
2n invocations of the knapsack()-function.

Remarks:

• The time complexity of Algorithm 1.3 is exponential in the num-
ber of items. Even if there were only n = 100 items to be evalu-
ated, the currently fastest supercomputer in the world would take
2100 ops/(148 · 1015 ops/s) ≈ 271 000 years to compute our knapsack

function. So for many realistic inputs, Algorithm 1.3 is not usable.
We need a better approach!

1.2 Greedy

What about sorting all the items by their value-to-weight ratio, and then
simply greedily packing them!?

→ notebook

https://colab.research.google.com/drive/1VFJIe3Bx_H45ZiSWQdg9divsRzhkpZ9-#scrollTo=uZMI_pKlRXsB


1.3. BACKTRACKING 5

1 def knapsack(items, capacity):

2 items.sort(key=lambda item : -item.value/item.weight)

3 value = 0

4 for item in items:

5 if item.weight <= capacity:

6 capacity -= item.weight

7 value += item.value

8 return value

Algorithm 1.8: A naive greedy algorithm for Knapsack.

Remarks:

• Algorithm 1.8 is fast, with a time complexity of O(n log n), just for
calling the sorting function in Line 2. So a large input is no problem.

• Also, the output of Algorithm 1.8 often seems reasonable. However,
Algorithm 1.8 does not solve Knapsack optimally. For example, as-
sume a capacity 6 knapsack, two items each with value 3 and weight
3, and one higher-ratio item with value 5 and weight 4.

• Can we gain a speed-up from first sorting the elements?

1.3 Backtracking

Definition 1.9 (Backtracking). A backtracking algorithm solves a computa-
tional problem by constructing a candidate solution incrementally, until either a
solution or a contradiction is reached. In case of a contradiction, the algorithm
“backtracks” (i.e. reverts) its last steps to a state where another solution is still
viable. Efficient backtracking algorithms have two main ingredients:

• Look-ahead: We order the search space such that the most relevant so-
lutions come up first.

• Pruning: We identify sub-optimal paths early, allowing to discard parts
of the search space without explicitly checking.

Remarks:

• Algorithm 1.3 was an inefficient backtracking algorithm.

• Our look-ahead idea is to sort the items by value-to-weight ratio as
in Algorithm 1.8.

• The algorithm prunes the solution space if it cannot possibly achieve
the best solution so far.

→ notebook

https://colab.research.google.com/drive/1VFJIe3Bx_H45ZiSWQdg9divsRzhkpZ9-#scrollTo=SsZbkbq27iGc


6 CHAPTER 1. ALGORITHMS

1 def knapsack(items, capacity):

2 items.sort(key=lambda item: -item.value/item.weight)

3 return bt(items, capacity, 0)

4

5 def bt(items, capacity, missing):

6 if len(items) == 0:

7 return 0

8 first, *rest = items

9 if first.value / first.weight * capacity < missing:

10 return 0 # branch is worse than the best previous solution

11 take = 0

12 if first.weight <= capacity:

13 take = bt(rest, capacity-first.weight, missing-first.value)

14 take += first.value

15 skip = bt(rest, capacity, max(take, missing))

16 return max(take, skip)

Algorithm 1.10: An efficient backtracking solution to Knapsack.

Remarks:

• The missing parameter is the additional value that is required to
surpass the previously best solution.

• The time complexity of Algorithm 1.10 is still O(2n) in the worst case.
Can we do better?

1.4 Dynamic Programming

Definition 1.11 (Dynamic Programming). Dynamic programming (DP) is
a technique to reduce the time complexity of an algorithm by utilizing extra mem-
ory. To that end, a problem is divided into sub-problems that can be optimized
independently. Intermediate results are stored to avoid duplicate computations.

Remarks:

• Knapsack can be solved with dynamic programming. To that end, we
store a value matrix V where V[i][c] is the maximum value that can
be achieved with capacity c using only the first i items.

→ notebook
1 def knapsack(items, capacity):

2 n = len(items)

3 V = zero matrix of size (n+1)×(capacity+1)
4 for item i in items:

https://colab.research.google.com/drive/1VFJIe3Bx_H45ZiSWQdg9divsRzhkpZ9-#scrollTo=t-A_kdLDX2JR


1.4. DYNAMIC PROGRAMMING 7

5 for c in range(capacity+1):

6 V[i+1][c] = max(V[i][c-item.weight] + item.value, V[i][c])

7 return V[n][capacity]

Algorithm 1.12: A dynamic programming solution to Knapsack.

Remarks:

• Note that Algorithm 1.12 is not correct Python. Line 3 is just pseudo-
code, far from actual Python notation. Line 4 could be Python, but
unfortunately needs an extra enumerate() function.

• Line 6 is incorrect: If item.weight > c, c-item.weight becomes
negative. The programmer of Algorithm 1.12 assumed that accessing
a negative index of an array returns 0; however, most programming
languages return an error. We can fix Line 6 by adding the condi-
tional expression if c >= item.weight else 0 to the first term of
the max() function.

• The time complexity of Algorithm 1.12 is O(n · capacity). In Defini-
tion 1.5 we postulated that the time complexity should be a function of
n. So the DP approach only makes sense when capacity is a natural
number with capacity < 2n/n. .

Definition 1.13 (Space Complexity). The space complexity of an algorithm
is the amount of memory required by the algorithm, with respect to the size n of
the given input.

Remarks:

• As for Definition 1.5, we are usually satisfied if we know the approxi-
mate (asymptotic) space complexity.

• Also, the amount of memory can be measured in bits or memory cells.

• The space complexity of Algorithm 1.12 is O(n · capacity).

• For reasonably small capacity, Algorithm 1.12 is faster than Algo-
rithms 1.3–1.10, but is it correct?

Lemma 1.14. Assuming that all items have integer weights, Algorithm 1.12
solves Knapsack correctly.

Proof. We show the correctness of each entry in the matrix V by induction. As
a base case, we have V[0] = [0, ..., 0] since without item, no value larger
than 0 can be achieved. For the induction step, assume that V[i] correctly
contains the maximum values that can be achieved using only the first i items.
When we set a value V[i+1][c], we can either include the item i+1 or select
the optimal solution for Knapsack with capacity using only the first i items.
Algorithm 1.12 stores the max() of these two values in V[i+1][c] (for all c ∈
{0, . . . , capacity}), which is optimal.

Hence, the value V[n][capacity] contains the maximum value that can be
achieved with the weight capacity, using any combination of the n items.
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Remarks:

• Line 6 of Algorithm 1.12 is typical for dynamic programming algo-
rithms: either the previous best solution can be improved, or it re-
mains unchanged. This is called Bellman’s principle of optimality.

• The computation order of Algorithm 1.12 is important. For example,
we can only compute the entry V[i+1][c] once we have computed
both V[i][c-item.weight] and V[i][c].

• The sub-problem dependencies can be visualized as a dependency
graph. In order to apply dynamic programming, this graph must
be a directed acyclic graph (DAG).

• Algorithm 1.12 is a so-called bottom-up dynamic programming algo-
rithm as it begins computing the entries of matrix V starting with the
simple cases.

• But do we really need to compute the entire matrix V?

Definition 1.15 (Memoization). Memoization generally refers to a technique
that avoids duplicate computations by storing intermediate results.

→ notebook
1 def knapsack(items, capacity, memo={}):

2 index = (len(items), capacity)

3 if index in memo:

4 return memo[index]

5 if len(items) == 0:

6 return 0

7 first, *rest = items

8 take = 0

9 if first.weight <= capacity:

10 take = knapsack(rest, capacity-first.weight, memo)

11 take += first.value

12 skip = knapsack(rest, capacity, memo)

13 memo[index] = max(take, skip)

14 return memo[index]

Algorithm 1.16: A top-down DP solution to Knapsack.

Remarks:

• Memoization can be used to implement top-down DP algorithms.

• This is not so different from our initial Algorithm 1.3!

• We only changed Line 1 and added Line 2 to set up memoization,
which is then used in Lines 3–4 and 13–14.

https://colab.research.google.com/drive/1VFJIe3Bx_H45ZiSWQdg9divsRzhkpZ9-#scrollTo=Brmufdn02Fjy


1.5. LINEAR PROGRAMMING 9

• Top-down DP is inheriting the best of recursion and bottom-up DP.
Consequentially, the time complexity of Algorithm 1.16 is

O(min(2n, n · capacity)) .

• So far we have learned a family of related algorithmic techniques: re-
cursion, backtracking, dynamic programming, and memoization. To-
gether, this family can help solving many demanding algorithmic prob-
lems.

• However, there are powerful algorithmic paradigms beyond this family
of techniques, for instance linear programming.

1.5 Linear Programming

So far, we were only considering unsplittable items. However, for liquid goods,
Knapsack can be solved quickly using a greedy method (Algorithm 1.8). What
if we had more than one constraint?

Problem 1.17 (Liquid Knapsack). A beverage has a name, a value per liter → notebook

and a preparation time per liter. Given t hours to prepare for a party and a
fridge with a storage capacity, what is the maximal value that can be prepared
and stored in the fridge?

Remarks:

• With more than one constraint, the greedy method does not work.

• However, this problem has a nice property: the objective and the con-
straints are linear functions of the quantity of each prepared beverage.
We call such problems linear programs.

Definition 1.18 (Linear Program or LP). A linear program (LP) is an → notebook

optimization problem with n variables and m linear inequalities

a11x1 + a12x2 + . . . + a1nxn ≤ b1

a21x1 + a22x2 + . . . + a2nxn ≤ b2

...
...

...
...

am1x1 + am2x2 + . . . + amnxn ≤ bm

We are interested in finding a point x = (x1, . . . , xn)T with xi ≥ 0, respecting
all these constraints, and maximizing a linear function

f(x) = c1x1 + c2x2 + · · ·+ cnxn

where aij, bi and ci are given real-valued parameters. We call the point x an
optimum of the LP.

https://colab.research.google.com/drive/1VFJIe3Bx_H45ZiSWQdg9divsRzhkpZ9-#scrollTo=Brmufdn02Fjy
https://colab.research.google.com/drive/1VFJIe3Bx_H45ZiSWQdg9divsRzhkpZ9-#scrollTo=G2-EHXfWpRJ9


10 CHAPTER 1. ALGORITHMS

Remarks:

• There is also a short hand notation using linear algebra

max{cTx | Ax ≤ b,x ≥ 0},

where A is the matrix with entries aij and b and c the vectors given
by the bi and ci, respectively.

• In general, if you have the problem of maximizing or minimizing a
linear function under constraints that are linear (in)equalities, there
is a way to formulate it in above canonical form. For instance, a
constraint aTx = b can be rewritten as a combination of aTx ≤ b
and aTx ≥ b which itself can be rewritten as −aTx ≤ −b. Also,
minimizing a linear function with coefficients c1, . . . , cn is the same as
maximizing a linear function with coefficients −c1, . . . ,−cn.

• It is possible to model some functions which do not look linear at first
sight. For example, minimizing an objective function f(x) = |x| can
be expressed as min{t|x ≤ t,−x ≤ t}.

Definition 1.19 (Feasible Point). Given an LP, a point is feasible if it is a
solution of the set of constraints.

Remarks:

• Geometrically, the set of feasible points of an LP corresponds to an n-
dimensional convex polytope. The hyperplanes bounding the polytope
are given by the restricting inequalities.

• Polytopes are a generalization of 2D polygons to an arbitrary number
of dimensions. Convexity, however, deserves a more formal definition.

Definition 1.20 (Convex Set). A set of points in Rn is convex if for any two
points of the set, the line segment joining them is also entirely included in the
set.

Lemma 1.21. The set of feasible points of an LP is convex.

Proof. Given two feasible points x1 and x2, any point in the line segment joining
them can be written as x1+λ(x2−x1) for λ ∈ [0, 1]. For any constraint aTx ≤ b,
we compute

aT [x1 + λ(x2 − x1)] = (1− λ)aTx1 + λaTx2 ≤ (1− λ)b+ λb = b.

Definition 1.22. Given an LP, we call polytope the set of feasible points. → notebook

A constraint aTx ≤ b is tight at x if aTx = b. For an LP with n variables,
feasible points activating n (resp. n − 1) linearly independent constraints are
called the nodes (resp. edges) of the polytope. Each edge links two nodes
x1,x2 with n − 1 common activating constraints; we say that the two nodes
x1,x2 are neighbors.

https://colab.research.google.com/drive/1VFJIe3Bx_H45ZiSWQdg9divsRzhkpZ9-#scrollTo=4V6zaXul18Eh
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Remarks:

• A polytope can be unbounded, i.e. infinitely large. If the convex poly-
tope is unbounded, it is often rather called a convex polyhedron. In
some cases, it is even possible to have an infinitely large solution, e.g.,
max{x|x ≥ 0}. Following our definition, the LP does not admit an
optimum in this case.

• In order to solve an LP, one has to find a point in the polytope that
maximizes our objective function f(x).

Theorem 1.23. If the polytope of an LP is bounded, then at least one node → notebook

of the polytope is an optimum of the LP.

Proof. For any value y that the objective function can take, the set of points
reaching this value is given by the hyperplane cTx = y. We can find an optimum
of the LP by sliding this hyperplane until the boundary of the polytope is
reached, which happens at some node of the polytope.

Remarks:

• One popular method exploiting Theorem 1.23 for solving LPs is the
simplex algorithm. The idea is simple: starting from a node of the
LP polytope, greedily jump to a neighboring node having a better
objective until you cannot improve the solution anymore.

→ notebook
1 def simplex(polytope, f, x):

2 for y in neighbors(x, polytope):

3 if f(y) > f(x):

4 return simplex(polytope, f, y)

5 return x

Algorithm 1.24: Simplex Algorithm.

Remarks:

• While the simplex algorithm performs well in practice, there are in-
stances where its time complexity is exponential in the size of the
input. Other LP algorithms known as interior point methods are
provably fast.

• In practice, we do not build and store the whole polytope of the LP,
as the polytope could have an exponential number of nodes! Instead,
we represent a node as a set of tight constraints. To find its neighbors,
we remove a constraint of the set, add another constraint and check
if the point is feasible.

• The node returned by the simplex algorithm is better than any neigh-
boring node by construction, but how can we convince ourselves that
no other point anywhere in the feasible polytope is better?

https://colab.research.google.com/drive/1VFJIe3Bx_H45ZiSWQdg9divsRzhkpZ9-#scrollTo=ecX-F2wBzZ7p
https://colab.research.google.com/drive/1VFJIe3Bx_H45ZiSWQdg9divsRzhkpZ9-#scrollTo=uBjoCdsJ0oCp
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Definition 1.25 (Local Optimum). A feasible node x is a local optimum if
f(x) ≥ f(y) for any neighboring node y.

Remarks:

• In contrast to a local optimum, an optimum from Definition 1.18 is
called global optimum.

• While it is easy to find a local optimum, finding a global optimum is
often difficult. However, it turns out that every local optimum of an
LP is also a global optimum!

Theorem 1.26. The node x∗ returned by the simplex algorithm is an optimum.

Proof. Let us consider the hyperplane cTx = f∗, where f∗ = cTx∗. We know
that all the neighbors of node x∗ are on the side cTx ≤ f∗. Since the polytope is
convex, we know that the whole polytope must be on this side of the hyperplane.
Hence no node x′ in the polytope can be on the side cTx > f∗, and hence the
node x∗ is a global optimum.

x′

x∗

x1 x2

aT1 x ≤ b1 aT2 x ≤ b2

cTx ≥ fs

Figure 1.27: Illustration of Theorem 1.26. The neighbors of x∗ are x1 and x2.

Remarks:

• So we have seen that every local optimum of an LP is also a global
optimum. This important property in optimization is true for convex
functions in general, and as such LPs are only a special case of convex
optimization.

• We call Algorithm 1.24 with x being any node of the polytope. But
wait, how do we find such a start node?! It turns out that we can
construct an auxiliary LP:

Definition 1.28 (Phase 1 LP). Given an LP

max{cTx | Ax ≤ b,x ≥ 0},

we build the so-called phase 1 LP by replacing every constraint aTi x ≤ bi
with aTi x− yi ≤ bi, introducing a new artificial variable yi. If we minimize all
artificial variables yi, we get:

max{−1Ty | Ax− Iy ≤ b,x ≥ 0,y ≥ 0}.
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Lemma 1.29. Setting each xi = 0 and each yi = max(0,−bi) yields a feasible
node of the phase 1 LP.

Proof. With each original variable xi = 0, each constraint is reduced to−yi ≤ bi,
which is satisfied when yi = max(0,−bi).

Also, this point is a node of the polytope: Algebraically, a point is a node if
at least n linearly independent constraints are tight at this point. The constraint
xi ≥ 0 is tight for each original variable xi and either aix − yi ≤ bi or yi ≥ 0
is tight for each artificial variable yi, depending on the sign of bi. Thus, the
number of tight constraints is at least equal to the number of variables, and this
point is a node of the polytope.

Lemma 1.30. If the original LP is feasible, then the phase 1 LP will find a
feasible node.

Proof. If the original LP is feasible, then its polytope is not empty, i.e., there
exists a feasible node x in the original LP. Together with y = 0, node x is also
feasible in the phase 1 LP. Since max{−1Ty} = min{sum(y)} is optimal for
y = 0, node x is optimal in the phase 1 LP. With Theorem 1.26, we know that
the phase 1 LP will find such a node x.

Remarks:

• Algorithm 1.31 is the complete procedure to solve an LP. This process
is often called the two-phase simplex algorithm.

• In Python, one can solve an LP using the function linprog from the → notebook

module scipy.optimize.

→ notebook
1 def solveLP(A, b, c):

2 x,y = simplex(polytope([A -I], b), −1, (0, max(0,−b)))
3 if sum(y) == 0:

4 return simplex(polytope(A, b), c, x)

5 else:

6 return 'no solution'

Algorithm 1.31: Two-phase simplex algorithm to solve LPs.

1.6 Linear Relaxation

Linear programming is covering a broad class of problems, but we are often
confronted with discrete tasks, for which we need an integer solution.

Definition 1.32 (Integer Linear Programming or ILP). An integer linear
program (ILP) is an LP in which all variables are restricted to integers.

https://colab.research.google.com/drive/1VFJIe3Bx_H45ZiSWQdg9divsRzhkpZ9-?usp=sharing
https://colab.research.google.com/drive/1VFJIe3Bx_H45ZiSWQdg9divsRzhkpZ9-#scrollTo=WABq4xsIFheR


14 CHAPTER 1. ALGORITHMS

Remarks:

• In a lot of combinatorial problems, variables are restricted to just two
values {0, 1}. Such variables are called indicator (“to be or not to
be”) variables. We call such programs binary ILPs.

• Apart from LP and ILP, there exist many other optimization tech-
niques: Mixed Integer Linear Programming (MILP) with both integer
and continuous variables, Quadratic Programming (QP), Semidefinite
Programming (SDP), . . .

Problem 1.33 (ILP Knapsack). We can model Knapsack (Problem 1.2) with
capacity c and n items of value vi and weight wi as a binary ILP, using indicator
variables xi:

maximize
∑

vi xi

subject to:
∑
wi xi ≤ c

xi ∈ {0, 1}.

Remarks:

• Unlike LPs, no efficient algorithm solving ILPs is known.

• It is tempting to relax the constraints xi ∈ {0, 1} to 0 ≤ xi ≤ 1, apply
the simplex algorithm, and round the possible solution to the nearest
feasible point.

Definition 1.34 (Linear Relaxation). Given a binary ILP, we construct the
linear relaxation of the LP by replacing the constraint x ∈ {0, 1}n with the
constraint 0 ≤ xi ≤ 1.

Remarks:

• However, in general, there is no guarantee that a linear relaxation
finds the optimum.

• In the case of Knapsack, the solution of the linear relaxation is similar
to Algorithm 1.8. All items i with a high value-to-weight ratio will
get an indicator variable xi = 1, all items with a low value-to-weight
ratio will get an indicator variable xi = 0. The critical item(s) in the
middle will get a non-integer indicator variable which we must round
down to 0 to get a valid solution. This solution can be arbitrarily bad,
as the best (highest value-to-weight ratio) item might already be too
heavy; we might end up without any object in the knapsack.

• However, a linear relaxation sometimes has the same optimum as its
ILP. In particular, this is true for some classes of constraint matrices,
e.g., totally unimodular matrices.

• A matrix is totally unimodular if every square submatrix has deter-
minant −1, 0 or +1. This is a non trivial property to check. For a
certain class of problems we know that the constraint matrices are
always totally unimodular.
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Problem 1.35 (Assignment Problem). Given a list of customers and a list → notebook

of cabs, how to match customers to cabs in order to minimize the total waiting
time?

Algorithm 1.36. This problem can be modeled as an ILP. We denote the → notebook

waiting time of customer i for cab j by wi,j. Also, we introduce a set of indicator
variables xi,j describing the assignment: xi,j = 1 if and only if customer i is
assigned to cab j. We get:

minimize
∑
i,j xi,jwi,j

subject to:
∑
j xi,j = 1 for each customer i∑
i xi,j ≤ 1 for each cab j

xi,j ∈ {0, 1}

This ILP can be solved optimally with linear relaxation: the constraint matrix
is totally unimodular.

1.7 Flows

Graphs and flows are useful algorithmic concepts, related to LPs and linear
relaxations.

Definition 1.37 (Graph). A graph G is a pair (V,E), where V is a set of
nodes and E ⊆ V × V is a set of edges between the nodes. The number of
nodes is denoted by n and the number of edges by m.

Remarks:

• A directed graph G = (V,E) is a graph, where each edge has a direc-
tion, i.e., we distinguish between edges (u, v) and (v, u). If all edges
of a graph are undirected, then the graph is called undirected.

• In a directed graph, we note in(u) (resp. out(u)) the set of edges
entering (resp. leaving) node u.

• A weighted graph G = (V,E, ω) is a graph, where ω : E → R assigns
a weight ω(e) for each edge e ∈ E.

• Weights can for instance be used for delay d(e) or capacity c(e) of an
edge.

• In the rest of this chapter, we consider capacitated directed graphs.

• Consider a company that wants to optimize the flow of goods in a
transportation network from their factory to a customer.

Definition 1.38 (Flow). Formally, an s-t-flow from a source node s to a target
node t is given as a function f : E → R≥0 such that

f(u, v) ≤ c(u, v) for all (u, v) ∈ E (capacity constraints)∑
e∈in(u) f(e) =

∑
e∈out(u) f(e) for all u ∈ V \ {s, t} (flow conservation)

We call the total flow reaching t the value of f , i.e. |f | =
∑

(u,t)∈E f(u, t).

https://colab.research.google.com/drive/1VFJIe3Bx_H45ZiSWQdg9divsRzhkpZ9-#scrollTo=_FwIRacLfN-7
https://colab.research.google.com/drive/1VFJIe3Bx_H45ZiSWQdg9divsRzhkpZ9-#scrollTo=wddIHIwbe91R
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Problem 1.39 (Max-Flow). What is the maximum flow that can be established
between a source and a target node in a network?

Remarks:

• Max-Flow can be written as an LP maximizing the value of the flow.

• Flows are also useful to model discrete (integral) data. Imagine traffic
flow for example: every road as some capacity of cars and at each
intersection, and every whole car getting in is expected to eventually
get out!

• Fortunately, we can use the linear relaxation of the ILP and be guar-
anteed to have the optimal solution!

Theorem 1.40 (Integral Flow Theorem). If the capacity of each edge is an
integer, then there exists a maximum flow such that every edge has an integral
flow.

Proof. Assume you have an optimal but non-integral flow. If there is a path
from s to t with every edge being non-integral, we can increase the flow on that
path, so our original flow was not optimal. Hence, there cannot be a non-integral
path from s to t.

Let u be a node adjacent to an edge e with non-integral flow. Then u needs
at least another edge e′ with non-integral flow because of flow conservation at
node u. We can follow these non-integral edges. Since they cannot include both
s and t, we must find a cycle C of non-integral edges. All edges in C can both
change their flow by ±ε, without changing the flow from s to t. We change the
flow of all edges in C until a first edge in C has integral flow. Now we have one
edge less with non-integral flow. If there is still an edge with non-integral flow,
we repeat this procedure, until all edges have integral flow.

Remarks:

• Thanks to Theorem 1.40, we can solve a discrete maximum flow prob-
lem with the linear relaxation of the ILP formulation and the simplex
algorithm!

• There are also more efficient algorithms, known as augmenting paths
algorithms.

Lemma 1.41. The following LP can be used to solve the flow problem:

maximize
∑

(u,v) x(u,v) for each edge (u, v) in out(s)

subject to: x(u,v) > 0 for each edge (u, v) ∈ E

x(u,v) ≤ c(u, v) for each edge (u, v) ∈ E∑
e∈in(u) xe −

∑
e∈out(u) xe = 0 for all u ∈ V \ {s, t}
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Proof. The flow f is represented by one variable x(u,v) for every directed edge
(u, v) ∈ E that indicates the value on that edge, i.e. f(u, v) = x(u,v). We
maximize the total flow value by looking at the flow that leaves s. The first
constraint ensures that the flow is non-negative, while the second enforces the
capacity constraint and the third one flow conservation.

Definition 1.42 (Augmenting Path). We define an augmenting path as a
path from s to t such that the flow of each edge does not reach its capacity or
flow can be pushed back. This is the case if the residual capacity on every edge
of the path is greater than 0, where the residual capacity r of an edge is defined
as:

residual(u, v) = c(u, v)− f(u, v) + f(v, u)

Remarks:

• We can find an augmenting path in linear time, using a recursive
algorithm!

• Instead of using the residual capacity defined above, we can also add
all missing directed edges to the graph and give them capacity 0.
Then, when we add flow to an edge (u, v) we decrease the flow on
the reverse edge f(v, u) by the same amount. In this case c(u, v) −
f(u, v) > 0 if and only if c(u, v)− f(u, v) + f(v, u) and we can use the
former check for finding edges with non-zero residual capacity.

→ notebook
1 def find_augmenting_path(u, t, G, flow, visited):

2 visited.insert(u)

3 for v in G.neighbors(u):

4 if v is not in visited and residual[u, v] > 0:

5 path = find_augmenting_path(v, t, G, flow, visited)

6 if len(path) > 0 or v == t:

7 path.append((u, v))

8 return path

9 return []

Algorithm 1.43: Find augmenting path

Remarks:

• If the network has an augmenting path, then none of the edges of this
path is at full capacity and we can add some flow on this path. This
gives us a greedy algorithm: Find an augmenting path, push as much
flow as possible on this path, then try again. This is known as the
Ford-Fulkerson algorithm.

→ notebook

https://colab.research.google.com/drive/1VFJIe3Bx_H45ZiSWQdg9divsRzhkpZ9-#scrollTo=ig-xhNl6x0gB
https://colab.research.google.com/drive/1VFJIe3Bx_H45ZiSWQdg9divsRzhkpZ9-#scrollTo=YpivJVWrSow4
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1 def max_flow(s, t, G):

2 while there is an augmenting path:

3 visited = set()

4 path = find_augmenting_path(s, t, G, visited):

5 flow = update(G, flow, path)

6 return flow # no augmenting path anymore

Algorithm 1.44: Ford-Fulkerson algorithm

Remarks:

• The maximum flow is closely related to the minimum cut.

Definition 1.45 (Cut). An s-t cut is a partition of the vertices V into two sets
S and T = V S, such that s ∈ S and t ∈ T . Each valid cut has a set of edges C
which point from nodes in S to nodes in T . The minimum s-t cut is cut where
the edges in set C have minimum total capacity.

Theorem 1.46 (Max-Flow Min-Cut). The maximum s-t flow (Definition 1.38)
is equal to the minimum s-t cut (Definition 1.45).

Chapter Notes

The word algorithm is derived from the name of Muhammad ibn Musa al-
Khwarizmi, a Persian mathematician who lived around AD 780–850. Some
algorithms are as old as civilizations. A division algorithm was already used
by the Babylonians around 2500 BCE [2]. Analyzing the time efficiency of
recursive algorithms can be a difficult task. An easy but powerful approach is
given by the master theorem [1]. Linear programming is an old concept whose
origins lie in solving logistic problems during World War 2. Back in the days,
the term programming meant optimization, and not coding. Maximum flow
has been studied since the 1950s, when it was formulated to study the Soviet
railway system. The classic algorithm is by Ford and Fulkerson [4]. However just
recently there has been progress, and Chen et al. [3] managed to solve maximum
flow in pretty much linear time. This chapter was written in collaboration with
Henri Devillez and Roland Schmid.
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Chapter 2

Complexity

In Chapter 1 we learned some nifty algorithmic techniques. However, sometimes
we are dealing with a problem where none of these techniques seem to work!
Should we give up? And what do we do after giving up?

2.1 P and NP

Definition 2.1 (Computational Problem). A computational problem is de-
fined as a (possibly infinite) set of inputs X and a computational goal. An
algorithm solving the problem takes as input x ∈ X and produces an output
satisfying the goal.

Definition 2.2 (Decision Problem). A decision problem is a computational
problem specified by a partition of X = Xyes ∪ Xno into “yes” instances Xyes

and “no” instances Xno. An algorithm solves the decision problem if, when run
on x ∈ Xyes outputs “yes” and when run on x ∈ Xno outputs “no”.

Definition 2.3 (Function Problem). A function problem is a computational
problem specified by a function Y , mapping each input x ∈ X to a (possibly
empty) set of feasible outputs Yx for that input. An algorithm solves the function
problem if, when run on x ∈ X, produces an output y ∈ Yx, or outputs “no” in
case Yx = ∅.

Remarks:

• For any function problem, asking the question “is Yx nonempty” is a
decision problem, which is no harder than the function problem: if we
can find y ∈ Yx or tell that Yx = ∅, then we can also state whether
Yx 6= ∅.

Definition 2.4 (Optimization Problem). An optimization problem is a func-
tion problem enhanced with a quality measure function q(x, y). An algorithm
solves the optimization problem if, when run on x ∈ X, produces an output
y ∈ Yx which maximizes/minimizes q(x, y), or outputs “no” in case Yx = ∅.

20
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Remarks:

• Solving the optimization problem is no easier than solving the function
problem: if we can find the best solution, we can also find a solution.

• We have seen several optimization problems in the previous chap-
ter: What is the maximum value that can be packed into a knapsack?
What is the optimal value of flow in a given network?

• Any linear program (Definition 1.18) is an optimization problem: an
input to the problem is of the form x = (A, b, c) ∈ X, the set of
admissible outputs for x is Yx = {y | Ay ≤ b}. The function to be
maximized is q(x, y) = cT y.

• The distinction between maximization and minimization problems
is insignificant, since maximizing q(x, y) is the same as minimizing
−q(x, y).

• In general, one can reformulate any optimization problem as a deci-
sion problem. The corresponding decision problem asks a “yes”/“no”
question about the quality of a solution. For example: Can we pack
items of total value at least 100 into a knapsack? Is there a flow of
value at least 5 in a given network?

Definition 2.5. Let (X,Y, q) be a maximization optimization problem, then
the corresponding decision problem has as inputs pairs of the form (x, k) with
x ∈ X, and (x, k) is a yes instance iff there exists y ∈ Yx such that q(x, y) ≥ k.

Lemma 2.6. By solving the optimization problem, we can find a solution for
the corresponding decision problem, or report none exist.

Proof. We show this for the maximization variant, minimization being similar.
Upon solving the optimization problem, one of the following two will hold:

• Either the optimization problem returns that Yx = ∅, in which case we
know that the answer is “no” for the decision problem;

• Or the optimization problem returns y ∈ Yx such that q(x, y) is maximized.
If any solution y′ ∈ Yx satisfies q(x, y′) ≥ k, then the returned y will satisfy
this as well, since q(x, y) ≥ q(x, y′). Therefore, in this case we can just
check whether q(x, y) ≥ k and return “yes” if so, and “no” otherwise.

Remarks:

• In this chapter, we assume that q(x, y) is efficient to evaluate, so the
step where we check whether q(x, y) ≥ k in the proof of Lemma 2.6
does not add too much overhead. But there are optimization problems
where finding the optimal y ∈ Yx is feasible within reasonable time,
but computing the quality q(x, y) is actually difficult.

• The opposite direction of Lemma 2.6 is usually also possible: if we have
an algorithm for a decision problem, we can run it for many different
decision values k in order to determine the optimal value. If we can
then also find a feasible solution with this optimal value of k, then
we are done. This way, we can solve the corresponding optimization
problem, but it is not clear how efficiently.
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• In the first part of this chapter, we will focus on decision problems.

• In the previous chapter, we have discussed a measure for discussing the
running time of algorithms — the time complexity (Definition 1.5).
Algorithms for Knapsack seemed to have exponential time complexity,
while network flow and matching were polynomial.

• When studying time complexity, we are first and foremost interested
in whether a problem can be solved in polynomial time. All problems
that can be solved in polynomial time are considered “easy”, and
grouped together in a class.

Definition 2.7 (Complexity Class P). The complexity class P contains all
decision problems that can be solved in deterministic polynomial time, i.e. where
there exists an algorithm whose running time is in O(poly(n)), where n is the
size of the input.

Remarks:

• There are many problems that belong to class P: checking if an array
is sorted, checking whether a graph is bipartite, checking whether an
integer exists in an array, etc.

• A common misconception is that all problems that can be solved in
polynomial time belong to class P; e.g. sorting an array, computing
the product of two matrices, finding the maximum in an array. The
reason this is not true is that they are not decision problems, but
function problems.

• In order to show that a problem is in P, we usually give an explicit
algorithm and analyze the running time directly. There is also an
indirect way of showing that a problem is in P: if we can show that a
problem known to be in P can be used to solve our problem. Then, our
problem is “at most as difficult” as a problem in P, and is therefore
also in P.

Definition 2.8 (Polynomial Reduction). Let A and B be computational prob-
lems (decision, function or optimization). A polynomial-time reduction from
problem A to problem B is an algorithm that solves problem A using a polyno-
mial number of calls to a subroutine for problem B, and polynomial additional
time. If such an algorithm exists, then we write A ≤ B.

Remarks:

• Note that the reduction is not allowed to look inside the subroutine
solving B, it should work no matter how the subroutine is imple-
mented.

Lemma 2.9. “Sorting an Array” ≤ “Maximum of an Array.” Moreover, “Sort-
ing an Array” can be solved in polynomial time.

Proof. Assume we have a subroutine implementing “Maximum of an Array.”
Then, we can compute the maximum value iteratively, n times, at each step
removing the maximum from the array. Putting together these maxima, we
get the sorted array. We can find a maximum in linear time, and we call the
maximum n times, which completes the proof.
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Remarks:

• We can use polynomial reductions between problems in order to de-
termine classes of problems that have roughly the same difficulty.

Problem 2.10 (Clique). The input is a graph G = (V,E) with n nodes, and
an integer k < n. In the clique (decision) problem we want to know whether
there exists a subset of k nodes in G such that there is an edge between any two
nodes.

Problem 2.11 (Independent Set). The input is a graph G = (V,E) with n
nodes, and an integer k < n. In the independent set problem we want to
know whether there exists a subset of k nodes in G such that there is no edge
between any two nodes in the subset.

Theorem 2.12. Clique ≤ Independent Set and Independent Set ≤ Clique.

Proof. Let K = {{u, v} ∈ V 2 | u 6= v} denote all possible edges in a graph G.
Given a graph G = (V,E), remove all edges E of this graph and add all edges
in K \E. Then, all cliques in G will become independent sets in the new graph,
and vice-versa. This transformation can be computed in polynomial time. As
a result, if we have an algorithm solving Independent Set, we can solve Clique
by calling it on the new graph, and vice-versa.

Problem 2.13 (Vertex Cover). The input is a graph G = (V,E) with n nodes,
and an integer k < n. In the vertex cover problem we want to know whether
there exists a subset S of k nodes in G such that every edge in E has at least
one of its two endpoints in S.

Theorem 2.14. Vertex Cover ≤ Independent Set and Independent Set ≤ Vertex
Cover.

Proof. For any independent set S, all other nodes V \ S will be a vertex cover.
This is because the nodes in S are not connected to each other, by definition, so
the nodes V \S must cover all edges. Likewise, if the nodes V \S cover all edges,
then the nodes S cannot have any edges between them, so S is an independent
set. If independent set S has size `, then vertex cover V \S has size n−`, so the
maximum size S corresponds to the minimum size V \ S. It is now easy to see
that if we have a subroutine that solves one of the two problems in polynomial
time, then we can also solve the other in polynomial time.

Lemma 2.15. The reduction relation ≤ is transitive, i.e., if A ≤ B and B ≤ C,
then A ≤ C.

Proof. If there is an algorithm that can solve A using polynomially many calls to
a procedure solving B and polynomial time outside those calls and an algorithm
that can solve B using polynomially many calls to a procedure solving C and
polynomial time outside those calls, then, by inlining the algorithm for B inside
the one for A, we get that there exists an algorithm that can solve A using
polynomially many calls to a procedure solving C and polynomial time outside
those calls.
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Remarks:

• Therefore, there are polynomial reductions between Clique and Ver-
tex Cover as well. If you know how to solve one of these problems
in polynomial time, you can solve the other two in polynomial time
as well! Unfortunately, nobody knows whether these problems (and
many others!) are in P.

• Using polynomial reductions, we can define a hierarchy of different
problems.

• Recall the decision variant of Knapsack: Can we pack items of total
value at least k into the knapsack? Even though we could not find
an efficient (polynomial) algorithm for Knapsack, we can try to see
whether a simpler decision problem can be solved efficiently: Assume
a friend has spent a considerable amount of time trying to pack items
of total value at least k into the knapsack, and they claim that the
answer is “yes”. Can they prove this to you without redoing all the
work they went through? Of course! They just need to show you
which items to pack, and you can check for yourself that this is indeed
a valid solution.

Definition 2.16 (NP). The class of non-deterministic polynomial problems
(NP) contains decision problems X = Xyes∪Xno such that there is a polynomial
algorithm A, called a polynomial verifier, which takes as input two arguments
(x, y) with x ∈ X, and has the following properties:

1. For all x ∈ Xyes, there is a solution y of length polynomial in the length
of x such that A outputs “yes” on (x, y).

2. For all x ∈ Xno, A outputs “no”, irrespective of y.

Remarks:

• The solution y in Definition 2.16 is also called a certificate or witness.

• Note how decision problems do not necessarily have a “native” no-
tion of “solutions”, in contrast to function/optimization problems;
e.g. think what would be a feasible solution to “is an array sorted?”

• However, decision problems coming from function/optimization prob-
lems will oftentimes hint at an implicit notion of solutions; e.g. for
Knapsack solutions are sets of items to pack that do not exceed the
weight constraint.

• The definition above essentially states that “a decision problem is in
NP if there is a way to define solutions for it, whose validity can be
checked in polynomial time”.

• The term NP (“non-deterministic polynomial”) comes from an equiv-
alent definition of NP, which is outside our scope.
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• The class NP contains a large set of computational problems. But,
we should also remember that there are also problems that are not
in NP. For example, given any chess configuration, we not know how
to determine in polynomial time whether there exists a chess move
that guarantees that we will win the game (assuming both players are
playing optimally).

Lemma 2.17. Knapsack is in NP.

Proof. For Knapsack, a solution is a set of items. In order for Knapsack to be
in NP, we would be given a set of items and a total value, for example 100.
Verifying whether a given set S of items has a total value of ≥ 100 is just a
sum. We also need to make sure that S is admissible; i.e. it does not exceed
the maximum knapsack weight constraint. This can be also done in linear time.
Therefore, Knapsack is in NP.

Lemma 2.18. Clique is in NP.

Proof. Solutions are subsets of nodes which form a clique. Given a graph and a
proposed set of k nodes for a clique, we need to check whether the k proposed
nodes are connected. This can be done by going through the list of all edges
and counting the edges between the k nodes. If we counted k(k − 1)/2 edges,
the proposed node set forms a clique.

Lemma 2.19. P ⊆ NP.

Proof. For any problem in P, we actually do not need the solutions to tell yes
instances apart from no instances: we can just use y = 0 value (or any other
value) as an artificial universal witness, and then checking whether x ∈ X is
a yes instance is done solely by solving the instance x in polynomial time and
outputting accordingly (without relying on the witness y).

Remarks:

• The definitions of P and NP only concern deterministic algorithms.
A problem for which there exists a randomized algorithm running in
polynomial time is not necessarily in P.

• Observe that all three problems (Clique, Independent Set, Vertex
Cover) are in the class NP, and they seem to be more difficult than the
problems in P. Are there even more difficult problems? Is Knapsack
more difficult? What is the most difficult problem in NP?!

2.2 NP-hard

Definition 2.20 (NP-hard). A decision problem H is called NP-hard if there
exists a polynomial reduction from every problem in NP to H.



26 CHAPTER 2. COMPLEXITY

Remarks:

• In other words, an NP-hard problem is at least as difficult as all the
problems in NP.

• NP-hard problems do not necessarily have to be in NP.

• Are there also NP-hard problems in NP?

Lemma 2.21. Let B be an NP-hard problem and C be a problem for which
there exists a polynomial reduction B ≤ C. Then, C is NP-hard.

Proof. Since B is NP-hard, there exists a polynomial reduction from every prob-
lem in NP to B. By using Lemma 2.15, we get that there also exists a polynomial
reduction from every problem in NP to C. Therefore, C is NP-hard.

Definition 2.22 (NP-complete). A decision problem is called NP-complete if it
is NP-hard and it is contained in NP.

NP

BQP

NP-complete

P

NP-hard

SAT

Graph isomorphism

Multiplication

Discrete logarithm

Forrelation

TSP (optimization)

Figure 2.23: A complexity “pet” zoo: Diagram with different complexity classes
and sample problems inside each class. The boolean satisfiability problem (SAT)
will be introduced in the next section; the optimization version of the travel-
ing salesperson problem (TSP) will be introduced in Section 2.5; the discrete
logarithm and the graph isomorphism problems will be discussed in Chapter 3.
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Remarks:

• Can we identify an NP-complete problem? If yes, we could use poly-
nomial reductions to show that there are many more NP-complete
problems. We will postpone this question to Section 2.3.

• Figure 2.23 visualizes some of the complexity classes and how they are
related to each other. The figure just represents our current knowledge
of how these classes relate to each other. There are still many open
questions in complexity theory that could change the landscape once
an answer is found. Also, there are many more classes not discussed.

• It is generally believed that there are some problems which are in NP
but not in P. Or simply:

Conjecture 2.24. P 6= NP.

Remarks:

• The P versus NP question is one of the most important open scientific
problems. There were many proof attempts, however, so far, without
success.

• Another open question is whether quantum computers will allow to
solve all difficult problems efficiently.

Definition 2.25 (BQP). A decision problem is in the class of bounded-error
quantum polynomial time (BQP) problems, if it can be solved on a quantum
computer in polynomial time and if for any input the probability to compute the
wrong answer is at most 1/3.

Remarks:

• It is known that some problems from NP are also in BQP.

• The relation between the class of NP-complete problems and problems
from BQP is unknown.

• It has been shown that there is a problem in BQP that is not in NP
— the forrelation problem. In this problem, the question is whether a
boolean function correlates to a Fourier transform of another boolean
function. This result implies that only a quantum computer could
solve (or even just verify) Forrelation efficiently.

2.3 Boolean Formulas

Definition 2.26 (Boolean Formula). Let x = (x1, . . . , xn) be a vector of boolean
variables; i.e. each variable can take one of the values True/False, or, equiva-
lently, 1/0. A boolean formula f is an expression consisting of boolean vari-
ables and the logical connectives/operations AND, OR and NOT, denoted by ∧,
∨ and ¬, respectively. Given an assignment of True/False values to each of the
variables in x, the formula f can be evaluated to yield a truth value True/False
(or, equivalently, 1/0). We say that a boolean formula is satisfiable if there
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exists an assignment of variables x, such that f(x) = 1. We will call xi and its
negation, ¬xi, literals. Literals that are all connected by a logical OR (AND)
operation we will call an OR-clause (AND-clause).

Example 2.27. Consider variables x1, x2, x3, then an example of a boolean
formula is f = x1 ∧ (x2 ∨ ¬x3). Formula f evaluates to True if and only if
x1 is True and either x2 is True or x3 is False. In particular, this means that
x = (1, 1, 1) is a satisfying assignment, while x = (0, 1, 0) and x = (1, 0, 1) are
not. The subformula (x2 ∨ ¬x3) is an OR-clause.

Definition 2.28 (Conjunctive Normal Form (CNF)). A boolean formula f is
in conjunctive normal form (CNF), if it consists of OR-clauses that are
connected by AND operations. A CNF formula is satisfiable if there is an as-
signment of variables such that all OR-clauses of the formula are satisfied.

Remarks:

• Clause usually means OR-clause, unless stated otherwise.

• Any boolean formula can be rewritten as a CNF.

Problem 2.29 (SAT). In the boolean satisfiability problem (SAT), the task is
to determine whether a given CNF formula is satisfiable.

Problem 2.30 (3-SAT). 3-SAT is a special case of SAT, where the given for-
mula is a CNF that has exactly three literals in each OR-clause.

Theorem 2.31. SAT is in NP.

Proof. We can use assignment vectors as solutions. Assume we are given an
arbitrary boolean formula and an assignment of its variables that acts as a
solution, we then need to verify in polynomial time whether the given assignment
satisfies the formula. This is straight-forward to do in polynomial time.

Remarks:

• Intuitively, SAT seems difficult to solve. With n variables, there are
2n possible assignments to check. If only one assignment satisfies the
boolean formula, we are trying to find a needle in a haystack.

• The satisfiability problem with DNF (disjunctive normal form) for-
mulas, on the other hand, is in P. In a DNF formula, the operations
AND and OR are swapped. Therefore, only one AND-clause has to be
satisfied in order to satisfy the whole formula. To do so, it is sufficient
to verify that there is an AND-clause that contains no variable in its
negated and non-negated form simultaneously.

• Note that CNF ≤ DNF is not true. While every CNF can be expressed
as DNF, the DNF may be exponentially bigger than the CNF, so a
reduction like in Definition 2.8 would not be polynomial.

Theorem 2.32 (The Cook-Levin Theorem). SAT is NP-complete.
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Proof. The proof of this theorem is beyond the scope of this script and hence
omitted here. The theorem is usually proven by using the alternative definition
of the class NP via non-deterministic Turing machines. Using this definition one
can show that it is possible to encode a Turing Machine as a SAT formula in
polynomial time.

Lemma 2.33. 3-SAT is NP-complete.

Proof. Since 3-SAT is a special case of SAT, Theorem 2.31 also shows that 3-SAT
is in NP. To show that 3-SAT is NP-hard, we reduce from SAT (i.e. Lemma 2.21).
Assume we have a SAT formula where some clauses do not have 3 literals. We
want to construct a 3-SAT formula that is satisfiable if and only if the SAT
formula was satisfiable. Afterwards, we can use a subroutine solving 3-SAT to
complete the proof. OR-clauses that contain more than three literals need to
be split into smaller clauses, while clauses with less literals need to be filled up.
Here, we will only consider some small examples. A clause with two literals
(x1 ∨ x2) can simply be replaced by (x1 ∨ x2 ∨ y) ∧ (x1 ∨ x2 ∨ ¬ y), where y is
a new variable. A clause of four literals (x1 ∨ x2 ∨ x3 ∨ x4) we can rewrite as
(x1 ∨ x2 ∨ z) ∧ (x3 ∨ x4 ∨ ¬ z), where z is a new variable. Successively applying
such transformations achieves our goal.

Remarks:

• Not all instances of SAT are hard. In 2-SAT, every clause contains
exactly two literals. In contrast to 3-SAT, instances of 2-SAT can be
solved in polynomial time.

• In order to show that some of the previously introduced problems
(e.g. Independent Set, Clique or Vertex Cover) are also NP-complete,
we will search for polynomial-time reductions from SAT (or 3-SAT)
to these problems.

Theorem 2.34. Independent Set is NP-hard.

Proof. To show hardness, we show the reduction 3-SAT ≤ Independent Set.
Therefore, we will model boolean formulas as graphs. Given a 3-CNF formula
f , we construct a graph G as follows:

1. For each clause consisting of 3 literals in f (e.g. ¬x1 ∨ x2 ∨ x3) we add a
cluster of 3 nodes to the graph. Each literal from the clause corresponds
to one node in the cluster. We label the three nodes with their literals
(e.g. ¬x1, x2 and x3). Note that, after processing multiple clauses, it
might be that multiple nodes get the same label: such nodes are considered
distinct.

2. For the edges, we connect the following:

(a) All nodes inside the same cluster.

(b) All pairs of nodes that represent the same variable in negated and
non-negated form (e.g. x and ¬x).
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Note that G can be constructed in polynomial time.
Next, we show that f is satisfiable if and only if the corresponding graph G

has an independent set of size m, where m is the number of clauses in f .
“ =⇒ ” Assume that f is satisfiable; i.e. there is an assignment x such that

in each clause there is a literal that evaluates to True. Select one such literal
from each of the m clauses. Note that, in graph G, no two of these literals
will be connected. This is because the corresponding nodes are all in different
clusters and because nodes with labels x and ¬x cannot both be True in the
boolean assignment. Therefore, these m nodes form an independent set in G.

“ ⇐= ” Assume there exists an independent set of size m in G. This inde-
pendent set cannot contain nodes from the same cluster, as such nodes would
be connected. By definition of G, the independent set will also not contain
nodes with labels x and ¬x. Therefore, the independent set of size m will have
exactly one node from each cluster, and no variable will be present in both its
negated and non-negated form. By setting the values of the node labels in the
independent set to True, we get an assignment of variables that satisfies the
boolean formula. Note that this might not set a value to all variables, but in
that case those variables can just be set arbitrarily.

Remarks:

• Note that the opposite direction, Independent Set ≤ 3-SAT, does not
directly follow from the above proof. Not all graphs G can be reached
with the construction. In order to show Independent Set ≤ SAT, one
would have to show that every graph G can be transformed into a
boolean formula in polynomial time.

• In Lemma 2.18, we showed that Independent Set is in NP. Therefore,
Independent Set is also NP-complete.

• Clique and Vertex Cover are also NP-complete, since there are reduc-
tions in both directions between Independent Set and these problems,
which we have shown in Theorem 2.12 and Theorem 2.14.

• In other words, all these problems are the most difficult problems in
NP. If you could solve one of them in polynomial time, you could solve
all problems in NP in polynomial time!

• What about Knapsack? We need yet another problem.

Problem 2.35 (Subset Sum). Given a number s ∈ N and a set of n natural
numbers x1, . . . , xn, does there exist a subset of these numbers that has a sum
of s?

Theorem 2.36. Subset Sum is NP-complete.

Proof. It is easy to verify whether a given subset of elements has the desired sum
s. Therefore, Subset Sum is in NP. In order to show that Subset Sum is NP-
hard, a reduction 3-SAT ≤ Subset Sum is shown. This reduction is non-trivial
and will be omitted in this script.

Theorem 2.37. The Knapsack (decision) problem is NP-complete.
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Proof. Subset Sum is a special case of Knapsack: let the natural numbers be
items with values x1, . . . , xn and weights x1, . . . , xn, and let the knapsack have
capacity s. If items of value s can be packed into the knapsack, then the cor-
responding items form a subset of sum s. Therefore, Subset Sum ≤ Knapsack.
Since Subset Sum is NP-complete, Knapsack has to be NP-hard. In Lemma 2.17,
we already showed that Knapsack is in NP.

Remarks:

• In fact, thousands of interesting problems in many different areas are
NP-complete: Achromatic Number, Battleship, Cut, Dominating Set,
Equivalence Deletion, . . . , Super Mario Bros, Tetris, . . . , Zoe.

• Figure 2.38 below shows the reductions of NP-complete problems that
we discuss in this chapter.

Independent Set Vertex Cover

SAT

3-SATCircuit-SATClique

Subset Sum

Knapsack

Figure 2.38: Reductions between NP-complete problems.

2.4 Boolean Circuits

Definition 2.39 (Boolean Circuit). Let n,m ∈ N. A boolean circuit is a di-
rected acyclic graph (DAG) with n boolean input nodes and m output nodes.
The input nodes have no incoming edges, while the output nodes have no out-
going edges. The nodes of the graph that are not input nodes represent logical
operations (AND, OR, NOT) and are called gate nodes. We will label the cor-
responding nodes ∧,∨ and ¬, respectively. Each NOT gate has in-degree 1. The
in- and out- degrees of the other gates do not have to be bounded. We further
define the size of the circuit to be its total number of gates, and the depth of
the circuit to be the length of the longest (directed) path from an input to an
output node.

A boolean circuit C represents a mapping C : {0, 1}n → {0, 1}m. The value
of an input node is the value of the corresponding input bit of C. The value of
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a gate node is determined recursively by applying the logic operation that this
gate represents to the values received through incoming edges. The output of the
boolean circuit are the values of the output nodes.

Remarks:

• Boolean circuits provide a nice tool for understanding the complexity
of computation. They are limited in computation power, yet may help
to answer the P 6= NP conjecture.

• In the literature, it is often assumed that AND and OR gates have a
bounded number of input values, or that the circuit has a bounded
depth.

• In the following, we will consider boolean circuits that have only one
output value (True or False).

Problem 2.40 (Circuit-SAT). Let C : {0, 1}n → {0, 1} be a boolean circuit with
only one output value. In Circuit-SAT, the task is to determine whether for a
given circuit C there exists an input vector z ∈ {0, 1}n, such that C(z) = 1.

Theorem 2.41. Circuit-SAT is in NP.

Proof. We can use the vector z as a certificate. To check the it, we can just
evaluate C(z) in polynomial time.

Theorem 2.42. Circuit-SAT ≤ SAT.

Proof. We need to construct a boolean formula that represents the gates of the
given circuit. First, we introduce a new variable gi representing gate i for each
gate of the circuit. Next, for each gate i, we differentiate between the three
possible gate types:

• If i is a NOT gate of gate j, then we add the clauses (gi∨gj)∧(¬ gi∧ ¬gj)
to the formula.

• If i is an OR gate with inputs from two gates, j and k, we add the following
clauses to the formula: (¬gi ∨ gk) ∧ (¬gj ∨ gk) ∧ (gi ∨ gj ∨ ¬gk).

• If i is an AND gate with inputs from two gates, j and k, we add the
following clauses to the formula: (¬gk ∨ gi)∧ (¬gk ∨ gj)∧ (¬gi ∨ ¬gj ∨ gk).

Observe that an AND or an OR gate with k inputs can be replaced by k− 1
gates with two inputs by increasing the depth of the circuit, so our construction
also applies to circuits where some gates have more than 2 inputs.

The resulting boolean formula is satisfiable if and only if the circuit evaluates
to 1 for some vector z. The construction was polynomial in the input size, and
the resulting boolean formula can be transformed into a CNF with minimal
overhead.

Theorem 2.43. Circuit-SAT is NP-complete.
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Proof. Previously, we have shown that Circuit-SAT is in NP. In order to show
that Circuit-SAT is NP-hard, we will reduce SAT to Circuit-SAT; i.e. SAT ≤
Circuit-SAT. Let each variable of the boolean formula be an input to the circuit.
For each negated variable, we can add a NOT gate. Then, for each clause in
the formula, we add an OR gate that has all variables from the clause as input
to the gate. And, finally, we add one AND gate that has values from all OR
gates as its input. This gives a polynomial construction of a boolean formula
as a circuit, thus showing that Circuit-SAT is NP-complete.

Problem 2.44 (Minimum Circuit Size Problem (MCSP)). Given a boolean
function f : {0, 1}n → {0, 1}, represented as a truth table, the task of the Min-
imum Circuit Size Problem (MCSP) is to determine whether f can be
represented by a boolean circuit of size at most s; i.e. a circuit with at most s
gates.

Remarks:

• There are several approaches of how boolean formulas can be simpli-
fied. Often the laws from boolean algebra are applied (Distributive
law, Idempotent law, Identity law, Complement law, DeMorgan’s law,
Karnaugh maps). These minimization rules however do not guarantee
that the resulting boolean formula uses the minimum number of gates.

• How difficult is MCSP?

Lemma 2.45. MCSP is in NP.

Proof. In essence, we can use as witness the circuit of size at most s that im-
plements the function f .

Remarks:

• Is MCSP also NP-hard? As of now, there is no answer to this question.
In fact, there is evidence that this result might be difficult to establish.
However, we know that the problem is NP-hard if the circuit is allowed
to have multiple outputs.

• Some complexity classes are defined with respect to boolean circuits.

Definition 2.46 (Class AC0). The class AC0 contains all decision problems that
can be decided by a family of circuits {Cn}, where Cn has a constant depth and
the size of the circuit is polynomial in n.

Remarks:

• Note that we need to consider a circuit family, because the input size
of each circuit is fixed, while the input size to a problem can vary.

• Note that we do not allow the boolean circuits to save output bits or
use recursive operations.
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• There exist many other classes based on the boolean circuits: The class
NC0 is defined in the same way as AC0, but the number of incoming
edges to the AND and the OR gate is restricted to only two edges.
Note that “two” can really be replaced by any constant, since, e.g.,
a three-input AND can be simulated with two binary ANDs. Both
classes can be extended to versions that allow a non-constant depth
of the circuit: ACi and NCi have depth O

(
logi n

)
.

• Since the NAND gate (negated AND) can simulate all three of NOT,
OR and AND, we could have defined AC and NC equivalently using
only NAND gates. Note that this would fail to be true for the XOR
gate (exclusive OR), since XOR can simulate neither AND nor OR.

2.5 Solving Hard Problems

We have seen that many important computational problems are known to be
NP-hard. So what do we do if we encounter such a hard problem?

Remarks:

• We will now consider optimization problems instead of decision prob-
lems. This often makes sense in practice, where you usually want to
find the best solution to some problem, instead of just deciding if the
problem has a solution with a specific cost.

• So how can we approach a hard problem in practice? So far, we have
mostly considered exact algorithms.

Definition 2.47 (Exact Algorithm). An exact algorithm always returns the
optimal solution to the problem.

Remarks:

• We have seen that for NP-complete problems we do not know if there
is an exact algorithm with polynomial running time.

• Even when the worst-case running time of an algorithm is exponen-
tial, one can often use tricks to considerably reduce this running time
in practice, e.g. by using look-ahead or pruning techniques as in Def-
inition 1.9.

• What if we also accept weaker-than-optimal solutions while requiring
that our algorithm always has a reasonable running time?

Definition 2.48 (Heuristic). A heuristic is an algorithm that is guaranteed to
have a polynomial running time, at the cost of returning a suboptimal solution.
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Remarks:

• One example for a heuristic is our greedy algorithm for Knapsack,
Algorithm 1.8.

• Good heuristics are usually based on insights into the structure or
the behavior of the problem. Some heuristics are known to usually
provide good solutions in practice.

• However, while heuristics are often good on some inputs, they may
return weak solutions on other inputs.

• In general, it is better to have algorithms which provide guarantees
that they always return a solution which is reasonably close to the
optimum. We want to understand algorithms with such guarantees.

2.6 Vertex Cover Approximation

Let us first revisit the optimization version of Vertex Cover: we want to find a
vertex cover S ⊆ V in an input graph G = (V,E), with |S| as small as possible.
Can we come up with an algorithm where we can prove that the size of the
returned vertex cover is always “reasonably close” to the optimum?

Remarks:

• A natural approach is the greedy method of Algorithm 2.49.

1 def VertexCover_Greedy_Naive(G):

2 S = ∅
3 while E 6= ∅:
4 select an arbitrary edge (u, v) ∈ E
5 S = S ∪ {u}
6 remove all edges from E that are adjacent to u

7 return S

Algorithm 2.49: Naive greedy algorithm for Vertex Cover.

Lemma 2.50. Algorithm 2.49 returns a vertex cover.

Proof. An edge from E is only removed when one of its incident nodes is included
in the set S.

Remarks:

• However, the size of this vertex cover can be far from the optimal size.

Theorem 2.51. The size |S| of the vertex cover returned by Algorithm 2.49
can be an n− 1 factor larger than the optimum.
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Proof. Consider a “star” graph with n nodes and n−1 edges, where n−1 distinct
leaf nodes u1, u2, . . . , un−1 are connected by an edge to the same center node
v. Whenever Algorithm 2.49 selects an edge (ui, v) in this graph, it can happen
that it always chooses the leaf node ui. In this case, the algorithm only removes
a single edge (ui, v) in each step, and the algorithm lasts for n− 1 iterations of
the loop. In the end, the algorithm returns the vertex cover S = {u1, . . . , un−1},
which consists of n− 1 nodes.

On the other hand, the set {v} is an optimal vertex cover of cost c∗ = 1 in

this graph, so we have |S|c∗ = n− 1.

Remarks:

• It is a natural idea to try to improve Algorithm 2.49 with a clever tie-
breaking rule: for example, to always select the higher-degree adjacent
node of the chosen edge, or the highest-degree node altogether among
the available nodes. This solves the star. However, there are more
complicated counterexamples which show that even in this case, the
solution we obtain can be a log n factor worse than the optimum.

• However, there is a slightly different greedy approach that provides
much better guarantees.

1 def VertexCover_Greedy(G):

2 S = ∅
3 while E 6= ∅:
4 select an arbitrary edge (u, v) ∈ E
5 S = S ∪ {u, v}
6 remove all edges from E that are adjacent to u or v

7 return S

Algorithm 2.52: Greedy algorithm for Vertex Cover.

Theorem 2.53. Algorithm 2.52 always returns a vertex cover with |S| ≤ 2 · c∗.

Proof. Algorithm 2.52 returns a correct vertex cover: an edge is only removed
from E if at least one of its incident nodes is inserted into S.

Assume that the algorithm runs for c iterations of the main loop, i.e. it
selects c different edges (ui, vi), and inserts both endpoints ui and vi of these
edges into S for i ∈ {1, . . . , c}. Note that none of these edges (ui, vi) share a
node, because all edges adjacent to either ui or vi are removed when (ui, vi) is
selected (in graph theory, such a set of edges is called a matching). This means
that in the optimal vertex cover S∗, each vertex can only be incident to at most
one of the edges (ui, vi); thus, in order to cover all the edges (ui, vi), we already
need at least c nodes. As a result, we get that c∗ = |S∗| ≥ c.

On the other hand, our algorithm returns a vertex cover of size |S| = 2 · c,
so we have |S| = 2 · c ≤ 2 · c∗.
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Remarks:

• In a graph of n2 independent edges, the solution returned by Algorithm
2.52 is indeed 2 times worse than the optimum, so our analysis is tight.

• This algorithm was somewhat counter-intuitive; one might expect Al-
gorithm 2.49 to be more efficient. However, as we have seen, Algorithm
2.52 is always at most a factor 2 away from the optimum c∗, while
Algorithm 2.49 can be an (n− 1)-factor away.

• Algorithms that are proven to always be within an α factor from the
optimum are called approximation algorithms. Theorem 2.53 shows
that Algorithm 2.52 is a 2-approximation algorithm for Vertex Cover.

• For our formal definition of this notion, we assume a minimization
problem.

Definition 2.54 (Approximation Algorithm). We say that an algorithm A is
an α-approximation algorithm if for every possible input of the problem, it
returns a solution with a cost of at most α ·c∗, where c∗ is the cost of the optimal
solution (the one with minimal cost).

Remarks:

• The definition is similar for maximization problems. In this case, we
denote the value of the optimal solution (the one with highest value)
by v∗. For an approximation algorithm, we require that the returned
solution always has a value of at least v∗/α.

• This section only considers approximations algorithms that run in
polynomial time. That is exactly the point of these algorithms: to
find a reasonably good solution without having an unreasonably high
running time.

Definition 2.55. We say that a problem is α-approximable if there exists a
polynomial-time algorithm A that is an α-approximation algorithm for the prob-
lem.

Remarks:

• In general, α can be any constant value with α > 1, or it can also be
a function of n (the size of the input), e.g. α = log n or α = n3/4.

• In many cases, we can already get some approximability results from
the most trivial algorithms. Independent Set naturally has v∗ ≤ n.
Also, we can find a solution of value 1 by simply outputting an ar-
bitrary single node. This shows that Independent Set is (at least)
n-approximable.

• This allows us to classify hard problems, based on how well their
optimum solution can be approximated. E.g. the complexity class of
problems that are α-approximable for some constant α is called APX.
Since Theorem 2.53 has α = 2, Vertex Cover is in APX.
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• For Vertex Cover, there is currently no 2−ε approximation algorithm
known for any ε > 0, so the algorithm above is indeed the best we
have. Also, it is proven that no approximation better than 1.3606 is
possible at all unless P = NP. This means that unless P = NP, we are
unable to approximate the best solution of this problem arbitrarily
well (in polynomial time).

2.7 Bin Packing Approximation

Let us now look at some other problems that are α-approximable to some con-
stant α. We continue with the bin packing problem, which is similar to Knap-
sack.

Problem 2.56 (Bin Packing). We have a set of n items of sizes x1, . . . , xn, → notebook

and an unlimited number of available bins, each having a capacity of B. A set
of items fits into a bin if their total size is at most B. Our goal is to put all of
the items into bins, using the smallest possible number of bins.

Remarks:

• You can easily imagine immediate applications of this, e.g. packing
files on disks.

• For this problem, c∗ denotes the number of bins that are used in the
optimal solution.

• In Bin Packing, a simple greedy heuristic already allows us to obtain
a 2-approximation.

1 def FirstFit(items, B):

2 for each item in items:

3 place item in the first bin where it still fits

4 if item does not fit into any bin:

5 open a new bin, and insert item into the new bin

Algorithm 2.57: First Fit algorithm for Bin Packing.

Lemma 2.58. In Algorithm 2.57, at most 1 bin is filled at most half.

Proof. Assume that there are at least 2 bins b1 and b2 that are filled at most
half. This means that b1 still has free space of at least B

2 , and b2 only contains

items of size xi ≤ B
2 . However, in this case, the items sorted into b2 would also

fit into b1. This contradicts the First Fit algorithm, which only opens a new bin
when the next item does not fit into any of the previous bins.

Theorem 2.59. Algorithm 2.57 is a 2-approximation.

https://colab.research.google.com/drive/1pIFHoSumOGYVBkXlv_WweQoSFTziXl-c?authuser=1#scrollTo=e9RGeJvg4NYs
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Proof. Assume that the First Fit algorithm uses m bins. Due to Lemma 2.58,
at least m−1 of these bins are filled to a capacity of more than B

2 . This implies

n∑
i=1

xi > (m− 1) · B
2
.

On the other hand, we know that

c∗ ≥
∑n
i=1 xi
B

,

since all the items have to be sorted into a bin, and every bin can only take at
most B. The two inequalities imply

B · c∗ > (m− 1) · B
2
,

and thus

2 · c∗ > m− 1.

Since c∗ and m are integers, this implies 2 · c∗ ≥ m, proving our claim.

Remarks:

• One can even improve on this algorithm by first sorting the elements
in decreasing order, and then applying the same First Fit rule. With
only a slightly more detailed analysis, one can show that this improved
algorithm achieves an approximation ratio of 1.5.

• Can we get a better approximation ratio than 1.5? Unfortunately not,
unless we have P = NP. One can show that getting a better than 1.5
approximation is already an NP-hard problem.

• To prove this, we present a reduction to Partition.

Problem 2.60 (Partition). In the Partition Problem, given a set of n items
of positive size x1, . . . , xn, we want to decide if we can partition them into two
groups such that the total sum is equal in the two groups.

Remarks:

• Partition is a special case of Subset Sum where s = 1
2 ·
∑n
i=1 xi.

• It is known that this special case is still NP-complete.

Theorem 2.61. Subset Sum ≤ Partition.

Proof. The reduction is not too complex, but a bit boring, so we do not discuss
it here.

Theorem 2.62. It is NP-hard to solve Bin Packing with an α-approximation
ratio for any constant α < 3

2 .
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Proof. Given an input of Partition with integers x1, . . . , xn, we convert it into
a Bin Packing problem: we consider items of size x1, . . . , xn, and we define
B = 1

2 ·
∑n
i=1 xi.

If the original Partition problem is solvable, then this Bin Packing problem
can also be solved with 2 bins. In this case, an α-approximation algorithm with
α < 3

2 must always return a solution with m ≤ c∗ · α < 2 · 32 = 3 bins; since m
is an integer, this means a solution with m = 2 bins.

On the other hand, if the items cannot be partitioned into two sets of size
B, then the algorithm can only return a solution with m ≥ 3 bins.

Hence an α-approximation algorithm for Bin Packing would also solve Par-
tition in polynomial time: we can just solve the converted Bin Packing problem,
and if m = 2, then output ‘Yes’, whereas if m ≥ 3, then output ‘No’.

Remarks:

• Thus, Bin Packing is a problem that can be approximated to some
constant α = 1.5, but not arbitrarily well, i.e. not for any α > 1.

• Let us consider a classical graph question.

2.8 Metric TSP Approximation

Problem 2.63 (Traveling Salesperson or TSP). The input is a clique graph → notebook

G = (V,E) (there is an edge between any two nodes of G), with positive edge
weights, i.e. a function d : E → R+. The goal of TSP is to find a Hamiltonian
cycle in G where the total weight of the edges contained in the cycle is minimal.

Remarks:

• In general, solving the traveling salesperson problem is NP-hard.

• Even approximating TSP to a constant factor is already NP-hard. We
will prove this in the next section.

• On the other hand, there is a special case of the problem that does
allow a constant-factor approximation.

Problem 2.64 (Metric TSP). In Metric TSP, the distances between any three
nodes v1, v2, v3 must satisfy the triangle-inequality: d(v1, v2) ≤ d(v1, v3) +
d(v3, v2).

Remarks:

• Note that the triangle inequality is a realistic assumption in real-world
applications.

• This is another possible approach to solving hard problems in practice:
maybe we can show that our actual problems are restricted to only
a special case of the original problem, and that this special case is
computationally more tractable.

• A Metric TSP already has a 2-approximation algorithm.

https://colab.research.google.com/drive/1pIFHoSumOGYVBkXlv_WweQoSFTziXl-c#scrollTo=FqWi8Iyq5zcq
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1 def Tree_Based_TSP(G)

2 find a Minimum Spanning Tree T in G

3 form a sequence of nodes P0 by traversing all nodes of T

4 simplify P0 to P by only keeping the first occurrence of

each node↪→

5 return P

Algorithm 2.65: Tree-based approximation for TSP.

Remarks:

• The Minimum Spanning Tree (MST) is, intuitively speaking, the sub-
set of edges with smallest total weight which already connects the
whole graph, i.e. there is a path between any two nodes through
these edges. An MST in a graph can easily be found in polynomial
time with some simple algorithms.

Theorem 2.66. Algorithm 2.65 is a 2-approximation.

Proof. See also Figure 2.67. Let t∗ denote the total cost of the MST. Note that
if we delete a single edge from any Hamiltonian cycle, we get a spanning tree, so
t∗ must be smaller than the cost of any Hamiltonian cycle. This implies t∗ < c∗.

Now consider the cost of the Hamiltonian cycle returned by Algorithm 2.65.
Since the traversal visits each edge of the spanning tree exactly twice, the total
cost of P0 is 2 · t∗. By only keeping the first occurrence of each node in P0, we
create “shortcuts”: whenever we delete a node from P0, we only shorten our
tour due to the triangle inequality. As such, for the total costs we have

cost(P ) ≤ cost(P0) = 2 · t∗ < 2 · c∗.

3

4

5

83

5

5

2

4

5

(a) (b) (c) (d)

Figure 2.67: A weighted complete graph as an input to TSP (a), an MST in
this graph (b), the tour P0 obtained from this MST, starting from an arbitrary
node (c), and the simplified tour P after removing repeated occurrences (d).

Remarks:

• Being more clever even allows a 1.5-approximation.

• For TSP, it is often reasonable to assume the even more special case of
Euclidean TSP, where the nodes of the graph corresponds to specific
points in a plane, for example. That is, each node v is associated with
two coordinates vx and vy, and the weight of the edge between u and

v is the Euclidean distance of u and v, i.e.
√

(ux − vx)2 + (uy − vy)2.
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2.9 Non-Approximability: TSP

We now return to the general version of TSP. By a reduction to the following
problem, we prove that approximating TSP up to a constant factor is already
NP-hard.

Problem 2.68 (Hamiltonian Cycle). The input is a graph G = (V,E). In the
Hamiltonian cycle problem we want to know whether there exists a cycle in
G which contains each node of the graph exactly once.

Remarks:

• Hamiltonian cycle was among the first problems that were shown to
be NP-complete.

Theorem 2.69. In general graphs, TSP is NP-hard to approximate to any
constant factor α.

Proof. We provide a reduction to Hamiltonian Cycle, which is NP-complete.
Assume that we have an α-approximation algorithm for TSP. Given an input

graph G = (V,E) for Hamiltonian Cycle, we turn this into an instance of TSP
on V . For each pair of nodes u and v, we define the weight of edge (u, v) in the
TSP in the following way:

• if (u, v) ∈ E, then we assign d(u, v) = 1 in the TSP,

• if (u, v) /∈ E, then we assign d(u, v) = α · n+ 1 in the TSP.

If the initial graph had a Hamiltonian cycle, then the resulting TSP has a
cycle of total weight n as the optimal solution. In this case, our approximation
algorithm is guaranteed to return a solution of cost at most α · n. On the
other hand, if there was no Hamiltonian cycle in the original graph, then the
optimal TSP cycle must contain at least one edge of weight α · n+ 1, and thus
c∗ ≥ α · n+ 1.

Hence an α-approximation returns a solution of cost at most α·n if and only if
the original graph had a Hamiltonian cycle; thus running such an approximation
algorithm allows us to solve the Hamiltonian cycle problem. This shows that
finding a polynomial-time α-approximation of TSP for any constant α is NP-
hard.

Remarks:

• The most difficult problems are those that cannot be approximated
to any constant α, but only to a factor α = f(n) depending on n, e.g.
α = log n or α =

√
n. This means that as the size of the problem

becomes larger, the difference between the optimum and our solution
also grows larger.

• For TSP, not even this is possible in polynomial time. The proof above
works for any function f(n) that can be computed in polynomial time.

• Remember the Independent Set problem? It turns out that this is
also one of the most difficult problems from this perspective: approx-
imating Independent Set to any factor that is slightly smaller than n
would already imply that P = NP. (The proof of this fact is more
involved than our previous claims, so we do not discuss it here.)
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• This means that for any approximation algorithm A, there are some
graphs where A returns weak solutions.

• This n1−δ factor is indeed huge. For example, it might be that the
largest independent set contains n0.99 nodes, but A returns an inde-
pendent set of only 1 or 2 nodes. As such, an approximation algorithm
like this is not useful in practice.

• The same result also holds for the Clique problem.

• Recall from Theorem 2.14 that as a decision problem, Independent
Set ≤ Vertex Cover; however, we have seen that Vertex Cover is 2-
approximable. This shows that even if the decision version of two
problems are equivalent, the approximability of the optimization ver-
sion may differ significantly.

• So while all NP-complete decision problems have the same difficulty
in theory, their optimization variants are substantially different in
practice.

2.10 FPTAS: Knapsack

We have now seen many problems that are α-approximable for a specific con-
stant α. Sometimes we can even get arbitrarily close to the optimum in poly-
nomial time: there exists a (1 + ε)-approximation for any ε > 0.

Definition 2.70 (FPTAS). We say an algorithm A is a fully polynomial-time
approximation scheme (FPTAS) if for any ε > 0

• A is a (1 + ε)-approximation algorithm, and

• the running time of A is polynomial in both n and 1
ε .

Remarks:

• While an FPTAS is not as good as a polynomial-time exact algorithm,
it is almost as good: for any desired error ε, we can efficiently find a
solution that is only ε away from the optimum.

• There is also a slightly weaker notion of PTAS (polynomial-time ap-
proximation scheme), where we only require the running time to be
polynomial in n, but not in 1

ε . That is, the running time is still poly-
nomial in n for any fixed ε > 0, but it might increase quickly in 1

ε ;

for example, it includes a factor of n2
1/ε

. These algorithms are not as
useful in practice: if we want to get really close to the optimum by
selecting a small ε, the running time still becomes unreasonably large.

• As an example for a nicely approximable problem, we revisit the Knap-
sack problem, and present an FPTAS for it.

• Since we now study the problem from more of a mathematical than a
programming-based perspective, we introduce a shorter notation for
the inputs of the problem.
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Definition 2.71 (Knapsack notation). We will use C to denote the capacity of
our Knapsack, and we denote the value and weight of the ith item as vi and wi,
respectively. We denote the number of items by n as before. Finally, let us use
vmax to denote the value of the highest value item, i.e. vmax := max vi.

Remarks:

• Let us use v∗ to denote the maximal value we can fit into the knapsack,
i.e. the optimal solution.

• Note that if any item has wi > C, then it can never fit into the
knapsack, so we might as well remove such items. Hence, we will
assume that even the largest items still fits into the knapsack, i.e.
vmax ≤ C.

• Recall that we have discussed a dynamic programming solution for
Knapsack, where each cell V [i][c] of our DP table stored the maximum
value that can be achieved with capacity c using only the first i items.
The starting point of our FPTAS algorithm will be a slightly different
variant of this DP method: in our new table, W [i][v] will store the
weight of the lowest-weight subset of items 1, . . . , i that has a total
value of v.

• One can show that this table W can also be computed with a similar → notebook

dynamic programming method to Algorithm 1.12. As before, the table
has n rows. The number of columns is now at most n · vmax, which is
an upper bound on the value of any subset; we have n items, and each
of them has value at most vmax. From this alternative DP table, we
can find the optimum v∗ by taking the maximal v value in the table
where W [n][v] ≤ C.

• The main difference from the original DP algorithm is that now each
column expresses the value of a specific subset of items, instead of the
weight of a specific subset of items as before.

• We can now use this alternative DP algorithm to develop an FPTAS
for Knapsack. The main idea is to slightly round up the values of the
items, which results in some inaccuracy for the algorithm, but it also
reduces the number of columns in our DP table.

1 def Knapsack_FPTAS(items, C):

2 k = ε · vmax / n

3 consider the modified Knapsack problem where item i has

weight wi and value v̂i = d vik e · k↪→

4 run the alternative DP algorithm on this problem, with

columns only corresponding to multiples of k↪→

Algorithm 2.72: FPTAS algorithm for Knapsack.

Lemma 2.73. Algorithm 2.72 has a running time of O
(
n3 · 1ε

)
.

https://colab.research.google.com/drive/1pIFHoSumOGYVBkXlv_WweQoSFTziXl-c?authuser=1#scrollTo=Fg9Eqe4EX2I1
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Proof. Given the parameter ε, the algorithm introduces a scaling parameter
k = ε · vmax / n, and defines the rounded-up value of item i as v̂i = d vik e ·k. This
means that whichever subset of nodes we select, the total value of the subset is
a multiple of k.

On the other hand, any subset of the items has a total value of n · vmax at
most. If each column represents a multiple of k, then the table has at most
n · vmax / k = n2 · 1ε columns. The table still has n rows, so the total running
time of the DP algorithm with these rounded values is O(n3 · 1ε ).

Theorem 2.74. Algorithm 2.72 is an FPTAS.

Proof. The polynomial running time has already been established in Lemma
2.73. Let us use S to denote the set of items chosen by Algorithm 2.72. Since we
round the values to multiples of k, the value of each item has been overestimated
by k at most, so v̂i − k ≤ vi. Hence for the total value of items in S we have∑
i∈S

vi ≥
∑
i∈S

(v̂i − k) =
∑
i∈S

v̂i − |S| · k =
∑
i∈S

v̂i − |S| ·
ε · vmax

n
≥
∑
i∈S

v̂i − ε · vmax.

To simplify this last expression even more, we make two more observations.
First, note that

∑
i∈S v̂i is the optimal solution of the rounded problem found

by our algorithm. Since we only rounded values upwards, this is larger or
equal to the solution of the original problem v∗. Second, choosing the item with
maximal value vmax is always a valid solution, so we also have vmax ≤ v∗. Hence
for the total value in S we have∑

i∈S
v̂i − ε · vmax ≥ v∗ − ε · v∗ = (1− ε) · v∗.

Note that this shows v∗ / v(S) ≤ 1
1−ε , while our original FPTAS definition

requires a slightly different relation: that v∗ / v(S) ≤ (1 + ε). However, since
we now have an α = 1

1−ε̂ -approximation algorithm for any ε̂ > 0, we can obtain
α = (1 + ε) by choosing ε̂ = ε

1+ε .

Chapter Notes

The first formal definition of computation was provided by Alan Turing in
1936 [20]. In this paper, Turing presents an automatic machine (now known as
Turing machine) that can compute certain classes of numbers. We will discuss
the Turing machine in more detail in the last chapter. The birth of compu-
tational complexity as a field is attributed to Hartmanis and Stearns for their
paper “On the computational complexity of algorithms” [14]. They proposed
to measure time with respect to the input size and showed that some problems
can only be solved if more time is given.

The first problem that was shown to be in P was the maximum matching
problem, see Edmonds [9]. In another paper, Edmonds introduced a notion that
is equivalent to the class NP [10]. In 1971, Cook [6] showed that SAT was NP-
complete. Two years later, independently of Cook’s result, Levin [17] showed
that six problems were NP-complete, the so-called universal search problems.
Both authors have formulated the famous P versus NP problem in computer
science. The name NP was however given to the class a year later by Karp [16],
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who proved that 21 (combinatorial) problems were NP-complete. He thereby
first used the technique of polynomial reductions in these proofs. Since then,
thousands of problems in different areas of science have been shown to be NP-
hard. Also many new complexity classes have been proposed in the literature.
Different “zookeepers” around the world keep track of the newly introduced
complexity classes in their complexity zoos [1]. The question P 6= NP still
remains open. In 2000, the P versus NP problem was announced as one of
the seven Millennium Prize Problems by the Clay Mathematics Institute [4].
Solving P versus NP (or BQP versus NP) will be a major milestone in science,
in case of equality (BQP = NP) there will be amazing practical consequences.

Circuit theory is almost 200 years old, being studied by electrical engineers
and physicists. In the 1940s, the invention of semiconductor devices and later
the transistor further boosted the quest for understanding circuits. The com-
putational model of boolean circuits was introduced by Claude Shannon [19] in
1949, who showed that most boolean functions require circuits of exponential
size. It was a natural step to restrict the circuits in size and depth and con-
sider problems that are still computable on restricted circuits. Furst, Saxe and
Sipser [11] for example showed that Parity is not in AC0, but in NC1. The first
connection between circuits and Turing machines has been made by Savage [18].
It is generally believed that proving bounds using boolean circuits is easier than
by using Turing machines.

While all known exact algorithms for NP-hard problems have a superpoly-
nomial runtime in the worst case, there are numerous possible tricks and opti-
mizations that can make these algorithms viable on special cases of the problem,
even for large inputs. For example, there are yearly SAT-competitions where
SAT-solver algorithms try to decide the satisfiability of SAT formulas from real-
life applications, with many of these formulas containing millions of variables
and tens of millions of clauses [2].

Heuristic solutions to hard problems have also been extensively studied. In
particular, there is a wide range of so-called metaheuristics, which are general
approaches and techniques for developing a heuristic solution to a problem.
This includes some simpler approaches like local search or gradient descent,
and also some more sophisticated ones like simulated annealing, tabu search or
genetic algorithms [13]. Note that many techniques in machine learning are also
developed for this purpose: to provide heuristic solutions to hard problems.

The 2-approximation algorithm for Vertex Cover has long been known, dis-
covered by both Gavril and Yannakakis independently [12]. The FPTAS algo-
rithm for Knapsack has also been around for a long time, and it is one of the
most popular FPTAS examples [21].

Bin Packing has also been studied for multiple decades [12]. A recent analysis
of the First Fit heuristic is available by Dósa and Sgall, proving the even stronger
result that First Fit is a 1.7-approximation [8]. The variant which first sorts
the items in decreasing order is known to even provide a 11

9 -approximation up
to an additive constant, and this bound is known to be tight [7].

For Traveling Salesperson, a slightly improved version of our approximation
algorithm is due to Christofides, which improves the approximation ratio to
only 1.5 [5]. In the special case of an Euclidean TSP, there even exists a (rather
complicated) PTAS algorithm, which received a Gödel prize [3].

The inapproximability result for Independent Set was the final result of a
line of lower bounds in the early 2000s; John Hastad also received a Gödel prize
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for this result [15, 22].

This chapter was written in collaboration with Darya Melnyk, Pál András
Papp, and Andrei Constantinescu.

Bibliography

[1] Complexity zoo. https://complexityzoo.uwaterloo.ca/Complexity_

Zoo.

[2] The international SAT competition. http://www.satcompetition.org.

[3] Sanjeev Arora. Polynomial time approximation schemes for euclidean trav-
eling salesman and other geometric problems. J. ACM, 45(5):753–782,
September 1998.

[4] James A Carlson, Arthur Jaffe, and Andrew Wiles. The millennium prize
problems. American Mathematical Society Providence, RI, 2006.

[5] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling
salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa
Management Sciences Research Group, 1976.

[6] Stephen A Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the third annual ACM symposium on Theory of computing,
pages 151–158, 1971.
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Chapter 3

Cryptography

In Chapter 2 we learned that some functions are really hard to compute. This
might seem like terrible news, but enables modern cryptography!

3.1 Perfect Encryption

We start with the oldest problem in cryptography: How can we send a secret
message?

Definition 3.1 (Perfect Security). An encryption algorithm has perfect secu-
rity, if the encrypted message reveals no information about the plaintext message
to an attacker, except for the possible maximum length of the message.

Remarks:

• If an encryption algorithm offers perfect security, any plaintext mes-
sage of the same length could have generated the given ciphertext.

• Sometimes perfect security is also called information-theoretic secu-
rity.

• Is there an algorithm that offers perfect security?

1 # m = plaintext message Alice wants to send to Bob

2 # k = random key known by Alice and Bob, with len(k) = len(m)

3 # c = ciphertext, the encrypted message m

4

5 def encrypt_otp_Alice(m, k)

6 Alice sends c = m⊕ k to Bob # ⊕ = XOR

7

8 def decrypt_otp_Bob(c, k)

9 Bob computes m′ = c⊕ k

Algorithm 3.2: One Time Pad

49
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Remarks:

• In cryptography, it’s always Alice and Bob, with a possible attacker
Eve.

Theorem 3.3. Algorithm 3.2 is correct.

Proof. m′ = c⊕ k = (m⊕ k)⊕ k = m.

Theorem 3.4. Algorithm 3.2 has perfect security.

Proof. Given a ciphertext c, for every plaintext message m there exists a unique
key k that decrypts c to m, that is m = c ⊕ k. Therefore, if k is uniformly
random, every plaintext is equally likely and thus, ciphertext c reveals no infor-
mation about plaintext m.

Remarks:

• Algorithm 3.2 only works if the message m has the same length as the
key k. How can we encrypt a message of arbitrary length with a key
of fixed length?

• Block ciphers process messages of arbitrary length by breaking them
into fixed-size blocks and operating on each block.

1 # m, k, c as defined earlier, now with len(k) << len(m)

2

3 def encrypt_ECB(m, k)

4 Split m into r len(k)-sized blocks m1,m2, . . . ,mr

5 for i = 1, 2, 3, . . . , r:

6 ci = mi ⊕ k
7 c = c1; c2; . . . ; cr # ; stands for concatenation

8 return c

Algorithm 3.5: Electronic Code Book

Remarks:

• In Algorithm 3.5, blocks of the same plaintext result in the same → notebook

ciphertext, because the same key k is reused to encrypt every block.
Furthermore, reusing the same key reveals information about m1 and
m2: Suppose you have two messages m1,m2 encrypted with the same
key k, resulting in c1, c2. We now have c1⊕c2 = (m1⊕k)⊕(m2⊕k) =
m1 ⊕m2. So, reusing the same key k in Algorithm 3.2 is insecure.

• But there are better block based encryptions. CTR-AES (Advanced
Encryption Standard with Counter Mode of Operation) is the current
state of the art.

• For encryption, Alice and Bob need to agree on a key k first! While
this may be feasible for, e.g., secret agents, it is quite impractical for
everyday usage.

https://colab.research.google.com/drive/1i6us2Xl46qBy3sNj18TsuxDJ34oJ6xSA#scrollTo=KOjU0pt63RDd
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3.2 Key Exchange

How to agree on a common secret key in public, if you never met before?

Definition 3.6 (Primitive Root). Let p ∈ N be a prime. Then g ∈ N is a → notebook

primitive root of p if the following holds: For every y ∈ N, with 1 ≤ y < p, there
is an x ∈ N such that gx = y mod p.

Remarks:

• An example for p = 19 with g = 2:

20
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23

24

25

26

27

28
29

210

211

212

213

214

215

216

217

1 2
4

8

16
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7

14
91817

15

11

3

6

12

5
10

y = 2x mod 19

→ notebook
1 # p = publicly known large prime number

2 # g = publicly known primitive root of p

3 def Diffie_Hellman_Alice():

4 Pick a random secret key a ∈ {1, 2, . . . , p− 1}
5 Send ka = ga mod p to Bob

6 Receive kb from Bob

7 Calculate k = (kb)
a mod p

8

9 def Diffie_Hellman_Bob():

10 # same as Alice, swapping all a, b.

Algorithm 3.7: Diffie-Hellman Key Exchange

Theorem 3.8. In Algorithm 3.7, Alice and Bob agree on the same key k.

https://colab.research.google.com/drive/1i6us2Xl46qBy3sNj18TsuxDJ34oJ6xSA#scrollTo=Fg9Eqe4EX2I1
https://colab.research.google.com/drive/1i6us2Xl46qBy3sNj18TsuxDJ34oJ6xSA#scrollTo=FzWIKsB9LBRb&line=6&uniqifier=1
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Proof. Everything mod p, we have

k = (kb)
a =

(
gb
)a

= gb·a = ga·b = (ga)
b

= (ka)b = k.

Actually, Alice receives
(
gb mod p

)
and computes

(
gb mod p

)a
mod p, how-

ever under modulo operations
(
gb mod p

)a
=
(
gb
)a

. In fact, all the following
operations are well-defined in the modulo operation:

(a+ b) mod p = ((a mod p) + (b mod p)) mod p

(a− b) mod p = ((a mod p)− (b mod p)) mod p

(a · b) mod p = ((a mod p) · (b mod p)) mod p

(ga mod p)
b

mod p = (ga)
b

mod p

Remarks:

• Algorithm 3.7 does not have perfect security, but instead only com-
putational security.

Definition 3.9 (Computational Security). An algorithm has computational se-
curity, if it is secure against any adversary with polynomial computational re-
sources.

Remarks:

• The definition of security differs from one cryptographic primitive to
another (e.g., encryption, signatures, etc.), but they are typically re-
duced to the difficulty of a computational problem.

• The computational security of Algorithm 3.7 is based on the difficulty
of the discrete logarithm.

Problem 3.10 (Discrete Logarithm or DL). Given a prime p ∈ N, a primitive
root g of p, and y ∈ N with 1 ≤ y < p, find an x ∈ N such that gx = y mod p.

Remarks:

• In Algorithm 3.7, an adversary overhears ga and gb and wants to learn
the secret key gab. But it is unknown whether the adversary actually
needs to know how to compute the discrete logarithm to extract the
key. Maybe there is another way. Therefore, the following (stronger)
assumption captures the security of the protocol better.

Problem 3.11 (Computational Diffie Hellman or CDH). Given a prime p ∈ N,
a primitive root g of p, and ga, gb ∈ N with 1 ≤ ga, gb < p, compute gab mod p.

Lemma 3.12. CDH ≤ DL.

Proof. We just compute the discrete logarithms of ga, gb and then compute
gab.
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Remarks:

• The discrete logarithm (resp. computational Diffie-Hellman) assump-
tion states that it is infeasible to solve DL (CDH) with computation-
ally bounded resources.

• We have no proof that CDH (or DL) is hard, but there is also no
known efficient algorithm.

• It is not known whether the opposite direction (DL ≤ CDH) holds,
though in certain special cases it does.

• Conversely, modular exponentiation can be done in polynomial time → notebook

using repeated squaring.

• So far, we have assumed the adversary only listens on the communi-
cation channel. This is known as passive security.

• What about stronger adversaries?

Definition 3.13 (Man in the Middle Attack). A man in the middle attack is
defined as an adversary Eve deciphering or changing the messages between Alice
and Bob, while Alice and Bob believe they are communicating directly with each
other.

Theorem 3.14. The Diffie-Hellman Key Exchange from Algorithm 3.7 is vul-
nerable to a man in the middle attack.

Proof. Assume that Eve can intercept and relay all messages between Alice and
Bob. That alone does not make it a man in the middle attack, Eve needs to be
able to decipher or change messages without Alice or Bob noticing. Indeed, Eve
can emulate Alice’s and Bob’s behavior to each other, by picking her own a′, b′,
and then agreeing on common keys ga·b

′
, gb·a

′
with Alice and Bob, respectively.

Thus, Eve can relay all messages between Alice and Bob while deciphering
and (possibly) changing them, while Alice and Bob believe they are securely
communicating with each other.

Remarks:

• It is a bit like concurrently playing chess with two grandmasters: If
you play white and black respectively, you can essentially let them
play against each other by relaying their moves.

• How do we fix this? One idea is to personally meet in private first,
exchange a common secret key, and then use this key for secure com-
munication. However, having a key already completely defeats the
purpose of a key exchange algorithm.

• Can we do better? Yes, with public key cryptography.

https://colab.research.google.com/drive/1i6us2Xl46qBy3sNj18TsuxDJ34oJ6xSA#scrollTo=xuqF2CwMmExH
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3.3 Public Key Cryptography

Definition 3.15 (Public Key Cryptography). A public key cryptography system
uses two keys per participant: A public key kp, to be disseminated to everyone,
and a secret (private) key ks, only known to the owner. A message encrypted
with the public key of the intended receiver can be decrypted only with the corre-
sponding secret key. Also, messages can be digitally signed; a message verifiable
with a public key must have been signed with the corresponding secret key.

Remarks:

• Popular public key cryptosystems include RSA, Elliptic Curve Cryp-
tography, etc.

• We study a public key cryptosystem based on the DL problem.

• In Diffie-Hellman Key Exchange algorithm (Algorithm 3.7), Alice picked
a secret number a and computed a public number ka = ga mod p
which Alice sent to Bob. We use the exact same idea in Algorithm
3.16 to generate a pair of public and secret keys (kp, ks).

1 # p, g as defined earlier

2

3 def generate_key():

4 Pick a random secret key ks ∈ {1, 2, . . . , p− 1}
5 kp = gks mod p

6 return kp, ks

Algorithm 3.16: Key Generation

3.4 Public Key Encryption

Public key or asymmetric encryption schemes allow users to send encrypted
messages directly.

Definition 3.17. A public key encryption scheme is a triple of algorithms:

• A key generation algorithm that outputs a public/secret key pair kp, ks.

• An encryption algorithm that outputs the encryption c of a message m
using the receiver’s public key kp.

• A decryption algorithm that outputs the message m using the secret key
ks.

1 # p, g,m, kp, ks as defined earlier

2
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3 def encrypt(m, kp):

4 Pick a random nonce x ∈ {1, 2, . . . , p− 1}
5 c1 = gx mod p

6 c2 = m · kxp mod p

7 return c1, c2 # encryption c = (c1, c2)

8

9 def decrypt(c1, c2, ks):

10 m′ = c2 · cks·(p−2)1 mod p

11 return m′

Algorithm 3.18: ElGamal Encryption Algorithm

Theorem 3.19. ElGamal encryption scheme (Algorithms 3.16, 3.18) is correct.

Proof. Alice can recover the message: m′ = c2 ·cks·(p−2)1 =
(
m · kxp

)
·gx·ks·(p−2) =

m ·
(
kxp
)p−1

= m. The last step uses the following theorem.

Theorem 3.20 (Fermat’s Little Theorem). Let p be a prime number. Then,
for any x ∈ N: xp = x mod p. If x is not divisible by p, then xp−1 = 1 mod p.

Remarks:

• What about the security of ElGamal encryption? In the context of
public encryption schemes, we want that an adversary who listens in
the communication channel to not be able to extract the message m.

Problem 3.21 (Breaking-ElGamal-Encryption). Given (c1, c2) = (gx,m·gks·x)
and the public key kp = gks , compute the message m.

Remarks:

• The computational security of Algorithm 3.18 is based on the difficulty
of CDH.

Theorem 3.22. CDH ≤ Breaking-ElGamal-Encryption

Proof. Given (ga, gb), we create a problem instance for Breaking-ElGamal-
Encryption by setting c1 = ga, c2 a random value and kp = gb. From the
definition of the problem we can infer that c1 = gx = ga, kp = gks = gb and
thus c2 = m · gks·x = m · ga·b. We assume that we can break ElGamal, so we
know m. Now we simply compute mp−2 · c2 and we get

mp−2 · c2 = mp−2 ·m · ga·b = mp−1 · ga·b = ga·b.
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Remarks:

• In other words, we have shown that CDH is “easier” than Breaking-
ElGamal-Encryption. As long as the CDH is hard, so is Breaking-
ElGamal-Encryption.

• The other direction (Breaking-ElGamal-Encryption ≤ CDH) holds as
well.

• However, there is a problem with reductions: An encryption scheme
that reveals 90% of the plaintext is still considered secure with a re-
duction approach, as long as the remaining 10% is hard to find. This
is clearly unacceptable. We want extracting even a single bit of infor-
mation to be difficult.

• Both CDH and DL assumptions are not enough to show this. The
decisional Diffie Hellman assumption is an even stronger assumption
that we rely on.

Problem 3.23 (Decisional Diffie-Hellman or DDH). Given a prime p ∈ N, a
primitive root g of p, and ga, gb, gc ∈ N with 1 ≤ ga, gb, gc < p, decide if c = a·b.

Remarks:

• Note that DDH ≤ CDH.

• How can we prove security of ElGamal based on the DDH assumption?

• The idea is to compare ElGamal to a perfectly secure scheme. We
have seen an example for perfect security (OTP) which uses XOR.
To make the protocols comparable, we now present another version of
OTP that uses modulo computation.

1 # p, g,m, kp, ks as defined earlier

2 # k = random key known by Alice and Bob (shared secret)

3

4 def encrypt_modulo_otp_Alice(m, k)

5 Pick a random nonce x ∈ {1, 2, . . . , p− 1}
6 c1 = gx mod p

7 c2 = m · k mod p

8 return c1, c2 # encryption c = (c1, c2)

9

10 def decrypt_modulo_otp_Bob(c1, c2, k)

11 Bob computes m′ = c2 · kp−2 mod p

Algorithm 3.24: Modulo-OTP

Theorem 3.25. Algorithm 3.24 is correct.

Proof. m′ = c2 · kp−2 = (m · k) · kp−2 = m · kp−1 = m.
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Theorem 3.26. Algorithm 3.24 has perfect security.

Proof. Given a ciphertext c, for every plaintext message m there exists a unique
key k that decrypts c2 to m, that is m = c2 · kp−2. Therefore, if k is uniformly
random, every plaintext is equally likely and thus, ciphertext c2 reveals no
information about plaintext m.

Remarks:

• Note that the key c1 is not used at all for encryption and thus is
independent of the message. The sole reason why we have that is to
make a protocol very similar to ElGamal which we will use in the
following proof.

• The idea is to show that in presence of polynomially bounded adver-
saries ElGamal is just as hard as Modulo-OTP. Since Modulo-OTP is
impossible to crack, so is ElGamal (under DDH assumption).

Problem 3.27 (Distinguish(Modulo-OTP, ElGamal)). Given a protocol where
Alice sends an encrypted message to Bob, decide whether Alice and Bob are
using Modulo-OTP (Algorithm 3.24) or ElGamal (Algorithm 3.18).

Theorem 3.28. DDH ≤ Distinguish(Modulo-OTP, ElGamal)

Proof. Given ga, gb, gc, we create an instance for Distinguish(Modulo-OTP,
ElGamal), where we set ga = gks and gb = gr (both publicly known) and we
encrypt any message m with gc, i.e. c2 = gc · m. If gc = gab, then we have
the exact situation of ElGamal encryption, since there we encrypt by using
c2 = gks·r · m. If gab 6= gc, then we have the exaction situation of Modulo-
OTP encryption, where we can set k = gc since gc has no relation to public
information like ga and gb.

Remarks:

• ElGamal-Encryption has some other features, e.g., it is homomorphic.

Definition 3.29 (Homomorphic Encryption Schemes). An encryption scheme
is said to be homomorphic under an operation ∗ if E(m1∗m2) = E(m1)∗E(m2).

Remarks:

• In other words, we can directly compute with encrypted data!

• m1 ∗m2 and E(m1) ∗E(m2) indicates that ciphertexts and messages
can both be operated upon using the same operation. This depends on
the representation of ciphertexts, and is not always precisely defined.
In the case of ElGamal encryption’s homomorphism, we use pair-
wise vector multiplication to multiply ciphertexts: E(m1) · E(m2) =
(c11, c12) · (c21, c22)T .

Lemma 3.30. The ElGamal encryption scheme (Algorithms 3.16, 3.18) is ho-
momorphic under modular multiplication.
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Proof. We refer the encryption of message m with public key kp, large prime p,
generator g, and a random nonce x as E(m) = (c1, c2) = (gx,m · kxp )

E(m1) · E(m2) = (gx1 ,m1 · kx1
p ) · (gx2 ,m2 · kx2

p )T

= (gx1+x2 , (m1 ·m2)kx1+x2
p ) = E(m1 ·m2)

Remarks:

• Not every public encryption scheme is homomorphic under all op-
erations. If an encryption scheme is homomorphic only under some
operations, it’s called a partial homomorphic encryption scheme. For
example, we have:

– Modular multiplication: ElGamal cryptosystem, RSA cryptosys-
tem.

– Modular addition: Benaloh cryptosystem, Pallier cryptosystem.

– XOR operations: Goldwasser–Micali cryptosystem.

• There are fully homomorphic encryption schemes that support all pos-
sible functions, like Craig Gentry’s lattice-based cryptosystem.

• Homomorphic encryption is used in electronic voting schemes to sum
up encrypted votes.

3.5 Digital Signatures

Definition 3.31 (Digital Signature Scheme). A digital signature scheme is a
triple of algorithms:

• A key generation algorithm that outputs a public/secret key pair kp, ks.

• A signing algorithm that outputs a digital signature σ on message m using
a secret key ks.

• A verification algorithm that outputs True if the signature σ on the mes-
sage m is valid using the public key kp of the signer, and False otherwise.

Definition 3.32 (Correctness). A signature scheme is correct if the verification
algorithm on input σ,m, kp returns True only if σ is the output of the signing
algorithm on input m, ks.

Remarks:

• All algorithms (key generation, signing, and verification) should be
efficient, i.e., computable in polynomial time.

• Digital signatures offer authentication (the receiver can verify the ori-
gin of the message), integrity (the receiver can verify the message
has not been modified since it was signed), and non-repudiation (the
sender cannot falsely claim that they have not signed the message).
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• Widely known signature schemes are ElGamal, Schnorr, and RSA.

1 # p, g,m as defined earlier

2 # h = cryptographic hash function like SHA256

3 # kp, ks = Alice's public/secret key pair

4 # s, r = the signature sent by Alice

5

6 def sign_Alice(m, ks):

7 Pick a random x ∈ {1, 2, . . . , p− 2}
8 r = gx mod p

9 s = x · h(m)− ks · r mod p− 1

10 return s, r # signature σ = (s, r)

11

12 def verify_Bob(m, s, r, kp):

13 return rh(m) == krp · gs mod p

Algorithm 3.33: ElGamal Digital Signatures

Remarks:

• The key generation algorithm for ElGamal signatures ElGamal en-
cryption scheme (Algorithm 3.16).

Theorem 3.34. The ElGamal digital signature scheme (Algorithms 3.16, 3.33)
is correct.

Proof. The algorithm is correct, meaning that a signature generated by (an
honest) Alice will always be accepted by Bob. That is because,

krp · gs = gks·r · gx·h(m)−ks·r = gks·r+x·h(m)−ks·r = gx·h(m) = rh(m) mod p.

Remarks:

• The random variable x in Line 7 is often called a nonce – a number
only used once.

• Writing mod p− 1 in Line 9 is not a typo. In the exponent, we always
compute modulo p − 1, since that will make sure that values larger
than p− 1 will be truncated (Theorem 3.20).

• The function h() in Line 9 is a so-called cryptographic hash function.
If we did not use h(), we had a problem:

Theorem 3.35. ElGamal signatures without cryptographic hash functions are
vulnerable to existential forgery.
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Proof. Let s, r be a valid signature on message m. Then, (s′, r′) = (sr, r2) is → notebook

a valid signature on message m′ = rm/2 (as long as either m or r is even),
because

kr
′

p · gs
′

=
(
gks
)r2 · gs·r = gr

2·ks · gr·(x·m−r·ks) = gr
2·ks+r·x·m−r2·ks =

gr·x·m = (gx)
r·m

= r2r·m/2 =
(
r2
)r·m/2

= (r′)m
′

mod p.

Remarks:

• Existential forgery is the creation of at least one message-signature
pair (m, s), when m was never signed by Alice. Hashing the message
in the computation makes the inversion difficult.

• Craig Wright used Satoshi Nakamoto’s key in Bitcoin and signed a
random message attempting to impersonate the famous creator of
Bitcoin. However, when Wright was asked to sign “I am Satoshi”
he could not deliver!

• So what is a cryptographic hash function?

3.6 Cryptographic Hashing

Definition 3.36 (Cryptographic Hash Function). A cryptographic hash func-
tion is a function that maps data of arbitrary size to a bit array of a fixed size
(the hash value or hash). A cryptographic hash function is called one-way if it
is easy to compute but hard to invert and a cryptographic hash function is called
collision-resistant if it is difficult to find two different values that are mapped to
the same hash.

Remarks:

• A hash function is deterministic: the same message always results in
the same hash value.

• SHA2, SHA3 (Secure Hash Algorithm 2/3), RIPMED, and BLAKE
are some example families of cryptographic hash functions. SHA256
is a specific implementation of the SHA2 construction which outputs
a 256 bit output for arbitrary sized inputs. Earlier constructions like
MD5 or SHA1 are considered broken/weak now.

• One-way and collision-resistance properties can be phrased as compu-
tational problems.

Problem 3.37 (Collision). Find two different values x and x′ such that h(x) =
h(x′).

Problem 3.38 (Inversion). Given a value y, find a value x such that h(x) = y.

Lemma 3.39. Collision ≤ Inversion.

https://colab.research.google.com/drive/1i6us2Xl46qBy3sNj18TsuxDJ34oJ6xSA#scrollTo=R_yu1Z02dVx9
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Proof. Let us choose some random value x and compute h(x). If we invert
h(x), it is highly likely we get a value x′ such that x′ 6= x (collision), since hash
functions maps data of arbitrary size to fixed-size values, and hence there many
potential inputs.

Lemma 3.40. Existence of one-way functions ⇒ P 6= NP.

Proof. Suppose there exists a function h that is one-way. We define a decision
problem (Definition 2.2) as follows: Given an input (x̄, y), decide whether there
is a input x such that h(x) = y with x̄ being a prefix of x. This decision
problem is in NP: Given (x̄, y) as input and x as possible solution, one can
check in polynomial time that h(x) = y.

If the decision problem was in P, we could invert h one bit at a time. We
start by checking whether (0, y) or (1, y) is true. Whichever is true determines
the initial prefix x̄. We continue to adding a bit to x̄ such that the decision
with that added bit continues to be true. This way we construct all bits of x.
But since we assumed that h was one-way, the decision problem is not in P. We
have now a decision problem that is in NP but not in P and thus P 6= NP.

Remarks:

• Since we do not know P 6= NP, we even less know whether one-way
functions exist. But that does not keep us from using them.

• What about the security of digital signatures? In the context of digital
signatures, only the owner of the secret key should be able to produce
valid signatures.

Problem 3.41 (Forging-ElGamal-Signatures). For a given digital signature
scheme, produce a valid message-signature pair without having access to the
secret key.

Remarks:

• The computational security of Algorithm 3.33 is based on the difficulty
of inverting one-way functions and computing the discrete logarithm.
Intuitively, to forge a signature, a malicious Bob can either find a
collision in the hash function, h(m) = h(m′) mod p − 1, or extract
Alice’s secret key ks. Therefore, Bob must either solve Collision or DL.
Both problems are assumed to be hard. However, there is no proof
that these are the only ways of forging ElGamal digital signatures.

Conjecture 3.42. (Collision or DL) ≤ Forging-ElGamal-Signatures

Remarks:

• Note that Alice must choose a different x for each signature, keeping
x secret. Otherwise, security can be compromised. In particular, if
Alice uses the same nonce x and secret key ks to sign two different
messages, Bob can compute ks.

• Similarly to digital signatures, message authentication codes are used
to ensure a message received by Bob is indeed sent by Alice.
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Definition 3.43 (Message Authentication Code or MAC). A message authen-
tication code is a bitstring that accompanies a message. It can be used to verify
the authenticity of the ciphertext in combination with a secret authentication
key ka (different from k) shared by the two parties.

Remarks:

• Eve should not be able to change the encrypted message and/or the
MAC, and get Bob to believe that Alice sent the encrypted message.

• MACs are symmetric, i.e., they are generated and verified using the
same secret key.

• Algorithm 3.44 shows a hash based MAC construction.

1 # m, kp, c as defined earlier

2 # ka = key to authenticate c

3

4 def encrypt_then_MAC(m, kp, ka):

5 c = encrypt(m, kp)

6 a = h(ka; c)

7 return c, a

Algorithm 3.44: Hash Based Message Authentication Code

Remarks:

• Bob accepts a message c only if he calculates h(ka; c) = a.

• With some hash functions (e.g., SHA2), it is easy to append data to
the message and obtain another valid MAC without knowing the key.
To avoid these attacks, in practice we use h(ka;h(ka; c)).

• Now Alice and Bob can securely communicate over the insecure com-
munication channels of the internet, due to the known public keys.

• But how does Bob know that Alice’s public key really belongs to
Alice? What if it is really Eve’s key? Quoting Peter Steiner: “On the
Internet, nobody knows you’re a dog.”

3.7 Public Key Infrastructure

“Love all, trust a few.” – William Shakespeare

What can we do, unless we personally meet with everyone to exchange our
public keys? The answer is trusting a few, in order to trust many.
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Remarks:

• Let’s say that you don’t know Alice, but both Alice and you know
Doris. If you trust Doris, then Doris can verify Alice’s public key for
you. In the future, you can ask Alice to vouch for her friends as well,
etc.

• Trust is not limited to real persons though, especially since Alice and
Doris are represented by their keys. How do you know that you give
your credit card information to a shopping website, and not an at-
tacker? You probably don’t know the owner of the shopping website
personally.

Definition 3.45 (Public Key Infrastructure or PKI). Public Key Infrastructure
(PKI) binds public keys with respective identities of entities, like people and
organizations. People and companies can register themselves with a certificate
authority.

Definition 3.46 (Certificate Authority or CA). A certificate authority is an
entity whose public key is stored in your hardware device, operating system, or
browser by the respective vendor like Apple, Google, Microsoft, Mozilla, Ubuntu,
etc.

Remarks:

• A certificate is an assertion that a known real world person, with a
physical postal address, a URL, etc. is represented by a given public
key, and has access to the corresponding secret key.

• You can accept a public key if a certificate to that effect is signed by
a CA whose public key is stored in your device.

• CA’s whose public keys are stored in your device are also called root
CA’s. Sometimes, there are intermediate CA’s whose certificates are
signed by root CA’s, and who can sign many other end-user certifi-
cates. This enables scaling, but also introduces vulnerabilities.

• If a CA’s secret key is compromised by a malicious actor, they can
sign themselves a certificate saying that they are someone else (say,
Google), and then impersonate Google to innocent browsers which
trust this CA. A CA’s key can be revoked if this happens, or CA’s
keys can have shorter expiry times.

• Another problem is that your own set of root certificates might be
compromised, e.g., if malicious software replaces your browser’s root
certificates with fakes.

3.8 Transport Layer Security

To communicate securely over the internet, we simply combine the crypto-
graphic primitives we learned so far!
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Remarks:

• Alice and Bob don’t want Eve to be able to read their messages.
Therefore, they encrypt their messages using block based encryption
(Section 3.1).

• For the encryption algorithm, they need to agree on a secret key using
a key exchange protocol (Section 3.2).

• When Alice receives a message, how can she be sure that the message
hasn’t been modified on the way from Bob to her? Alice and Bob
use message authentication (Section 3.5) to ensure integrity of the
communication.

• Let’s assume that Alice hasn’t met Bob in person before. How can
she be sure that she is really communicating with Bob and not with
Eve? She would ask Bob to authenticate himself (Sections 3.5, 3.7).

Protocol 3.47 (Transport Layer Security, TLS). TLS is a network protocol
in which a client and a server exchange information in order to communicate
in a secure way. Common features include a bulk encryption algorithm, a key
exchange protocol, a message authentication algorithm, and lastly, the authen-
tication of the server to the client.

Remarks:

• TLS is the successor of Secure Sockets Layer (SSL).

• HTTPS (Hypertext Transfer Protocol Secure) is not a protocol on its
own, but rather denotes the usage of HTTP via TLS or SSL.

• What other problems can we solve using crypto? The answer is sur-
prisingly many! In the next sections we will discuss some of the most
exciting cryptographic primitives beyond TLS.

3.9 Zero-Knowledge Proofs

Problem 3.48 (Waldo). Peggy and Vic play Where’s Waldo. Can Peggy prove
she found Waldo without revealing Waldo’s location to Vic?

Remarks:

• In the physical world, Peggy can cover the picture with a large piece of
cardboard that has a small, Waldo-shaped hole in its center. She can
then place the cardboard such that only Waldo is visible through the
hole and therefore prove to Vic she has found Waldo without revealing
any information regarding Waldo’s location.

• In Zero-Knowledge Proofs (ZKP), the prover, Peggy, wants to con-
vince the verifier, Vic, of the knowledge of a secret without revealing
any information about the secret to Vic.
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Definition 3.49 (Zero-Knowledge Proof). A pair of probabilistic polynomial
time interactive programs P, V is a zero-knowledge proof if the the following
properties are satisfied:

• Completeness: If the statement is true, then an honest verifier V will
be convinced by an honest prover P .

• Soundness: If the statement is false, a cheating prover P cannot convince
the honest verifier V that it is true, except with negligible probability.

• Zero-knowledge: If the statement is true, a verifier V learns nothing
beyond the statement being true.

Remarks:

• Soundness concerns the security of the verifier, and zero-knowledge
the security of the prover.

Problem 3.50 (Color-Blind). Vic has two spheres: one red and one blue. Vic
is color-blind and thus he cannot differentiate between these two spheres; they
look exactly the same to him. Peggy, on the other hand, is not color-blind and
wants to prove to Vic that she can differentiate between these two spheres. How
can she do this?

Remarks:

• Peggy wants to convince Vic in zero-knowledge, meaning that she
wants to give Vic absolutely no additional information except the fact
that she can differentiate these two spheres. For example, she does
not want Vic to know which sphere is red and which one is blue.

1 # n = security parameter

2 def ColorBlind(n):

3 repeat n times:

4 Vic takes the spheres behind his back

5 Vic either switches the spheres or not

6 Vic shows the spheres to Peggy

7 Peggy answers whether Vic switched the spheres or not

Algorithm 3.51: Color-blind

Theorem 3.52. Algorithm 3.51 is complete.

Proof. If Peggy knows how to differentiate the spheres (i.e. if she is not color-
blind) and Vic behaves according to the protocol, Peggy can always tell whether
Vic switched the spheres or not.

Theorem 3.53. Algorithm 3.51 is sound.
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Proof. If Peggy cannot differentiate the colors, then she has only 50% of guessing
correctly whether Vic switched the spheres or not. In such a case, Peggy is
caught with a probability 1/2, and the probability that she survives n rounds
of the protocol undetected is negligible (2−n).

Remarks:

• The main intuition is that Peggy’s answers do not reveal anything
about the spheres. In each round, Peggy simply answers whether the
spheres are switched or not, and none of these answers tell which one is
red and which one is blue. It seems that this proves that our protocol
is zero knowledge, but. . .

Theorem 3.54. Algorithm 3.51 is not zero-knowledge.

Proof. Consider a malicious Vic who has not 2 but 4 spheres: One red and one
blue (as before), plus a second set of spheres: Red and Blue. These upper-case
spheres look exactly the same as the lower-case spheres, but Vic knows their
color, because somebody told him. In the first round Vic shows the red and blue
spheres, just as in the normal protocol. In the second round however, Vic shows
the Red and Blue spheres. Now Peggy’s answer (switched or not) will directly
reveal the color of the original (lower-case) spheres to Vic. So the protocol was
not zero-knowledge.

Remarks:

• Peggy is interested to show that the protocol is not zero-knowledge.
So she comes up with a “movie script” to prove that Vic can learn
something. She gives the script to Vic. Vic is the director, the only
actor (Vic also plays Peggy), and the cutter. If Vic can produce any
movie Peggy wants to see, the protocol is zero-knowledge.

• The color-blind protocol is not zero-knowledge because Vic could not
produce the movie with the 4 spheres.

Definition 3.55. A protocol consisting of a pair of probabilistic polynomial time
interactive programs P, V is zero-knowledge, if every script requested by P can
be generated by V .

Remarks:

• An example of a ZKP is Hamiltonian Cycle (HC), see Problem 2.68.
HC is particularly interesting because HC is NP-complete. This means
that a ZKP for HC can thus be used as a ZKP for every problem in
NP.

1 # n = security parameter

2 # G = large graph

3 def ZKP_HamiltonianCycle(G):
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4 repeat n times:

5 Peggy creates graph H = permutation of G

6 Peggy hides each entry of H

7 Vic tosses a coin c = [perm, cyc]

8 if c == perm:

9 Peggy opens H and gives the permutation

10 Vic verifies that it is the original graph G

11 elif c == cyc:

12 Peggy opens only the entries of the cycle

13 Vic verifies it is a cycle

Algorithm 3.56: Hamiltonian Cycle ZKP

Remarks:

• A permutation H of G is the same graph, but we only permute the
names of the nodes of G.

• If c = cyc, the prover should be able to open only the cycle. This can
be done, for example, by using a matrix representation of graphs as
illustrated in Figure 3.59.

Theorem 3.57. Algorithm 3.56 is complete.

Proof. If Peggy knows the cycle in G, she can satisfy Vic’s demand in both
cases. In case c = perm, Peggy opens the whole matrix and also returns the
renaming of G’s nodes in H. In case c = cyc, Peggy can easily construct and
return a cycle in H by applying the permutation in the original cycle in G.

Theorem 3.58. Algorithm 3.56 is sound.

Proof. If someone knew how to answer both questions, then they can construct
the cycle: Take the cycle in H and do the reverse permutation to get the cycle
in G.

If Peggy does not know the cycle, the previous argument implies that she
can only answer one of these questions. In such a case, Peggy is caught with
probability 1/2, and the probability that she survives n rounds of the protocol
undetected is negligible (2−n).

Remarks:

• What about the zero-knowledge property? The main intuition is that
Peggy’s answers do not reveal the original cycle in G. In each round,
if the challenge is c = perm Vic only sees a permutation of G. On the
other hand, if the challenge is c = cyc, Vic sees that there is a cycle in
the hidden graph. However, for all we know, the hidden matrix could
be filled all with ones. So in both cases, zero information about the
cycle is revealed. As explained in Theorem 3.54, such an argument
is not enough. In the following we prove that HC is zero-knowledge
based on our Definition 3.55.
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hide the values

c = perm c = cyc

Figure 3.59: An illustration of the ZKP for Hamiltonian Cycle

Theorem 3.60. Algorithm 3.56 is zero-knowledge.

Proof. We only sketch this proof – formally proving zero-knowledge is usually
difficult and beyond the scope of this lecture. We need to show that Vic can
produce any script Peggy throws at him. Vic uses his cutter abilities. He
can produce two scenes, one hiding a random permutation of G, the other
hiding a matrix of 1’s only. If the script demands a permutation, Vic shows the
permutation scene. If the script demands a cycle, Vic shows the scene revealing
a cycle in the 1-only matrix. If Vic showed the wrong scene, he will cut it and
do the other one instead.
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Remarks:

• But how can we hide the entries of a matrix? We can use commitment
schemes.

3.10 Commitment Schemes

Commitment schemes are the digital analogue of a safe.

Definition 3.61 (Commitment Scheme). A commitment scheme is a two-phase
interactive protocol between Alice, the sender, and Bob, the receiver.

• Commit phase: Alice commits to a message m by producing a public
commitment c and a secret decommitment d. Alice sends c to Bob.

• Reveal phase: Alice sends m and d to Bob. Bob verifies that the message
m corresponds to the commitment c.

A commitment scheme must be correct, binding and hiding.

• Correctness: If both Alice and Bob follow the protocol, then Bob always
returns True in the reveal phase.

• Hiding: A commitment scheme is hiding if Bob cannot extract any in-
formation about the committed message before the reveal phase.

• Binding: A commitment scheme is binding if Alice cannot change her
commitment after the commit phase.

Remarks:

• Is there a simple way to create a commitment scheme? How about
using hash functions?

1 # m,h as defined earlier

2 # n = security parameter

3

4 def commit_Alice(m):

5 Pick a random n-bit string r

6 Send c = h(r;m) to Bob

7

8 def reveal_Bob(c,m, r): # Bob receives m, r from Alice

9 return c == h(r;m)

Algorithm 3.62: A Simple Commitment

Theorem 3.63. Any cryptographic hash function can produce a (computation-
ally binding and computationally hiding) commitment scheme.

Proof. Assume Alice committed to a value m by sending h(r,m).
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• Computationally binding: To change her commitment, Alice needs to find
a collision (i.e. an r′,m′) such that h(r′;m′) = h(r;m). This is hard for a
computationally bounded Alice.

• Computationally hiding: In order for Bob to find what is the committed
value, he needs to invert the given hash function. This is hard for a
computationally bounded Bob.

Remarks:

• One might think that this scheme is perfectly hiding, since there are
infinitely many values that could be committed. We then deduce that
even if Bob has unlimited computational power he cannot find the
committed value. This is not the case, because we have not specified
how the hash function looks like. For example, it might happen that
for a particular value there is no collision, and thus Bob with unlimited
computational power would be able to find the committed value.

• What if Alice or/and Bob are computationally unbounded?

1 # p, g,m, n as defined earlier

2 # y = a random value in {1, 2, . . . , p− 1}
3 # x with y = gx mod p is unknown

4

5 def commit_Alice(m):

6 Pick a random r ∈ {1, 2, . . . , p− 1}
7 c = gm · yr mod p

8 Send c to Bob

9

10 def reveal_Bob(m, c, r): # Bob receives m, c, r from Alice

11 return c == gm · yr mod p

Algorithm 3.64: Pedersen Commitment

Theorem 3.65. Pedersen commitments are correct.

Proof. Given m, c, r, y, Bob can verify c = gm · yr mod p. Thus, the Pedersen
commitment scheme is correct.

Theorem 3.66. Pedersen commitments are perfectly hiding.

Proof. Given a commitment c, every message m is equally likely to be the
committed message to c. That is because given m, r and any m′, there exists
(a unique) r′ such that gm · yr = gm

′ · yr′ mod p. With y = gx mod p (such a
value x always exists since g is a primitive root), we just have to solve the linear
equation m′ + x · r′ = m+ x · r mod p− 1.
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Theorem 3.67. Pedersen commitments are computationally binding.

Proof. We show that DL ≤ ChangingCommitment, where ChangingCommit-
ment is defined as the problem where Alice needs to find different values m′, r′

that have the same commitment c = gm · yr (i.e. gm · yr = gm
′ · yr′).

Given g, y = gx our goal is to find x. We create an instance for ChangingCom-
mitment by first choosing any m, r and commit to c = gm · yr. We assume
we can solve ChangingCommitment and thus Alice can find m′, r′ such that
gm ·yr = gm

′ ·yr′ . The previous equation can also be written as gm−m
′

= yr
′−r.

We can now compute x = (m−m′) · (r′ − r)p−2 mod p− 1, because

gx = g(m−m
′)·(r′−r)p−2

=
(
g(m−m

′)
)(r′−r)p−2

= y(r
′−r)·(r′−r)p−2

= y(r
′−r)p−1

= y.

The last step assumes that p − 1 is prime and thus we can apply Fermat’s
Theorem. In practice, the group used always has a size that is a prime.

Remarks:

• If Alice sends both c, r as a commitment to Bob, Pedersen commit-
ments can be perfectly binding and computationally hiding.

• But why compromise at all? Ideally, we want both: perfectly hiding
and perfectly binding.

Theorem 3.68. A commitment scheme can either be perfectly binding or per-
fectly hiding but not both.

Proof. Assume a commitment scheme is perfectly binding. Then Alice cannot
change her commitment and open another value, even if she is computationally
unbounded. This can be the case if and only if there is only a unique value
m that can be committed to c. But this means that for a computationally
unbounded Bob, he can simply generate all possible commitments and find the
value m. Thus the commitment scheme is not perfectly hiding.

Remarks:

• Commitment schemes have important applications in several cryp-
tographic protocols, such as zero-knowledge proofs, and multiparty
computation.

3.11 Threshold Secret Sharing

How does a company share its vault passcode among its board of directors so
that at least half of them have to agree to opening the vault?

Definition 3.69 (Threshold Secret Sharing). Let t, n ∈ N with 1 ≤ t ≤ n. An
algorithm that distributes a secret among n participants such that t participants
need to collaborate to recover the secret is called a (t,n)-threshold secret sharing
scheme.

→ notebook

https://colab.research.google.com/drive/1i6us2Xl46qBy3sNj18TsuxDJ34oJ6xSA#scrollTo=uNWTiDmLAhMQ
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1 # s = secret real number to be shared

2 # t = threshold number of participants to recover the secret

3 # n = total number of participants

4

5 def distribute(s, t, n):

6 Generate t− 1 random a1, . . . , at−1 ∈ R
7 Obtain a polynomial f(x) = s+ a1x+ . . .+ at−1x

t−1

8 Generate n distinct x1, . . . , xn ∈ R \ {0}
9 Send (xi, f(xi)) to participant Pi

10

11 def recover(x = [x0, x1, . . . , xt], y = [f(x0), f(x1), . . . , f(xt)]):

12 f = lagrange(x, y)

13 return f(0)

Algorithm 3.70: Shamir’s (t, n) Secret Sharing Scheme

Theorem 3.71. Algorithm 3.70 is correct.

Proof. Any t shares will result in the reconstruction of the same polynomial,
hence the secret will be revealed.

Theorem 3.72. Algorithm 3.70 has perfect security.

Proof. A polynomial of degree t−1 can be defined only by t or more points. So,
any subset t−1 of the n shares cannot reconstruct a polynomial of degree t−1.
Given less than t shares, all polynomials of degree t− 1 are equally likely; thus
any adversary, even with unbounded computational resources, cannot deduce
any information about the secret if they have less than t shares.

Remarks:

• Note that for numerical reasons, in practice modulo p arithmetic is → notebook

used instead of real numbers.

• What happens if a participant is malicious? Suppose during recov-
ery, one of the t contributing participants publishes a wrong share
(x′i, f(x′i)). The t− 1 honest participants are blocked from the secret
while the malicious participant is able to reconstruct it. To prevent
this, we employ verifiable secret sharing schemes.

Definition 3.73 (Verifiable Secret Sharing or VSS). An algorithm that achieves
threshold secret sharing and ensures that the secret can be reconstructed even if
a participant is malicious is called verifiable secret sharing.

https://colab.research.google.com/drive/1i6us2Xl46qBy3sNj18TsuxDJ34oJ6xSA#scrollTo=uNWTiDmLAhMQ
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Remarks:

• Typically, a secret sharing scheme is verifiable if auxiliary information
is included that allows participants to verify their shares as consistent.

• VSS protocols guarantee the secret’s reconstruction even if the dis-
tributor of the secret (the dealer) is malicious.

• So far, we assumed a dealer knows the secret and all the shares. How-
ever, we want to avoid trusted third parties and distribute trust. A
strong cryptographic notion towards this direction is multiparty com-
putation.

3.12 Multiparty Computation

Alice, Bob, and Carol are interested in computing the sum of their income
without revealing to each other their individual income.

1 # a, b, c = Alice's, Bob's and Carol's income

2

3 def Sum_MPC():

4 Alice picks a large random number r

5 Alice sends to Bob m1 = a+ r

6 Bob sends to Carol m2 = b+m1

7 Carol sends to Alice m3 = c+m2

8 Alice computes s = m3 − r
9 Alice shares s with Bob and Carol

Algorithm 3.74: Computation of the Sum of 3 Parties’ Income

Theorem 3.75. Algorithm 3.74 is correct, meaning the output is the desired
sum.

Proof. The output of the algorithm is m3 − r = c+m2 − r = c+ b+m1 − r =
c+ b+ a+ r − r = a+ b+ c.

Theorem 3.76. Algorithm 3.74 keeps the inputs secret.

Proof. Bob receives r + a, hence no information is revealed concerning Alice’s
income as long as r is large enough. In addition, both Carol and Alice cannot
deduce any information about the individual incomes as they are obfuscated.

Remarks:

• Algorithm 3.74 is an example of secure 3-party computation.

• The generalization of this problem to multiple parties is known as
multiparty computation.
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Definition 3.77 (Multiparty Computation or MPC). An algorithm that al-
lows n parties to jointly compute a function f(x1, x2, . . . , xn) over their inputs
x1, x2, . . . , xn while keeping these inputs secret achieves secure multiparty com-
putation.

Remarks:

• Formal security proofs in MPC protocols are conducted in the re-
al/ideal world paradigm.

Definition 3.78. The real/ideal world paradigm states two worlds: In the ideal
world, there is an incorruptible trusted third party who gathers the participants’
inputs, computes the function, and returns the appropriate outputs. In contrast,
in the real world, the parties exchange messages with each other. A protocol is
secure if one can learn no more about each participant’s private inputs in the
real world than one could learn in the ideal world.

Remarks:

• In Algorithm 3.74, we assume all participants are honest. But what
if some participants are malicious?

• In MPC, the computation is often based on secret sharing of all the
inputs and zero-knowledge proofs for a potentially malicious partici-
pant. Then, the majority of honest parties can assure that bad be-
havior is detected and the computation continues with the dishonest
party eliminated or her input revealed.

Chapter Notes

In 1974, Ralph Merkle designed Merkle Puzzles [15], the first key exchange
scheme which works over an insecure channel. In Merkle Puzzles, the eaves-
dropper Eve’s computation power can be at most quadric to Alice’s and Bob’s
computational power. This quadratic difference is not enough to guarantee
security in practical cryptographic applications. In 1976, Diffie and Hellman in-
troduced a practically secure key exchange scheme over an insecure channel [6].

Diffie Hellman key exchange [6], Schnorr zero-knowledge proofs [19], ElGa-
mal signature and encryption schemes [7] all rely on the hardness of the discrete
logarithm problem [3]. So far we have been conveniently vague in our choice
of a group, but the discrete logarithm problem is solvable in polynomial-time
when we choose an inappropriate group. To avoid this, we can select a group
that contains a large subgroup. For example, if p = 2q+ 1 and q is prime, there
is a subgroup of size q, called the quadratic residues of p, which is often used in
practice.

Another frequently employed hard problem is integer factorization [12]. The
RSA cryptosystem [18], developed in 1977 at MIT by Ron Rivest, Adi Shamir,
and Leonard Adleman, depends on integer factorization. RSA was also the first
public-key encryption scheme that could both encrypt and sign messages.

A trapdoor one-way function is a function that is easy to compute, difficult
to invert without the trapdoor (some extra information), and easy to invert with
a trapdoor [6, 25]. The factorization of a product of two large primes, used in
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RSA, is a trapdoor function. While selecting and verifying two large primes and
multiplying them is easy, factoring the resulting product is (as far as known)
difficult. However, if one of the prime numbers is given as a trapdoor, then
it is easy to compute the other prime number. There are no known trapdoor
one-way functions based on the difficulty of discrete logarithms (either modulo
a prime or in a group defined over an elliptic curve), because there is no known
“trapdoor” information about the group that enables the efficient computation
of discrete logarithms. In general, a digital signature scheme can be built by
any trapdoor one-way function in the random oracle model [14].

A random oracle [1] is a function that produces a random output for each
query it receives. It must be consistent with its replies: if a query is repeated, the
random oracle must return the same answer. Hash functions are often modeled
in cryptographic proofs as random oracles. If a scheme is secure assuming the
adversary views some hash function as a random oracle, it is said to be secure
in the random oracle model.

Secure digital signature schemes are unforgeable. There are several versions
of unforgeability. For instance, Schnorr signatures, a modification of ElGamal
signatures, are existentially unforgeable against adaptively chosen message at-
tacks (EUF-CMA) [20]. In the adaptively chosen message attack, the adversary
wants to forge a signature for a particular public key (without access to the
corresponding secret key) and has access to a signing oracle, which receives
messages and returns valid signatures under the public key in question. The
proof that Schnorr digital signatures are EUF-CMA is based on the proof that
the Schnorr zero-knowledge proof is sound.

Zero-knowledge proofs are a complex cryptographic primitive; formally defin-
ing zero-knowledge proofs was a delicate task that took 15 years of research [2,
10]. One key application for zero-knowledge proofs is in user identification
schemes. Another recent one is in cryptocurrencies, such as Monero [23].

The concept of information-theoretically secure communication was intro-
duced in 1949 by American mathematician Claude Shannon, the inventor of
information theory, who used it to prove that the one-time pad system was se-
cure [22]. Secret sharing schemes are information theoretically secure. Verifiable
secret sharing was first introduced in 1985 by Benny Chor, Shafi Goldwasser,
Silvio Micali and Baruch Awerbuch [5]. Thereafter, Feldman introduced a prac-
tical verifiable secret sharing protocol [9] which is based on Shamir’s secret
sharing scheme [21] combined with a homomorphic encryption scheme. Veri-
fiable secret sharing is important for secure multiparty computation to handle
active adversaries.

Multiparty computation (MPC) was formally introduced as secure two-party
computation (2PC) in 1982 for the so-called Millionaires’ Problem, a specific
problem which is a Boolean predicate, and in general, for any feasible com-
putation, in 1986 by Andrew Yao [24, 26]. MPC protocols often employ a
cryptographic primitive called oblivious transfer.

An oblivious transfer protocol, originally introduced by Rabin in 1981 [17],
allows a sender to transfer one of potentially many pieces of information to a
receiver, while remaining oblivious as to what piece of information (if any) has
been transferred. Oblivious transfer is complete for MPC [11], that is, given
an implementation of oblivious transfer it is possible to securely evaluate any
polynomial time computable function without any additional primitive! An “1-
out-of-n” oblivious transfer protocol [8, 16, 13] is a generalization of oblivious
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transfer where a receiver gets exactly one database element without the server
(sender) getting to know which element was queried, and without the receiver
knowing anything about the other elements that were not retrieved. A weaker
version of “1-out-of-n” oblivious transfer, where only the sender should not know
which element was retrieved, is known as Private Information Retrieval [4].

This chapter was written in collaboration with Zeta Avarikioti, Klaus-Tycho
Foerster, Ard Kastrati and Tejaswi Nadahalli.
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Chapter 4

Databases

A computer does more than just computation. In particular, a computer can
also store and retrieve large amounts of data efficiently. In this chapter, we want
to understand some of the key ingredients of databases.

4.1 Dictionary

We manage a library and want to be able to quickly tell whether we carry a
given book or not. We need the capability to insert, delete, and search books.

Definition 4.1 (Dictionary). A dictionary is a data structure that manages → notebook

a set of objects. Each object is uniquely identified by its key. The relevant
operations are

• search: find an object with a given key

• insert: put an object into the set

• delete: remove an object from the set

Remarks:

• There are alternative names for dictionary, e.g. key-value store, asso-
ciative array, map, or just set.

• If the dictionary only offers search, it is called static; if it also offers
insert and delete, it is dynamic.

• When discussing the algorithms, we will often ignore that we actually
have a set of objects, each of which is identified by a unique key, and
just talk about the set of keys. With regard to the library example,
books are globally uniquely identified by a key called ISBN. Whenever
we say we insert/delete/search a key, we can just drag the key’s object
along.

• The classic data structure for dictionaries is a binary search tree.

78
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Definition 4.2 (Binary search tree). A binary search tree is a rooted tree,
where each node stores a key. Additionally, each node may have a pointer to a
left and/or right child tree. For all nodes, if existing, the nodes in the left child
tree store smaller keys, and those in the right child tree store larger keys.

→ notebook
1 def search(self, key): # self is current node, initially root

2 if key < self.key:

3 if self.left is None: return None

4 else: return self.left.search(key)

5 elif key > self.key:

6 if self.right is None: return None

7 else: return self.right.search(key)

8 return self.val

Algorithm 4.3: Search Tree: Search

Remarks:

• The cost of searching in a binary search tree is proportional to the
depth of the key, which is the distance between the node with the key
and the root.

• There are search trees called splay trees that keep frequently searched
keys close to the root for quick access. On the other hand, there may
be rarely accessed keys deep in a splay tree.

• Using balanced search trees, we can maintain a dictionary with worst-
case logarithmic depth for all keys, and thus worst-case logarithmic
cost per insert/delete/search operation.

• Is there a way to build a dictionary with less than logarithmic cost
and with keys that cannot be ordered?

4.2 Hashing

In this section we use hashing to implement an efficient dictionary.

Definition 4.4 (Universe, Key Set, Hash Table, Buckets). We consider a uni-
verse U containing all possible keys. We want to maintain a subset of this
universe, the key set N ⊆ U with |N | =: n, where |N | � |U |. We will use a
hash table M , i.e. an array M with m buckets M [0],M [1], . . . ,M [m− 1].

Remarks:

• The standard library of almost every widely used programming lan-
guage provides hash tables, sometimes by another name. In C++,
they are called unordered map, in Python dictionary, in Java HashMap.

https://colab.research.google.com/drive/15i3GdgYlEQrXdTeJ9UsSsvkmkuhUqUBL#scrollTo=AVkQ3mmTWY17
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• The translation from virtual memory to physical memory uses a piece
of hardware called translation lookaside buffer (TLB), which is a hard-
ware implementation of a hash table. It has a fixed size and acts like
a cache for frequently looked up virtual addresses.

• Compilers make use of hash tables to manage the symbol table.

Definition 4.5 (Hash Function). Given a universe U and a hash table M , a
hash function is a function h : U →M . Given some key k ∈ U , we call h(k)
the hash of k.

Remarks:

• A hash function should be fast to compute and distribute hashes
nicely, e.g. h(k) = k mod m for a key k ∈ N; in contrast to Chapter
3, we do not care whether a hash function is one-way.

• If we use ISBN mod m as our library hash function, can we insert/de-
lete/search books in constant time?!

• What if two keys k 6= k′ have h(k) = h(k′)?

Definition 4.6 (Collision). Given a hash function h : U → M , two distinct
keys k, k′ ∈ U produce a collision if h(k) = h(k′).

Remarks:

• Since keys may experience collisions, the key must be stored in the
bucket.

• There are competing objectives we want to optimize for when hashing.
On the one hand, we want to make the hash table small since we want
to save memory. On the other hand, small tables will have more
collisions. How likely is it to get a collision for a given n and m?

Theorem 4.7 (Birthday Problem). If we throw a fair m-sided dice n ≤ m
times, let D be the event that all throws show different numbers. Then D satisfies

P[D] ≤ exp

(
−n(n− 1)

2m

)
.

Proof. We have that

P[D] =
m

m
· m− 1

m
· . . . · m− (n− 1)

m
=

n−1∏
i=0

m− i
m

=

n−1∏
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)
= exp
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We can use that ln(1 + x) ≤ x for all x > −1 and the monotonicity of ex:

P[D] = exp

(
n−1∑
i=0

ln

(
1− i

m

))
≤ exp

(
n−1∑
i=0

− i

m

)
= exp

(
−n(n− 1)

2m

)



4.3. KEY-VALUE DATABASES 81

Remarks:

• Theorem 4.7 is called the “birthday problem” since traditionally, peo-
ple use birthdays for illustration: In order to have a chance of at least
50% that two people in a group share a birthday, we only need a group
of 23 people.

• If we insert more than roughly n ≈
√
m keys into a hash table, the

probability of a collision approaches 1 quickly. In other words, unless
we are willing to use at least m ≈ n2 space for our hash table, we will
need a good strategy for resolving collisions.

• Theorem 4.7 assumes totally random hash functions — for non-random
distributions of hashes, we might have more collisions. In particular,
if we fix a hash function, then we can always end up with a key set N
that suffers from many collisions. E.g., if many books have an ISBN

that ends in 000, then ISBN mod 1000 is a terrible hash function.

• Maybe we can use modulo, but with a different m?

• In general, several efficient ways to deal with collisions are known, e.g.,
hashing with chaining, hashing with probing, static hashing, cuckoo
hashing. We do not discuss these advanced methods in this class.

• Universal hashing is a particularly intriguing technique, as it guaran-
tees that a random hash function from a larger family as good as it
gets.

4.3 Key-Value Databases

Definition 4.8 (Key-Value Database System). The concept of dictionaries is
used in key-value database systems. The server maintains the dictionary and
clients can insert and query the stored data using the keys.

Remarks:

• Popular key-value databases are Redis and Memcached. They are
often used for caching in web services. Dynamically generated docu-
ments or results of queries to other databases can be stored temporar-
ily to allow fast access to often requested data.

• The data is often kept in main memory to speed up the access and
only duplicated to disk to recover the database in case of a system
failure.

• Depending on the used database, different data types can be stored
in the value. This can be an integer, a string, or even an array.

• Document databases are an extension of simple key-value database
systems. The value has to be in a format that the database under-
stands, such as a JSON or XML document. These databases allow
queries on the content of the documents. MongoDB and CouchDB
are popular document databases.
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4.4 Relational Databases

However, most databases offer queries beyond simple key searches. Questions
like “What is the movie with the largest cast?” or “How many directors have
directed more than ten movies?” should be answered without first writing a
new program. Relational databases can store large amounts of structured data
and answer possibly complex questions about it.

Definition 4.9 (Table, Row, Column, Database). A table consists of rows,
so that each row (data record) contains the same fields, i.e., kinds of entries.
When the rows of a table are written line by line, the fields form the columns
of the table. Each column is referred to by a descriptive name, and is associated
with the type of the respective field, e.g., integer, floating point, string, or a date.
A database is a collection of tables.

Remarks:

• In the database context, tables are also called relations, because the
entries in each row are related to each other, namely by belonging to
the same row.

movies
title director year
12 Angry Men Sidney Lumet 1957
Raiders of the Lost Ark Steven Spielberg 1981
War of the Worlds Steven Spielberg 2005
Manos: The Hands of Fate Harold P. Warren 1966

...

Figure 4.10: A database containing a single table called “movies” storing the
title, director, and year of release for each movie.

Remarks:

• Databases as we study them are accessed using the so-called structured
query language (SQL). Thus they are referred to as SQL or relational
databases.

• MySQL and PostgreSQL are two popular open source SQL database
systems.

• SQL database systems typically run as a daemon process on some
server. Client applications connect to the server and authenticate
themselves via username and password. Therefore, multiple users ac-
cessing the same database may result in concurrency issues. Some
form of concurrency control is necessary!

• Other database systems are tailored to single-user processing. They
relieve developers from the burden of implementing efficient data struc-
tures for relational data. SQLite is one such example, and is used, e.g.,
in Firefox, Chrome, Android, Adobe Lightroom, and Windows 10.
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4.5 SQL Basics

Definition 4.11 (SQL Data Types). SQL defines the following types of columns.
• CHARACTER(m) and CHARACTER VARYING(m) for fixed and vari-

able length strings of (maximum) length m,
• BIT(m) and BIT VARYING(m) for fixed and variable length bit strings

of (maximum) length m,
• NUMERIC, DECIMAL, INTEGER, and SMALLINT for fixed point and

integer numbers,
• FLOAT, REAL, and DOUBLE PRECISION for floating point numbers,
• DATE, TIME, and TIMESTAMP for points in time, or
• INTERVAL for ranges of time.

Remarks:

• The range of each type includes the special value NULL. Note that
NULL is different from the string ’NULL’, the empty string, and from
the number 0 (zero). NULL indicates that the row has no value for
the corresponding field.

• Many database systems implement more types, e.g., geographic coor-
dinates, IP addresses, geometric objects, or large integers.

• All SQL statements end with a semicolon. The SQL language is case
insensitive, but by convention keywords are often typed in upper case.

• The SQL-92 specification is over 600 pages long, newer versions of the
standard even longer. To add insult to injury there are lots of vendor
specific “SQL dialects”, i.e., modifications and extensions. However,
the basic set of commands for creating, manipulating, and querying
tables are largely the same across database implementations.

CREATE DATABASE database-name; → notebook

Additional parameters allow to set database-specific options, e.g., user-
based permissions, or default character sets for text strings. How a database
is opened depends on the implementation.

CREATE TABLE table-name (field-name type, field-name type, . . . );
To enforce that all rows have a value for a particular field, one can add
NOT NULL to the type when creating the table. Fields have a default
value, which is NULL if not specified by adding DEFAULT value to the
type description.

Remarks:

• There are also GUI and web-based client applications (that execute
locally or on an http-server, respectively) and offer access to the
database in a more intuitive manner than the classic command line
tools. Examples for PostgreSQL are pgAdmin, DataGrip and DBeaver.

• Such tools are especially helpful for creating the databases and tables
and often support multiple database systems. They also feature im-
porting data from various formats, e.g., CSV files, instead of using
SQL statements to populate the tables.
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INSERT INTO table-name (field-name, . . . ) VALUES (value, . . . ); → notebook

Values must be listed in the same order as the corresponding field names.
When a field name (and thus its value) is omitted the field’s default value is
assumed. When the list of field names is omitted the field’s values must be
listed in the same order that was used when creating the table. To insert
more than one row in one statement, multiple rows may be separated by
commas.

→ notebook
SELECT * FROM movies;

SELECT * FROM movies WHERE director = 'Spielberg, Steven';

SELECT title FROM movies WHERE year BETWEEN 1990 AND 1999;

SELECT * FROM movies WHERE title IS NULL OR director IS NULL;

SELECT title, director FROM movies WHERE title LIKE '%the%';

Listing 4.12: Querying the movies table.

SELECT field-name, . . . FROM table-name WHERE condition;
Lists all specified fields of all rows in the table that fulfill the condition.
The special field * lists all fields. The WHERE condition may be omitted
to list the whole table. A condition can include comparisons (<,>,=, <>)
between fields constants. The special value NULL can be tested with IS
NULL. Conditions can be joined using parenthesis and logic operators like
AND, OR, and NOT. Strings can be matched with patterns using field-
name LIKE pattern . In the pattern, an underscore ( ) matches a single
character, whereas % matches arbitrarily many.

→ notebookSELECT MIN(year) FROM movies;

SELECT AVG(year) FROM movies WHERE director='Lumet, Sidney';

SELECT COUNT(*) FROM movies;

SELECT COUNT(DISTINCT director) FROM movies;

Listing 4.13: Aggregation with SQL.

SELECT aggregate, . . . ;
Functions for aggregation include AVG to compute the average of a certain
field, MIN and MAX for the minimum and maximum value, SUM for the
sum of a field, and COUNT to count the number of occurrences. In an
aggregation, the keyword DISTINCT indicates that only distinct values
should be considered.

→ notebook
SELECT director, COUNT(title) FROM movies GROUP BY director;

SELECT director, COUNT(title) FROM movies GROUP BY director

HAVING COUNT(title) > 10;

https://colab.research.google.com/drive/15i3GdgYlEQrXdTeJ9UsSsvkmkuhUqUBL#scrollTo=JNfPfpH-ZWBW
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SELECT year, director, COUNT(title) FROM movies

GROUP BY director, year

ORDER BY year DESC, director ASC;

Listing 4.14: Grouping and sorting.

SELECT field-name |aggregate, . . . GROUP BY field-name,. . . ;
Aggregations may be partitioned using the group-by clause. Similar to
before, the query result can only include aggregates and fields by which
the result is partitioned.

Since WHERE clauses are applied before GROUP BY the result of aggre-
gations cannot appear in them. When the result should be conditioned
on the result of an aggregation, a HAVING clause can be used.

SELECT . . . ORDER BY field-name,. . . ;
After each field-name, the keyword ASC or DESC can be used to deter-
mine ascending or descending sorting order, respectively.

UPDATE movies SET title = 'Star Wars Episode IV: A New Hope'

WHERE title = 'Star Wars';

DELETE FROM movies WHERE title = '';

Listing 4.15: Updating and removing rows.

UPDATE table SET field-name = value,. . . WHERE condition;
Updates the specified fields in all rows fulfilling the condition.

DELETE FROM table-name WHERE condition;
Removes all rows fulfilling the condition from the table.

4.6 Modeling

The way our example table from Figure 4.10 is designed results in lots of dupli-
cate data—the director’s name is stored anew for each row, and two directors
with the same name cannot be distinguished. The situation worsens when we
want to store the cast of each movie. In other words, the way we modeled our
data can be improved. Entity-Relationship (ER) diagrams are a tool to find
good representations for data.

Definition 4.16 (Entity-Relationship Diagram). Rectangles denote entities
(tables), and diamonds with edges to entities indicate relations between those
entities. On such an edge, the number 1 or the letter n denotes whether the
corresponding entity takes part once or arbitrarily many times in the relation.
Entities and relations can have attributes (columns) with a name, drawn as
ellipses. Italicised attributes are key attributes which must be unique for each
such entity.
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directors

id name

movies

id title year

directing

1 n

actors

id name

acting

character

n n

Figure 4.17: Model for a movie database. Movies and directors are in a 1-
to-n relation: Each movie is directed by 1 director, and a director may work
on many movies. Movies and actors are in a n-to-n relation, which has an
additional attribute: An actor may appear in many movies, and each appearance
is associated with a character in that movie, played by that actor.

Remarks:

• It is standard practice to assign a so-called key attribute, often named
id, to every entity.

• What do ER diagrams have to do with SQL? Primarily, ER diagrams
are for conceptually modeling the kind of data and relations one wishes
to store. They can be translated into databases. Each entity corre-
sponds to a table with the corresponding attributes as columns. An n-
to-n relation is represented by a table with columns for each attribute,
and a column for the key attribute of each entity in the relation.

• A close relative of the ER diagram is the Unified Modeling Language
(UML). UML is used to represent the tables of a database (or classes
of object oriented software) accurately, with detailed information, e.g.
fields.

actor
id name
1 Harrison Ford
2 Tom Cruise

...

acting
actor id character movie id

1 Indy 2
2 Ray Ferrier 3

...

Figure 4.18: The actor table and a table capturing the acting relation.

Remarks:

• The same scheme can be used for 1-to-1 and 1-to-n relations. However,
one may also include the relation in the table storing the entity on the
1-side.
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directors
id name
1 Sidney Lumet
2 Steven Spielberg
3 Harold P. Warren

...

movies
id title year director id
1 12 Angry Men 1957 1
2 Raiders of the Lost Ark 1981 2
3 War of the Worlds 2005 2
4 Manos: The Hands of Fate 1966 3

...

Figure 4.19: The movie and director tables using the new database layout. The
director table simply maps ids to director names. Since the directing relationship
is 1-to-n, it can be represented by adding a column to the movies table that
stores the director for each movie.

Remarks:

• Similarly, a 1-to-1 relation can be turned into an attribute of one of
the entities.

• Tables dedicated to capturing relations are often called join tables.

4.7 Keys & Constraints

What is stopping us from inserting a row in the acting table that contains an
actor id or a movie id that does not exist? Or from creating a director with a
duplicate id?

Definition 4.20 (Key). In a table, a column (or set of columns) is a unique
key if the corresponding values uniquely identify the rows within the table. The
primary key of a table is a designated unique key. A foreign key is a column
(or set of columns) that references the primary key of another table.

Remarks:

• SQL databases can automatically enforce these constraints. For exam-
ple, a row containing a foreign key can only be inserted if it references
an existing primary key. Vice versa, a row may only be removed if its
primary key is not referenced by any foreign key.

ALTER TABLE table
ADD CONSTRAINT UNIQUE (field-name,. . . ); → notebook

Any two rows must differ in at least one of the specified fields.

ALTER TABLE table ADD PRIMARY KEY (field-name,. . . );
Sets the specified fields as the primary key for the table. Any two rows
must differ in at least one of the specified fields. The entries in these fields
must not be NULL.

ALTER TABLE left-table ADD FOREIGN KEY (field-name,. . . )
REFERENCES right-table;
Ensures that the values in the specified fields in the left table are the
primary key of a row in the right table.

https://colab.research.google.com/drive/15i3GdgYlEQrXdTeJ9UsSsvkmkuhUqUBL#scrollTo=V5kkxbRK-zrR
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Remarks:

• Constraints for new tables can also be set using CREATE TABLE.

• Other ALTER TABLE queries add different constraints (e.g., checking
that an integer field contains only certain values), remove constraints,
and change the name, type or default value of fields.

• To ensure that checking constraints and searching for data is fast,
database systems rely on index data structures.

4.8 Joins

How can we access the data, which is now scattered across multiple tables?

→ notebookSELECT movie.title, director.name AS director, movie.year

FROM movie

INNER JOIN director ON movie.director_id = director.id;

Listing 4.21: Example query that returns the table depicted in Figure 4.22.

SELECT . . .
FROM left-table INNER JOIN right-table ON condition;
Returns all rows that can be formed from a row in the left-table and a
row in the right-table that satisfy the specified condition.

movie.title director movie.year
12 Angry Men Sidney Lumet 1957
Raiders of the Lost Ark Steven Spielberg 1981
War of the Worlds Steven Spielberg 2005
Manos: The Hands of Fate Harold P. Warren 1966

...

Figure 4.22: The result returned by the query in Listing 4.21.

Remarks:

• In a query, one can create aliases for field and table names using the
AS keyword, see Listing 4.21.

• The result of a JOIN clause can be ordered, fields can be aggregated
and grouped, and conditions can be added using WHERE clauses.

• For example, we can combine joins and aggregations to answer our
initial question of which movie has the largest cast.

→ notebook

https://colab.research.google.com/drive/15i3GdgYlEQrXdTeJ9UsSsvkmkuhUqUBL#scrollTo=lsCXH4_TYk9E
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SELECT movie.title, COUNT(*) AS cast_size

FROM acting INNER JOIN movie ON acting.movie_id = movie.id

GROUP BY movie.id ORDER BY cast_size DESC LIMIT 10;

Listing 4.23: Finding the 10 movies with the largest cast.

Remarks:

• The query from Listing 4.23 uses a LIMIT clause to return only the
ten first entries of the sorted results.

• An INNER JOIN where the condition is TRUE returns the Cartesian
product of both tables. This special case can also be obtained with
the CROSS JOIN clause.

• An inner join will only return those rows of one table that have a
matching row (that satisfies the condition) in the other table. For
example, in Listing 4.21, a director with id 5 would not appear in the
result if there are no movies which have director id=5.

• If you want unmatched rows to appear in the result, you need to use
an OUTER JOIN.

→ notebook
SELECT movie.title, director.name AS director, movie.year

FROM movie

RIGHT OUTER JOIN director ON movie.director_id = director.id;

Listing 4.24: Example query that returns the table depicted in Figure 4.25.

movie.title director movie.year
12 Angry Men Sidney Lumet 1957
Raiders of the Lost Ark Steven Spielberg 1981
War of the Worlds Steven Spielberg 2005
Manos: The Hands of Fate Harold P. Warren 1966
NULL Jon Doe NULL

...

Figure 4.25: The result returned by the query in Algorithm 4.24. The right outer
join includes all rows from the inner join (see Figure 4.22) and, additionally, all
entries from the directors table for which there is no matching entry in the
movies table. In our example, “director” Jon Doe has not directed any movies,
hence the movie title and year column are filled with NULL values.

SELECT . . .
FROM left-table LEFT|RIGHT|FULL OUTER JOIN right-table
ON condition;
Returns all rows from the inner join. In addition, a LEFT or RIGHT

https://colab.research.google.com/drive/15i3GdgYlEQrXdTeJ9UsSsvkmkuhUqUBL#scrollTo=SHU6ONPYpmh9
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OUTER JOIN also returns all rows from the left or right table that have no
matching row on the opposite table, respectively. The fields in unmatched
rows that cannot be filled from the other table are filled with NULL values.
A FULL OUTER JOIN returns both of the above.

Remarks:

• A LEFT OUTER JOIN in Listing 4.24 would include the movies with
no director instead of the directors who have not directed any movie.

• Queries may use more than one JOIN clause.

→ notebookSELECT movie.title

FROM actor INNER JOIN acting

ON acting.actor_id = actor.id AND actor.name = 'Ford, Harrison'

RIGHT OUTER JOIN movie ON acting.movie_id = movie.id

WHERE acting.actor_id IS NULL;

Listing 4.26: Finding all movies that Harrison Ford did not appear in.

Remarks:

• The conditions for the first join in Listing 4.26 ensure that only movies
with Harrison Ford are taken into account for the second OUTER
JOIN. That second join in turn delivers all movies that cannot be
matched, yielding a NULL entry for the actor id for movies without
Harrison Ford.

Chapter Notes

Dictionaries based on search trees are useful for providing additional operations
such as nearest neighbor queries or range queries, where we want to find all
keys in a certain range. Binary search trees were first published by three in-
dependent groups in 1960 and 1962 (for references, see Knuth [13]). The first
instance of a self-balancing search tree that guarantees logarithmic cost for in-
sert/search/delete is the AVL-tree, named so after its inventors Adelson-Velski
and Landis [1]. For multidimensional keys, e.g. geometric data or images, there
are specialized tree structures such as kd-trees [2] or BK-trees [4].

Hashing has a long history and was initially used and validated based on
empirical results. One of the first publications was Peterson’s 1957 article [14]
where he defined an idealized version of probing and empirically analyzed linear
probing. Universal hashing was introduced two decades later by Carter and
Wegman in 1979 [5]. Perfect static hashing was invented in 1984 by Fredman
et al. [10] and is sometimes also referred to as FKS hashing after its inventors.
Its dynamization by Dietzfelbinger et al. took another decade until 1994 [9].

In 1970, Edgar F. Codd proposed the relational database model [8] while
working at IBM research. Later in the 70s, another group at IBM developed
SQL’s predecessor SEQUEL (Structured English QUEry Language) [6]. After

https://colab.research.google.com/drive/15i3GdgYlEQrXdTeJ9UsSsvkmkuhUqUBL#scrollTo=xI4e2XHt_wKK
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being renamed SQL due to trademark issues, it was standardized by the ISO
in 1987 and later revised [11]. Other companies started developing relational
database systems, and nowadays there are many SQL databases implementing
different feature sets to choose from.

Around the same time, ER diagrams were conceived as a modeling tool [3, 7].
The Unified Modeling Language (UML), first standardized by the ISO in 1995
[12] and revised in 2012, also includes diagrams that model databases.

This chapter was written in collaboration with Georg Bachmeier and Jochen
Seidel.
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Chapter 5

Machine Learning

So far, we told the computer exactly what to do: every problem was solved by
a specific algorithm. However, in the real world, we might have to deal with
messy data in order to understand its underlying function. In other words, it
may be difficult to separate function from noise. Maybe a computer can do part
of the job, and learn some of the parameters of a function? Welcome to machine
learning!

More honestly: Changing random stuff to make your program work better is
“hacky” and “bad coding practice”. But if you do it fast enough it is “machine
learning” and pays high salaries.

5.1 Linear Regression

Definition 5.1 (Dataset, Input, Output). A dataset D is a set of n tu-
ples (x, y) sampled from an unknown function

f : x 7→ y

We call x ∈ X an input and y ∈ Y the corresponding output of f .

Remarks:

• We want to learn a function f̂ such that f̂(x) ≈ f(x).

• Since we learn f̂ from the dataset D, we may write f̂D.

• For example, if the dataset consists of points on a line, we choose
f̂(x) = w1x+ w0 and determine the parameters wi ∈ R.

• If the points in D do not line up perfectly, a linear approximation → notebook

function f̂ will have some error. Even if f is truly linear, there can still
be some random noise that introduces error, e.g., some measurement
error.

Definition 5.2 (Approximation Error). The approximation error Err(x)

denotes the deviation of f̂ from the unknown function f at some input x:

Err(x) = f(x)− f̂(x).

93
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Remarks:

• For our linear function this amounts to Err(x) = y − (w1x+ w0).

• We want to minimize this error over the entire dataset D. Hence, we
choose f̂ according to an objective function as follows.

Definition 5.3 (Squared Error Loss). The loss function is used to determine
the real-valued parameters w = (w0, w1, ...)

T according to the dataset D. There
are several options, the most common being the squared error loss function:

L(f̂ , D) =
∑

(x,y)∈D

Err(x)2.

Remarks:

• By squaring the error, we ensure each term is positive. Squaring also
weighs large errors more highly.

• Another natural choice for a loss function is the absolute error: → notebook

Labs(f̂ , D) =
∑

(x,y)∈D

|Err(x)|.

• However, the squared error loss is often preferred as it has both a
closed-form solution and is everywhere differentiable. How do we find
such a solution for our linear function?

Lemma 5.4. Let x̄ = 1
n

∑
D x and ȳ = 1

n

∑
D y be the average input and output

of the dataset D. For a linear function f̂(x) = w1x+w0, the squared error loss
is minimal for

w∗1 =

∑
(x,y)∈D(x− x̄)(y − ȳ)∑

(x,y)∈D(x− x̄)2
, w∗0 = ȳ − w∗1 x̄.

We call these weights the ordinary least-square (OLS) estimates, as they
minimize the squared error loss.

Proof. For our linear function, the squared error loss amounts to

L(f̂ , D) =
∑

(x,y)∈D

(y − (w1x+ w0))
2
.

We find the minimum loss by differentiating L(f̂ , D) with respect to w:

∂L

∂w0
=

∑
(x,y)∈D

−2 (y − (w1x+ w0))
!
= 0

⇐⇒
∑

(x,y)∈D

(y − w1x− w0) = 0

⇐⇒
∑

(x,y)∈D

(y − w1x) = nw0

⇐⇒ w0 =
1

n

∑
(x,y)∈D

y − w1
1

n

∑
(x,y)∈D

x

⇐⇒ w0 = ȳ − w1x̄

https://colab.research.google.com/drive/1GrCSr-66eObds5WBa1kr_iR3KL-5eNHj#scrollTo=y0r2fIknU1yq&line=19&uniqifier=1
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∂L

∂w1
=

∑
(x,y)∈D

−2x (y − (w1x+ w0))
!
= 0

⇐⇒
∑

(x,y)∈D

x(y − w1x− ȳ + w1x̄) = 0

⇐⇒
∑

(x,y)∈D

x(y − ȳ) = w1

∑
(x,y)∈D

x(x− x̄).

Note that
∑
D y = nȳ =

∑
D ȳ, so

∑
D x̄(y − ȳ) = 0 and similarly we get∑

D x̄(x− x̄) = 0. After subtracting “0” from both sides, we obtain∑
(x,y)∈D

(x− x̄)(y − ȳ) = w1

∑
(x,y)∈D

(x− x̄)(x− x̄)

⇐⇒ w1 =

∑
(x− x̄)(y − ȳ)∑

(x− x̄)2
.

Remarks:

• This also works if the input is not a single scalar x but a whole vec-
tor x. This is known as linear regression.

Definition 5.5 (Linear Regression, Features, Weights). With linear regres-

sion, we search for a function f̂ of the form

f̂(x) =

d−1∑
i=1

wixi + w0,

where the xi ∈ R are the features of the input. The parameters wi ∈ R are
called the weights and need to be determined. We can write this in vector form
as

f̂(x) = wTx,

where x = (1, x1, x2, ..., xd−1)T with an additional 1 to incorporate the weight
w0.

Remarks:

• Let us find the weights w. In order to describe the closed-form so-
lution concisely we use matrix notation, where X is a matrix of the
input features (the so-called design matrix ). X has n rows, each row
represents a transposed feature vector xT = (1, x1, x2, ..., xd−1). The
outputs are given as a vector y of length n, where each value has a
corresponding row in X.

Theorem 5.6. The ordinary least-square (OLS) estimates for the weight pa-
rameters w of a linear regression model are given by

w∗ =
(
XTX

)−1
XTy.
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Proof. The squared error loss is L(f̂ , D) =
∑

(x,y)∈D
(
y −wTx

)2
which can be

rewritten in matrix form as

L(f̂ , D) = (y −Xw)T (y −Xw).

Again, we can differentiate with respect to w to find the optimal weights:

∂L

∂w
=−

(
XT (y −Xw)

)T − (y −Xw)TX
!
= 0T

⇐⇒ −XT (y −Xw)−XT (y −Xw) = 0

⇐⇒ XT (y −Xw) = 0

⇐⇒ XTy =
(
XTX

)
w

⇐⇒ w = (XTX)−1XTy.

Remarks:

• We must be careful when differentiating in matrix form, as we are
differentiating sums.

• We assume in this proof that XTX is invertible. This is for example
the case when X has full column rank, but might not be the case in
general.

• We could have derived the result in Lemma 5.4 in matrix form as
well. To see that the results are the same, just expand (XTX)−1XTy.
Alternatively, if you consider the training data to be normalized (x̄ =

ȳ = 0), then w0 = 0 and w1 =
∑
xy∑
x2 = (

∑
xx)−1

∑
xy.

• What if the relation between x and y is not just linear?

5.2 Feature Modeling

Definition 5.7 (Feature). A feature of the input can be any real-valued term
depending on the input variables.

Remarks:

• Note that we previously used the feature vector x = (1, x1, x2, ..., xd−1)T .
However, a feature can be more complex. For example, if we know in
advance that the quantity sinx1

√
x2 is a good term to approximate

f(x), then we can include this term as a feature in our linear regres-
sion model. Also splines, radial basis functions or wavelets work out
of the box.

• When modeling a problem, we often start with an “educated guess”
about which family of functions F is well-suited to model the unknown
function f . We then restrict ourselves to find the best f̂ ∈ F .

Definition 5.8 (Model). We call the family of functions F chosen to approxi-

mate f a model. The function f̂ ∈ F is found by fitting the parameters of the
model to best represent the dataset D.
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Remarks:

• For instance, we might want to restrict f̂ ∈ F to polynomials (of → notebook

degree m), yielding

f̂(x) = w0 + w1x+ w2x
2 + w3x

3 + ...+ wmx
m.

• This is called polynomial regression, even though it is just a special
case of linear regression (and is solved the same way).

• Note that the linear regression method can handle any model F , as
long as the (unknown) parameters wi are linear coefficients.

• For multi-dimensional input we can add all combinations of the vari-
ables up to the mth power. For polynomial regression with degree m

and input dimension d, this gives
((

d
m

))
=
(
d+m−1
m

)
features! E.g. for

m = 2, d = 3, we have the 6 features {1, x1, x2, x21, x22, x1x2}.

• What if some input variables are not continuous? For example, we
might have a categorical input variable, such as a city name. Should
we encode the city as a single variable taking values 1, 2 and 3? This
would establish an inherent ordering and scaling between the cities,
which would be unreasonable in many cases. One way to deal with
such inputs is to use so-called one-hot encoding.

Definition 5.9 (One-Hot Encoding). A one-hot encoding of a categorical
input variable taking k values is a vector representation of length k consisting
of 0’s and a single 1 indicating the corresponding category.

Remarks:

• Note that using a one-hot encoding may increase the dimension of the
model significantly as each category gets its own coefficient wj .

• See Figure 5.10 for an example.

xi
London

Budapest
Zurich

n/a
London

−→

xi1 xi2 xi3
0 1 0
1 0 0
0 0 1
0 0 0
0 1 0

Figure 5.10: One-hot encoding of a categorical variable that can take 3 values
(as well as n/a).

5.3 Generalization & Overfitting

What if we include more and more features? For instance, we can add more
input features, higher degree terms and other engineered features. Eventually
we might have more features than data points, and a linear model will be able
to fit the training data perfectly.

https://colab.research.google.com/drive/1GrCSr-66eObds5WBa1kr_iR3KL-5eNHj#scrollTo=J2S3qJxzVbwm&line=5&uniqifier=1
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Lemma 5.11. Given X ∈ Rn×d with d ≥ n, there is at least one solution w to
Xw = y for all y ∈ Rn, if and only if X has rank n.

Proof. This is a standard result from Linear Algebra. The proof goes along the
lines of: X has rank n ⇐⇒ there are n linearly independent columns of X,
but n linearly independent columns in Rn×d form a basis of Rn×n so (setting w
for all other columns to 0) Xw = y has a unique solution for all y ∈ Rn.

Remarks:

• For example powers of a feature, {1, xi, x2i , x3i , ...} are linearly indepen-
dent, so polynomial regression with high enough degree will always be
able to fit training data perfectly. This is called polynomial interpola-
tion.

• What is the problem with adding too many features? Overfitting.
The fitted model will not generalize well to unseen data. Ultimately,
our goal is to minimize the expected error over all possible data.

Definition 5.12 (Expected Loss). We assume all our data (including any un-
seen data) comes from some unknown distribution (x, y) ∼ P (X,Y ), where X
denotes the entire input space and Y the output space. Then the expected loss
is defined as

L(f̂) = Ex,y

[
L(f̂ ,x)

]
,

where L(f̂ ,x) is the loss incurred by f̂ at data point (x, y).

Remarks:

• Expected loss is also referred to as risk.

• Unfortunately, we cannot calculate the expected loss as we do not
know the probability distribution P . Thus we also cannot directly
minimize it.

• So far, we have instead minimized the loss on our dataset D. This is
called the empirical loss (or empirical risk).

Definition 5.13 (Empirical Loss). We estimate the expected loss by the empir-
ical loss on a dataset D, given by

L̂D(f̂) =
1

n

∑
(x,y)∈D

L(f̂ ,x).

Remarks:

• The empirical squared error loss is exactly the (normalized) total loss
from Definition 5.3.

• By the law of large numbers L̂D(f̂) → L(f̂) for any fixed f̂ almost
surely as n → ∞. Therefore the more data we have, the closer the
empirical loss will be to the expected loss and so, the closer f̂ can be
to the true function f by minimizing the empirical loss.
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• But how do we know how well our f̂ performs on the rest of the domain
X?

• We could take the empirical loss as our estimate. Unfortunately, since
we fit our model to this data, it will inherently underestimate the
expected loss.

• We could find new data for evaluation, but we usually just have one
dataset to work with. However, we can sample a subset Dt from our
dataset D and only train our model with this subset, while reserving
the rest for evaluation.

Definition 5.14 (Train-Evaluation Split). Partitioning a dataset D into two
disjoint subsets Dt and De (typically 80% to 20%) is called a train-evaluation
split.

Remarks:

• This is also called a train-test split. For ease of notation we will stick
with evaluation.

Definition 5.15 (Training Loss, Evaluation Loss). We define the training
loss as

L̂t(f̂) =
1

|Dt|
∑

(x,y)∈Dt

L(f̂ ,x).

Similarly, we define the evaluation loss as

L̂e(f̂) =
1

|De|
∑

(x,y)∈De

L(f̂ ,x).

Remarks:

• Note that f̂ depends on the training data, so f̂ = f̂Dt
.

• We can use the evaluation dataset De to estimate how well the func-
tion f̂Dt

generalizes to new data.

Definition 5.16 (Overfitting, Underfitting). A model is overfitting when it fits → notebook

the training dataset Dt too well, learning random patterns/noise that will not be
present in new unseen data De. The model will not generalize well. Conversely,
a model is underfitting when it is not expressive enough to approximate f . A
more complex model F ′ should be tried.

Remarks:

• L̂e(w)� L̂t(w) is a clear indication of overfitting.

• See Figure 5.17 for examples of overfitting and underfitting.

https://colab.research.google.com/drive/1GrCSr-66eObds5WBa1kr_iR3KL-5eNHj#scrollTo=MrZFZZE0XEmt&line=14&uniqifier=1
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Figure 5.17: Examples of underfitting and overfitting

Remarks:

• There are several ways we can counter overfitting. We could try a
simpler model, gather more training data, or introduce regularization.

• High training and evaluation errors could be a sign of underfitting.
However, high errors could also indicate that the data is inherently
noisy/random and cannot be fitted well.

• By repeating the train-evaluation split process multiple times we can
get a more accurate evaluation of how well our model generalizes, and
whether or not it is overfitting or underfitting. This is known as cross
validation.

Definition 5.18 (Cross Validation). In k-fold cross validation, we randomly
partition D into k equal sized subsets. We train a model on the union of k − 1
of these subsets. Then we evaluate our model on the last, withheld subset. This
is repeated k times, with each subset used k−1 times as part of the training data
and once as evaluation data. This gives k evaluation scores, which are averaged
to produce a single evaluation metric.

Remarks:

• There are other types of cross validation. For example in Monte Carlo
cross validation, De is randomly sampled from D each time.

• Cross validation can also be used for model selection: We first do a
train-evaluation split and then use cross validation on the training set
Dt to select our model F . The best model is then evaluated on the as
yet unseen evaluation data.

• The mean and variance of the error across splits can tell us more about
the sources of error in our model.

5.4 Bias-Variance Tradeoff

Definition 5.19 (Bias, Variance). Bias is the expected error of a model, that
is, how much the model F deviates from the target value on average. Formally,

with f̄(x) = ED
[
f̂(x)

]
:

Bias2[F ] = Ex

[(
f(x)− f̄(x)

)2]
,
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where we have two expectations, one taken over x and one over D. The vari-
ance of a model is the variance in its predictions when training on different
random datasets. Formally:

Var[F ] = Ex,D

[(
f̂(x)− f̄(x)

)2]
.

Remarks:

• If the bias is large, we know that our model F cannot approximate
f well and we should consider a more expressive model, i.e., a more
general family of functions F . If on the other hand f ∈ F , then the
bias will be zero.

• Note that random noise will not contribute to the bias. On average
(taking the expectation over D), the effects due to noise will cancel
out. The bias really only covers systematic errors because our model
is not able to match f exactly (even with the best weights). See Figure
5.20 (left).

• The variance tells us how sensitive our model is to the specific D. If
the model is very sensitive, then w and ultimately the predictions will
vary greatly depending on the dataset, in other words it will overfit.
More noise will increase the variance. See Figure 5.20 (right).

• The simplest possible model is a constant, f̂ = c. This always has
zero variance. Its predictions never change.

Figure 5.20: Fitting polynomials of increasing degree to the cosine function
within the range [−5, 5]. The first order model (left) is too simple and has
a high bias. On the other hand the 11th order model (right) is too complex
and has a high variance. The 6th order model (middle) has low bias and low
variance. In each iteration f(x) = 8 cos(x), 25 inputs were sampled uniformly
from [−7, 7] and y was calculated with additional Gaussian noise. Predictions
were then plotted on the interval [−5, 5].

Theorem 5.21 (Bias-Variance Decomposition). We can decompose the mean
squared error (MSE) of a model into its squared bias and its variance:

MSE(F) = Bias2[F ] + Var[F ]

where the mean squared error (or expected squared error) equals:

MSE(F) = Ex,D

[(
y − f̂(x)

)2]
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Remarks:

• In general our dataset will not cover the whole input space and the
data will contain some noise. This means bias or variance or both will
generally be greater than zero.

• However, there is an inherent tradeoff between bias and variance. A
more complex model will be able to approximate f better, giving
lower bias. But this also allows it to fit noise better leading to higher
variance, since the noise it fits is random. On the other hand a simpler
model will generally have higher bias and lower variance.

Figure 5.22: Fitting polynomials of increasing degree to the cosine function
within the range [−5, 5]. On the left we see that as the degree (complexity) of
the model increases, the bias decreases and the variance increases. The plot on
the right shows the bias variance tradeoff frontier (dashed line). The frontier
has been added to visualize the tradeoff trend, it is not a hard boundary that
cannot be crossed.

• If we have high variance, regularization is one way of reducing the
total error. Regularization focuses on decreasing the variance at the
potential expense of increasing the bias.

5.5 Regularization

How about including all the features we may possibly want, but charging a cost
for each non-zero weight wi? This should help us reduce overfitting to noise,
but still allows us to fit f well. This is what Lasso does.

Definition 5.23 (Lasso Regression). Lasso regression minimizes

min
w

 1

n

∑
(x,y)∈D

(y −wTx)2 + λ

d−1∑
i=0

|wi|
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Remarks:

• The regularization parameter λ weighs the parameter cost versus the
MSE loss. It is a so-called hyperparameter that can be tuned.

Definition 5.24 (Hyperparameter). A hyperparameter is a parameter that
controls the training process and whose value has to be chosen in advance.

Remarks:

• The degree m in polynomial regression was also a hyperparameter.

• Cross validation can be used for hyperparameter tuning.

• For each hyperparameter you can define a set of values. Exhaustively
iterating through all combinations of these values is called grid search.

Remarks:

• Lasso introduces bias into the regression solution by guiding the weights
to be close to zero. This can reduce variance considerably relative to
the OLS solution, see Figure 5.25.

Figure 5.25: Fitting a polynomial of high degree to a cubic function with and
without regularization. We see that variance and total error drops when regu-
larization is added.

Remarks:

• When using regularization, features should be normalized (subtract
mean, divide by standard deviation). This ensures that the coefficient
of a feature is not influenced by its magnitude.

• The target vector y should also be centered around 0, so that the
intercept w0 does not count towards the total cost.

• Ridge has the same objective, but Ridge uses the L2 norm for the cost
of the weights, whereas Lasso uses the L1 norm. In other words, we
replace |wi| with w2

i .

• Ridge has a closed form solution, just like OLS. However Lasso does
not, so we have to solve it differently, for example by gradient descent.
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5.6 Gradient Descent

The OLS method had a closed form solution (Lemma 5.4 and Theorem 5.6),
but often we do not have a closed form solution to our optimization problem.
An alternative is to minimize the loss function using gradient based methods.
If we can calculate the gradient of the loss function with respect to the weights,
then we can perturb the weights in the right direction to decrease the loss. We
can repeat this process until reaching a minimum.

Definition 5.26 (Gradient Descent). Given a loss function L(f̂(w), D), re-
peatedly perform the update

wj := wj − α
∂

∂wj
L(f̂ , D)

simultaneously for j = 0, 1, ..., d, where hyperparameter α is the learning rate.

Remarks:

• The partial derivative tells us which weights to decrease or increase. If
∂
∂wj

L(f̂ , D) is positive, then the loss is increasing in wj , so we decrease

wj to lower the loss.

• The gradient, i.e., the vector of partial derivatives,∇L(f̂(w), D) points
in the direction of steepest ascent, with the negation pointing in the
direction of steepest descent.

• A (loss) function can have multiple minima, and gradient descent may
converge to a local minimum rather than finding the global minimum.
The minimum reached depends on the initial starting point and the
learning rate α. See Figure 5.27.

Figure 5.27: Gradient descent with different initialization points. On the (left)
the initialization is favorable and we reach the global minimum of the polynomial
loss function. However on the (right) gradient descent gets stuck in a local
minimum.

Remarks:

• The learning rate α is a hyperparameter that controls the size of each → notebook

update step. If the learning rate is too high, the algorithm might jump
beyond the optimum w; if it is too low the algorithm will be very slow
to converge. See Figure 5.28 for examples. Often a decaying learning
rate is used for efficiency at the beginning and accuracy towards the
end of training.

https://colab.research.google.com/drive/1GrCSr-66eObds5WBa1kr_iR3KL-5eNHj#scrollTo=OeQj4jB21iyA&line=24&uniqifier=1
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Figure 5.28: Gradient descent with different learning rates for finding the mini-
mum of a quadratic loss function. On the (left) the learning rate is very low so
convergence is slow and on the (right) the learning rate is too high so gradient
descent diverges.

Remarks:

• Gradient descent is very similar to Newton’s method for optimization,
but in Newton’s method the learning rate is not a hyperparameter,

but 1 over the second derivative of the loss function, ∂2

∂w2L(f̂ , D).
Newton’s method often converges in fewer steps, but unfortunately
the second derivative is usually hard to calculate.

• Any differentiable loss function can be optimized with gradient de-
scent. If the loss function is convex (see Definition ??), then the
global minimum will eventually be reached (with a suitable learning
rate).

• When the training dataset is large, it is often too costly to calculate
∂
∂wj

L(f̂ , D) over the whole dataset D just to make a single update

step. In practice the training data is often shuffled and split into
minibatches Di (subsets of equal size) and ∂

∂wj
L(f̂ , Di) is used in the

update step. This is called stochastic gradient descent (SGD).

• Even though we have a closed form solution for minimizing the loss
in linear regression, let’s derive the corresponding update rule to see
how this works.

Theorem 5.29 (LMS Rule). The Least Mean Squares (LMS) update rule
for linear regression is given by

wj := wj + α
(
y −wTx

)
xj

And the batch update rule is given by

wj := wj + α
∑

(x,y)∈D

(
y −wTx

)
xj

Proof. We derive the batch update rule. Recall the squared error loss function

L(f̂ , D) = (y −Xw)T (y −Xw).

And recall from Theorem 5.6 that the derivative with respect to w is given by

∂L

∂w
= −2XT (y −Xw)
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Substituting into the gradient descent formula, we get the update rule

wj := wj + 2α
(
XT (y −Xw)

)
j

= wj + 2α
∑

(x,y)∈D

(
y −wTx

)
xj

If we scale the learning rate by a half we get the LMS batch update rule. And
taking a single training sample for D we get the single update rule.

5.7 Logistic Regression

So far we have discussed how to learn a function f : x 7→ y. when y ∈ R. In
this section we introduce a method for binary classification, where y is either
0 or 1, i.e., y ∈ {0, 1}. Similar to linear regression, we learn a linear function
wTx, but now we classify all samples with wTx > 0 as 1, all samples with
wTx < 0 as 0. In other words we find a hyperplane to separate the classes.
There are different approaches to do so, we present a statistically motivated
approach called logistic regression. The key idea is simple: We take the output
of the linear function and squash it into the range [0, 1]. We treat this squashed
output as a probability. The more sample x is in the direction of vector w, the
higher the probability that sample x belongs to class 1.

Definition 5.30 (Binary Logistic Regression). We want to find an approxi- → notebook

mation f̂(x) ≈ f(x) = y ∈ {0, 1}. We choose the following form for f̂ :

f̂(x) = ψ(wTx) =
1

1 + exp(−wTx)

where ψ is called the logistic or sigmoid function.

Remarks:

• The logistic function ψ squashes inputs from [−∞,∞] into the range
[0, 1]. Other functions, such as the probit link function, could be used
instead.

• f̂(x) can be seen as an estimate of the probability that y = 1. There-

fore, we usually classify x as positive (1) if f̂(x) > 0.5 and as negative

(0) if f̂(x) < 0.5.

• This defines a decision boundary ψ(wTx) = 0.5, or wTx = 0, where
everything on one side of the boundary is classified as positive and
everything on the other side as negative. Samples on the boundary can
be classified arbitrarily as positive or negative. The decision boundary
is linear in the features.

• As in linear regression, we again can add higher order features, e.g.,
x2 or sin(x), to learn non-linear decision boundaries.

• How do we find the optimal values for w? We could minimize the
linear regression squared error loss (Definition 5.3). However, this
would give predictions beyond [0, 1].

https://colab.research.google.com/drive/1GrCSr-66eObds5WBa1kr_iR3KL-5eNHj#scrollTo=sOmVmBHsCwBx&line=15&uniqifier=1
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• Instead we apply the logistic function, interpret the output as a prob-
ability and choose the model that maximizes the likelihood of gener-
ating exactly the labels in our training data.

Definition 5.31 (Bernoulli Likelihood function).

L(w) =
∏

(x,y)∈D

P (y | x,w) =
∏

(x,1)∈D

ψ(wTx)
∏

(x,0)∈D

(1− ψ(wTx))

Remarks:

• L(w) is the probability of observing the vector of outputs y given
input data X and parameters w. Intuitively, we want to choose w
such that we maximize this probability, i.e., we want to choose the
parameter values that make our observations the most likely to occur.
This is called Maximum Likelihood Estimation (MLE).

Lemma 5.32 (Logistic Regression Loss Function or Log Loss). Assuming the
y’s in y are independent and identically distributed Bernoulli with parameters
p = f̂(x) = ψ(wTx), maximizing L(w) is equivalent to minimizing the following
loss function:

L(f̂ , D) = − 1

n

∑
(x,y)∈D

[
y log(f̂(x)) + (1− y) log(1− f̂(x))

]
Proof.

L(w) =
∏

(x,1)∈D

ψ(wTx)
∏

(x,0)∈D

(1− ψ(wTx))

=
∏

(x,y)∈D

(ψ(wTx))y(1− ψ(wTx))1−y

=
∏

(x,y)∈D

f̂(x)y(1− f̂(x))1−y

In practice we maximize the logarithm of the likelihood function because
the product simplifies to a sum, which prevents numerical problems and makes
differentiation simpler. Taking the logarithm does not change the optimal w:

logL(w) =
∑

(x,y)∈D

[
y log(f̂(x)) + (1− y) log(1− f̂(x))

]
= −n · L(f̂ , D)

Therefore argmaxw L(w) = argminw L(f̂ , D).
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Remarks:

• The scaling factor n does not change the optimum w, but it aver-
ages the value of the loss across samples, hence allowing for better
comparison across models.

• If y = 1 and f̂ = 1, then L = − log(f̂) = − log(1) = 0, i.e, our classifier
is correct with perfect “confidence”, and hence the loss is zero. If on
the other hand y = 1 and f̂ = 0, then L = − log(f̂) = − log(0) ≈ ∞,
i.e., our classifier is wrong with perfect “confidence”, which incurs very
high cost. Similarly if y = 0 and f̂ = 0, then L = 0, and if y = 0 and
f̂ = 1, then L =∞.

• Unfortunately, there is in general no closed form solution for logistic
regression. However, we can use gradient descent (Definition 5.26) to

minimize L(f̂ , D). But first we need to calculate the gradient.

Lemma 5.33 (Gradient of the Log Loss). The gradient of L(f̂ , D) from Lemma 5.32
with respect to wj is given by

∂L

∂wj
=

1

n

∑
(x,y)∈D

[
f̂(x)− y

]
· xj

Proof. First we calculate the derivative of the logistic function:

d

dz
ψ(z) =

d

dz

[
1

1 + e−z

]
=

e−z

(1 + e−z)2

=
1

1 + e−z
· e−z

1 + e−z

= ψ(z) · (1− ψ(z))

Using this we can calculate the derivative of the loss for a single training sample,
L(f̂ ,x), with respect to wj :

∂

∂wj
L(f̂ ,x) = − ∂

∂wj

[
y log(f̂(x)) + (1− y) log(1− f̂(x))

]
= − ∂

∂wj

[
y log(ψ(wTx)) + (1− y) log(1− ψ(wTx))

]
= −

[
y

ψ(wTx)
− 1− y

1− ψ(wTx)

]
· ∂

∂wj
ψ(wTx) (chain rule)

= −
[

y

ψ(wTx)
− 1− y

1− ψ(wTx)

]
· xj · ψ(wTx)(1− ψ(wTx)) (chain rule)

= −
[

y − ψ(wTx)

ψ(wTx)(1− ψ(wTx))

]
· xj · ψ(wTx)(1− ψ(wTx))

= −
[
y − ψ(wTx)

]
· xj

=
[
f̂(x)− y

]
· xj
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And since differentiation and finite summation are interchangeable, i.e.,

d

dx

∑
g(x) =

∑ d

dx
g(x)

we get the gradient for the total loss, L(f̂ , D), as:

∂L(f̂ , D)

∂wj
=

1

n

∑
(x,y)∈D

[
f̂(x)− y

]
· xj

Remarks:

• We can then use gradient descent (Def. 5.26) to update the model
parameters.

• We can also add lasso or ridge regularization to prevent our model
from overfitting (Def. 5.23).

• What if y can take on more than two values? A straightforward way to
extend binary logistic regression to k > 2 classes is to train k separate
logistic regression models, one for each class. We then choose the
class with the highest probability score. This is a general method for
extending binary classifiers to multinomial problems, and is referred
to as One versus Rest (OvR).

• There are other ways to extend logistic regression to the multinomial
case. For example, we can use the softmax function instead of the
sigmoid function.

Definition 5.34 (Softmax Regression). Softmax regression with k ≥ 2

classes chooses the following functional form for f̂ :

f̂(x)i = σ(wT
(1)x,w

T
(2)x, ..., ,w

T
(k)x)i =

exp(wT
(i)x)∑k

j=1 exp(wT
(j)x)

for i = 1, . . . , k

where σ is called the softmax function.

Remarks:

• f̂(x) is a vector of length k, with elements summing up to 1. It can

be seen as a vector of probabilities, with f̂(x)i ≈ P(f(x) = i).

• A different set of linear weights, w(i), is learned for each class i. Since
the probabilities sum up to 1, one set of weights is redundant.

• For k = 2, softmax regression reduces exactly to binary logistic re-
gression (Definition 5.30) with w = w(2) −w(1).

• We also get the same form for the loss function:
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Lemma 5.35 (Softmax Regression Loss Function). Assuming the y’s in Y
are independent and identically distributed categorical random variables with
parameters pi = σ(wT

(i)x) for i = 1, . . . , k, then maximizing the likelihood L(w)
is equivalent to minimizing the following loss function:

L(f̂ , D) = − 1

n

∑
(x,y)∈D

k∑
i=1

[
1{y = i} log(f̂(x)i)

]
where w is the set of all weights {w(i)}i=1,...k and 1{·} is the indicator function.

Remarks:

• Note that for k = 2 this loss is identical to the loss for logistic regres-
sion in Lemma 5.32, only the notation has been changed to use the
indicator function.

• In order to learn non-linear decision boundaries with logistic regres-
sion, we need to do feature engineering. This can be challenging and
time consuming, and it also makes the resulting model more difficult
to interpret. In the following we introduce a different type of model
that addresses these issues: Decision Trees.

5.8 Decision Trees

So far we have considered regression models based on the form wTx where the
output is essentially a weighted sum of the input features, potentially squashed
by a sigmoid function. Binary decision trees introduce hierarchy: We keep
partitioning the input space into smaller regions. In order to make a prediction
f̂(x), we simply start at the root of the decision tree and apply the decision
rules until we reach a leaf, which then determines the output value.

1 def predict(self, x): # self is current node, initially root

2 if self.is_leaf():

3 return self.value

4 if x[self.feature] ≤ self.threshold:

5 self.left.predict(x)

6 else:

7 self.right.predict(x)

Algorithm 5.36: Decision tree algorithm.

Remarks:

• For classification, in Line 3 we return the majority class of the leaf.
For regression, we return the average value of the leaf.

• Decision trees can learn non-linear decision boundaries and are easy → notebook

to interpret and visualize.

https://colab.research.google.com/drive/1GrCSr-66eObds5WBa1kr_iR3KL-5eNHj#scrollTo=OOT0k402F2Xn&line=20&uniqifier=1
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• Decision trees are binary trees that contain nodes V , where each in-
ternal (non-leaf) node has an associated splitting rule. Every node v
corresponds to a subset Dv ⊆ D.

• How are splitting rules defined?

Definition 5.37 (Decision Tree Splitting Rule). A splitting rule of an internal
node v is given by a tuple (i, t), where i is the index of a feature and t is a
threshold value. A split defines left and right subsets

Dv,l = {x | xi ≤ t}, Dv,r = {x | xi > t}

Remarks:

• Unlike everything so far, a splitting rule here is based on a single
feature value and not a linear combination of features. As such all
splits are axis-aligned.

• Now we know how to use a decision tree to make predictions, but how
do we build a decision tree in the first place? We do so by finding
good splitting rules. And we find good splitting rules by minimizing
a loss function of course!

Definition 5.38 (Regression Tree Loss: MSE). For node v with samples Dv

the mean squared error (MSE) loss is defined as:

L(Dv) =
1

|Dv|
∑
y∈Dv

(y − ȳ)2

where the prediction ȳ of a node is the average of the target values of all samples
in Dv.

Remarks:

• The MSE is the variance of the target value. The aim is to create
splits that lower the total variance in the leaves.

• For classification the loss function is a measure of purity. We call a
node with all samples belonging to the same class perfectly pure. We
aim to find splits that successively increase the purity of the nodes.
The most common measures of purity are entropy and Gini impurity.

• We now have a measure of loss for each node, but we need to combine
the loss of the left and right subsets to decide what the next split
should be. One could consider many things here: minimizing the
total loss, minimizing the maximum loss, making balanced splits, etc.
One natural choice is to minimize the weighted average loss.

Definition 5.39 (CART loss function). To find the best split (i∗, t∗) at node v,
CART minimizes the following loss function:

L(i, t) =
|Dv,l|
|Dv|

L(Dv,l) +
|Dv,r|
|Dv|

L(Dv,r)

where the loss L(·) measures the impurity or error of the resulting left and right
subsets.
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Remarks:

• The weights ensure that all training samples have equal contribution.
For example, for regression trees the weighted MSE loss reduces to
the mean squared error over Dv. This is not the same as L(Dv), since
we use the two new mean values ȳl and ȳr to calculate the errors.

• CART trees are built recursively using binary splits, with every split
minimizing above loss function.

• One could keep splitting until all the leaves contain single samples,
like a binary search tree (Definition 4.2). This would give 100% accu-
racy on the training data, but would not generalize well to new data.
Stopping criteria can be used to halt splitting. Typical stopping crite-
ria are: maximum tree depth, minimum number of samples in a node,
minimum decrease in the value of the loss function.

• Instead of stopping criteria, it is generally better to grow a large tree
and then prune it back. This way we might add some useful additional
splits and have the chance to remove less useful splits. Even if all ad-
ditional splits are not helpful, we can still remove them when pruning.
In essence pruning allows us to see some steps into the future, before
finalizing our tree.

• CART is a greedy algorithm that finds good solutions, but is unlikely
to find the optimal solution. Finding the optimal tree (e.g. a minimum
depth decision tree) is NP-hard.

• One big advantage of decision trees is their simple interpretation.
They suffer from high variance and overfit easily. A common tech-
nique to improve decision trees is to use many trees in an ensemble.

Definition 5.40 (Bootstrap Sample). A bootstrap sample Db is obtained by
drawing n samples from dataset D uniformly with replacement.

Remarks:

• In expectation, every Db contains 1− 1/e = 63.2% samples from D.

• What happens if we draw many bootstrap samples and use each to
train a separate model?

Definition 5.41 (Bootstrap Aggregating or Bagging). Bagging is an ensemble
algorithm where q models are trained on q bootstrap samples Db. The models
are combined either by averaging the outputs (regression) or by majority vote
(classification).

Remarks:

• Bagging ensembles can be built with any base learners, including de-
cision trees. In general, an ensemble method can turn many low-bias
high-variance base learners into a single low-bias low-variance model.

• The use of bootstrap samples de-correlates the individual learners,
i.e., they make different mistakes which will average out.
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• If we use decision trees as our base learners we can do even better.
What if we add even more randomness to bagging by subsampling the
features that can be chosen for finding the best splits?

Definition 5.42 (Random Forest). A random forest is a bagging ensemble of

q decision trees. The learners f̂b are trained in such a way that at every node
only a random subset of the features can be used for finding the best split.

Remarks:

• The random subsampling of features for each split further de-correlates
the individual trees, making random forests powerful models that can
achieve both relatively low bias and low variance.

5.9 Evaluation

How can we know whether our models are performing well? For regression we
can simply measure the models MSE (or absolute error) on the evaluation set
(Definition 5.15). However, for classification, the value of the loss function is
not intuitive; it does not directly tell us how good our model is at classifying
samples. To get a sense of the performance of a classifier, the most important
tool is the confusion matrix.

Definition 5.43 (Confusion Matrix). A confusion matrix, also known as error
matrix, visualizes the performance of a classifier on a given dataset. Rows
represent the actual class labels, and columns contain the predictions of the
classifier.

T
ru

e
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b
e
l

Predicted label

p n

p′
True

Positive
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False
Negative
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n′
False
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True
Negative
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Remarks:

• From the confusion matrix we can derive different metrics to summa-
rize the performance of a classifier:

accuracy ACC = TP+TN
P+N

positive predictive value (precision) PPV = TP
TP+FP

true positive rate (recall) TPR = TP
TP+FN

false positive rate FPR = FP
FP+TN

F1 score F1 = 2 · PPV·TPR
PPV+TPR

Remarks:

• Confusion matrices and the derived metrics can be used with more
than two classes. However, the derived metrics can then be computed
in several different ways. The macro method first computes the met-
rics for each class and then averages these values. The micro method
aggregates the predictions from all samples and computes the metrics
directly.

• Another very common way of evaluating binary classifiers (k = 2) is
the Receiver Operator Characterstic (ROC) Curve and the derived
Area Under Curve (AUC) metric.

Definition 5.44 (Receiver Operator Characteristic (ROC) Curve). The ROC

Curve plots the TPR against the FPR. Given a binary classifier f̂ , one can
order the data points by f̂(x), and then plot the TPR and FPR for every possible
classification threshold τpr ∈ [0, 1]. The resulting graph is called the ROC Curve.

Remarks:

• τpr is the threshold for which if f̂(x) ≥ τpr we classify a sample as
positive, and otherwise as negative.

• Trade-off between TPR and FPR: If we want 100% TPR (recall), we
can simply classify every sample as positive. However, we would then
also (wrongly) classify every negative sample as positive, leading to a
high FPR. An increase in the TPR generally leads to an increase in
the FPR.

• A perfect classifier would achieve TPR = 1 at FPR = 0, i.e., the
curve would “hug” the top left corner.

• The ROC curve of a random classifier follows the diagonal, i.e., TPR =
FPR.

• The area under the ROC curve (AUC) is often used as a convenient
summary of a classifier’s performance

• Intuitively, the AUC metric tells us the following: Given a random
negative sample xN and a random positive sample xP , what is the
probability that p̂(xP ) > p̂(xN ), i.e, the classifier will assign higher
probability to the random positive sample than to the negative sample.
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Chapter Notes

Ordinary least squares (OLS) was one of the first statistical methods to be
developed, circa 1800 [5]. There is still controversy over who first applied it,
Gauss or Legendre. Subsequently, weighted least squares, minimization of other
norms (e.g., L1), multivariate minimization, regularization (e.g., Ridge, Lasso)
and many other tools were developed. The term “ordinary” was added to least
squares only after many alternative methods were suggested.

Gradient descent is generally attributed to Cauchy, who first suggested it
in 1847 [4]. Hadamard independently proposed a similar method in 1907 [3].
Its convergence properties for non-linear optimization problems were first stud-
ied by Haskell Curry in 1944 [2], with the method becoming increasingly well-
studied and used in the following decades, also often called steepest descent.

The logistic function was developed as a model of population growth and
named “logistic” by Pierre François Verhulst in the 1830s and 1840s [1]. The
logistic model was likely first used as an alternative to the probit model by Edwin
Bidwell Wilson and Jane Worcester in 1943 [6]. The probit model is similar
to logistic regression, but models the output as the cumulative distribution
of a normal distribution centered around wTx. The logit model was initially
dismissed as inferior to the probit model, but gradually achieved an equal footing
before surpassing it. Its popularity is credited to its computational simplicity,
mathematical properties, and generality, allowing its use in varied fields.

This chapter was written in collaboration with Gino Brunner and Béni
Egressy.
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Chapter 6

Neural Networks

Computers are better than humans at playing Chess, Go, Poker, Dota, or Star-
craft. They compose pop songs, write fiction stories, draw paintings, replace
actors in movies, and drive vehicles. Whenever a computer does something
mind-boggling, you can bet that a neural network is involved. Neural networks
have become fascinating function approximators. How so? At their core, neural
networks are based on simple linear mappings, combined with non-linear activa-
tion functions and gradient descent. So conceptually neural networks are not so
different from our discussions in Chapter 5. But size matters! The biggest neu-
ral networks have up to 530 billion weights. So training needs data, hardware
and patience.

6.1 Nodes and Networks

Definition 6.1 (Node). A node (or neuron) is a computing unit v that produces
an activation value y. The node v first calculates an affine transformation on
x ∈ Rd, then applies an activation function σ : R→ R:

y = σ(wTx),

where x is an input vector and w ∈ Rd are learned weights. We call z = wTx the
pre-activation value. Like in Chapter 5 (Definitions 5.5 and 5.30), we assume
that w0 is integrated into w, i.e., w = (w0, w1, . . . , wd−1)T , and x includes an
additional constant 1, i.e., x = (1, x1, . . . , xd−1)T .

Remarks:

• In the literature, the intercept w0 is sometimes referred to as “bias”
b, and kept separate from w, i.e., y = σ(wTx + b). This naming
complicates the vector notation; it may also be confusing since we
used the term bias for a model property in Section 5.4.

• The activation function σ can take many different forms. Some nodes
may simply use the identity as activation function, i.e., σ(z) = z.
Most nodes apply non-linear activation functions in order to allow the
model to approximate non-linear functions, e.g. the sigmoid function
ψ(wTx) = 1

1+exp(−wTx)
of Definition 5.30.

116
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• In order to allow for gradient-based training, the activation function
must be differentiable.

• We combine many neural nodes into a network:

Definition 6.2 (Neural Network). A neural network is a directed acyclic graph
(DAG) formed by a set of nodes V that are connected by a set of directed edges
E. The input x of the network is stored by the n input nodes Vi (with no
incoming edges). The output y of the network will be computed by the m output
nodes Vo (with no outgoing edges). All other nodes (with incoming and outgoing
edges) are called hidden nodes Vh. We have Vi + Vh + Vo = V. Note that we use
the letters x and y to refer to both, the input and output of the whole network
as well as the input and output of a single node. We will use subscripts if the
usage is not clear from the context.

In neural networks the function is computed in the forward direction: The
input xv of each node v is the vector of computed outputs y of its DAG prede-
cessor nodes. Then, v computes its own output as yv = σ(wT

v xv). Hence the
nodes must be processed in DAG order.

Given an input x ∈ Rn, a neural network as a whole then approximates a
function f(x) : Rn → Rm by calculating f̂(x) ≈ f(x).

1 # V = Vi ∪ Vh ∪ Vo = network

2 # v.x = v's input, the output of v's DAG input-nodes

3 def forward(V ):

4 for v in Vh ∪ Vo (in DAG order):

5 v.y = v.σ(v.w,v.x) # Definition 6.1

6 return Vo

Algorithm 6.3: Feed-forward computation in DAG.

x1

x3

v1

v2

v3

v4

v6

v7

y1

y2

v5

v8

Figure 6.4: Example of a neural network for an input x and an output y with
three input nodes, eight hidden nodes and two output nodes.

Remarks:

• There exist cyclic neural networks as well, see Definition 6.22.

• In neural networks, nodes generally follow a structure that can be
represented with layers.
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Definition 6.5 (Multi-Layer Perceptron or MLP). The nodes are often orga-
nized in layers. The first layer are the input nodes Vi, the last layer the output
nodes Vo. Each hidden node is in a layer l, and all nodes of layer l have the
same input, namely the outputs yv of all nodes v of layer l−1. Layered networks
are known as Multi-Layer Perceptrons, where perceptron is an older name for
node.

Remarks:

• Layering will help us to speed up computation, as the pre-activation
of a whole layer can be computed with a single matrix-vector multi-
plication z = W · x, where the matrix W is composed of the weight
rows w, z is the vector of pre-activation values in the nodes and x are
the output values of the previous layer (with the additional 1).

• The number of layers determines the depth of the network. A “deep”
network is a neural network with multiple layers.

• Can a neural network compute/approximate any function?

6.2 Universal Approximation

Theorem 6.6 (Universal Approximation Theorem). Given a continuous func-

tion f : R+ → R (for simplicity, input x ≥ 0), there exists a neural network f̂
with one hidden layer that approximates f arbitrarily well. That is

|f̂(x)− f(x)| < ε for all x ≥ 0 and ε > 0.

Proof. We construct a neural network with sigmoid non-linearities in the hidden
nodes vi (i > 0) and a single linear output node vo.

The single output node vo computes function f̂(x) = wTy, where w are vo’s
weights, and yi are the outputs produced by the hidden nodes. As usual, w
includes an additional value w0, and y starts with a additional constant 1. We
choose w0 = f(0), such that f̂(0) = f(0) even without any hidden nodes. Every
hidden node vi computes yi = gi(x) = ψ (κ · x+ bi) , where κ → ∞ is a large
constant. While the sigmoid function ψ(z) = 1

1+exp(−z) from Definition 5.30 is

a smooth step function, κ→∞ will make that step sharp.
The construction is inductive. We start out with x = 0, hence f̂(x) = f(x).

As long as the difference between f̂(x) and f(x) is less than ε we keep growing

x. As soon as |f(x)− f̂(x)| ≥ ε, we introduce a new hidden node vi. The value
bi of the hidden node vi is representing the current position x, as bi = −κ · x.
This makes sure that vi will introduce a new step in f̂ right at the current x.
The weight wi of vo for the new input yi is set as wi = f(x)− f̂(x). This corrects

the output of f̂ for the newly accumulated error. If f(x) was increasing, then
a correcting +ε step is added, if f(x) was decreasing, a correcting −ε step is

added. In both cases, we again get f̂(x) ≈ f(x). Figure 6.7 visualizes the effects
of the parameters bi and wi.
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𝜅→∞ Shift by bi Scale 

x

+ 𝜺

Figure 6.7: Effect of weights on the sigmoid function.

Remarks:

• Our proof is a simplified version of the original. The full theorem is
more general, also applicable to continuous functions with inputs from
a multi-dimensional compact set. There exist also versions using other
activation functions than sigmoid, and multidimensional version, etc.

• The theoretical construction given in the proof is not used in practice,
as it would lead to numerical instabilities (κ→∞).

• However, the promise of a neural network is not only to approximate
any function, but rather to learn how to approximate any function.
It can be shown via various reductions (Definition 2.8) that learning
is NP-hard (Definition 2.20).

6.3 Training Neural Networks

During training, neural networks learn to automatically extract features from
the raw input: In the forward computation the representation of the data held
by the network becomes progressively closer to the value of the approximated
function. Therefore, neural networks are effectively feature extractors.

Definition 6.8 (Feature Extractor φ). A feature extractor φ is a function that
transforms raw input data x into features. These features represent the initial
data in a way that simplifies approximating a function f .

Remarks:

• In Section 5.2 we manually engineered φ. In Sections 5.3 and 5.4 we
then learned how to tell whether we did a good job.

• Neural networks on the other hand automatically learn φ and thus, no
manual feature extraction is needed. The idea is that every additional
hidden layer of the network represents the data more abstractly than
the previous one. With every layer, the representation of the data is
less like input x and more like output y.

• Why and how exactly this works is not well understood – this is the
mystique of deep neural networks.

• Training a neural network is similar to training a linear regression
node with gradient descent (Chapter 5): We calculate the gradient
of the loss with respect to the network parameters and adjust the
parameters accordingly. This is called backpropagation.
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Definition 6.9 (Backpropagation). Backpropagation is an algorithm that com-
putes the gradient of the loss L with respect to the parameters W of the neural
network. In the DAG representation of a neural network, each node computes
its pre-activation value z as a weighted sum over its input values x. By the
chain rule, we can calculate the error of the output nodes with respect to z as

∂L(f̂ , D)

∂z
=
∂L

∂y
· ∂y
∂z
.

Given this gradient, and using z = wTx, we can calculate the error with
respect to the weights wi and the error with respect to the node’s inputs xi as

∂L

∂wi
=
∂L

∂z
· xi, and

∂L

∂xi
=
∂L

∂z
· wi.

The gradients with respect to the weights w can then be used for updating
the weights, while the gradient with respect to the inputs can be aggregated to
pass the gradient ∂L

∂y to the preceding nodes in the network. Concretely, each

node in the network adjusts its own weights w based on the error signal ∂L
∂w and

tells its input nodes xi to adjust by backpropagating ∂L
∂xi

. The backpropagation
algorithm is given in Algorithm 6.10.

1 # v.x = v's input, stored during forward computation

2 # v.z = pre-activation value, stored during forward computation

3 # v.err = initial error of the node, set to ∂L
∂y for output nodes

4 # v.err = 0 initially for hidden and input nodes

5 # v.w_grad = gradient vector of node v

6 # v.prev = list of indices of v's input nodes

7 def backward(V ):

8 for v in V (in reversed DAG order):

9 v.z_err = v.err * ∂v.y
∂v.z # ∂y

∂z is the gradient of σ(z)

10 v.w_grad = v.z_err * v.x # v.w_grad and v.x are vectors

11 for v_i in v.prev:

12 v_i.err += v.z_err * v.w[v_i]

13 return [v.w_grad for v in V ]

Algorithm 6.10: Backpropagation Algorithm

Remarks:

• Many libraries backpropagate gradients with a simple function call. → notebook

• Memory may be problem, since we need to memorize x and z at every
node.

• Backpropagation is only the method for computing the gradient, while
another algorithm, such as stochastic gradient descent (Definition
5.26), is used to perform the parameter update using this gradient.

https://colab.research.google.com/drive/11Hr_FBnuaXWxe4X79OBRhts5ducL-RiV#scrollTo=u3vfRaNzj37h&line=25&uniqifier=1
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• Backpropagating gradients, i.e., applying the chain rule, means per-
forming a number of multiplications. For deep neural networks this
can lead to numerical issues.

Definition 6.11 (Vanishing Gradients). Gradient descent updates can stagnate
due to vanishing gradients, i.e., gradients that are close to 0. These can occur
during backpropagation for different reasons:

• The activation function σ(·) saturates, i.e. the gradient ∂y
∂z ≈ 0. In this

case, the gradient ∂L
∂wi

of all weights wi and the backpropagated gradients
∂L
∂xi

of the node will also be close to zero. The node stops learning.

• The summation in Line 12 of Algorithm 6.10 can accidentally become 0
(when terms cancel each other).

Definition 6.12 (Exploding Gradients). The gradient calculations with back-
propagation can also lead to devastatingly large gradients, called exploding gra-
dients. Note that gradient descent only converges for sufficiently small gradient
steps and too large gradients can lead to divergence. Reasons are:

• Some large weight |wi| � 1 boosts the backpropagated error.

• The summation in Line 12 of Algorithm 6.10 can accidentally become large
because of many positive (or negative) terms.

Remarks:

• Vanishing or exploding gradients can propagate in a network, i.e.
nodes with vanishing or exploding gradients can backpropagate the
problem to their predecessor nodes.

• Simple yet generally effective solutions include reducing the number
of layers or clipping the gradients (for the exploding case). A related
solution is to normalize the activation values, as done in techniques
such as batch normalization or layer normalization.

• Another effective solution for the vanishing gradient problem is the in-
troduction of skip connections (connect nodes which are not in neigh-
boring layers) which provide an additional path for the flow of informa-
tion. During backpropagation this helps the gradients to continuously
flow backwards, even if they vanish in certain points of the network.

• An additional option for mitigating the vanishing gradients problem
is to use activation functions that do not saturate in both directions
(positive and negative). The best-known of such activation functions
is the Rectified Linear Unit activation (ReLU).

Definition 6.13 (ReLU). The Rectified Linear Unit activation is defined as:

σ(x) = max(0, x)
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Remarks:

• The ReLU activation function introduces a nonlinear transformation
that remains very close to linear (piecewise linear with only two pieces)
and does not saturate in the positive direction.

• Remarkably, ReLU is non-differentiable, which violates Definition 6.1.
In fact, for gradient-based learning it is enough if the subderivatives
of the function exist (and for ReLU they do).

• The gradient ∂y
∂z of the ReLU activation is 0 when x ≤ 0, 1 otherwise.

This simplicity speeds up the computation of backpropagation.

• ReLU activation is the current default choice for neural networks.
However, a large number of related activation functions exist, which
modify some aspects of the function, e.g., leakyReLU has a non-zero
slope for values smaller than 0. Some other functions are: PReLU,
GeLU, SeLU, Maxout, etc.

• Another design choice that impacts the performance of the model is
the initialization scheme.

Definition 6.14 (Initialization scheme). Rule that determines the initial pa-
rameter values W of a neural network, i.e., the values before training starts.

Remarks:

• As seen in Figure 5.27, when the loss function is non-convex (has
multiple local minima), starting the learning process at different points
can lead to different solutions.

• Stochastic initialization is a good default for initializing the param-
eters of a neural network. These schemes give random initial values
(with some constraints) to the parameters of the network in order to
“break the symmetry”, i.e., to prevent that nodes with the same input
and same activation converge to the same values during optimization.

• The loss landscape of neural networks is complex, with a large number
of local minima. Surprisingly, converging to a local minimum during
training is good enough for a neural network to perform well usually.

6.4 Practical Considerations

The complex loss landscape of neural networks makes the learning process signif-
icantly more complicated than in classical machine learning models. Therefore,
sophisticated learning algorithms (also called optimizers) that build on top of
stochastic gradient descent (Section 5.6) are used in practice. There is no con-
sensus on which of the existing algorithms is best.
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Remarks:

• Adam optimizer is currently considered a good default. It belongs
to the family of adaptive learning rate algorithms, which adapt the
learning rate for each parameter individually throughout the course
of learning.

• Other popular optimizers include SGD with Momentum, RMSProp,
and linear learning rate decay.

• The learning scheme/rate is probably the most important hyperpa-
rameter in neural networks. Finding an appropriate learning rate can
produce a dramatic improvement in the performance of the network.

• Neural networks often have a remarkably large amount of hyperparam-
eters, which do have a strong impact on the performance of the model.
Although tuning hyperparameters is more an art than a science there
are automatic hyperparameter optimization algorithms that can help
in this process.

Definition 6.15 (Hyperparameter Optimization Algorithm). A hyperparame-
ter optimization algorithm is an algorithm that wraps the learning algorithm of
a model and chooses its hyperparameters, hiding this choice from the user.

Remarks:

• When there are few hyperparameters to set, a common approach is
Grid Search as discussed in Definition 5.24. The main problem of
Grid Search is that the computational cost grows exponentially with
the number of hyperparameters, which makes it expensive for large
neural networks.

• An alternative is Random Search: the hyperparameter values are sam-
ples from a uniform distribution in a certain interval. Random search
converges faster to an optimum.

• A large number of hyperparameter optimization algorithms exist using
techniques such as evolutionary algorithms, Bayesian optimization or
population-based-training.

• Hyperparameter optimization algorithms often have their own hyper-
parameters, such as the range of values that have to be explored.
Fortunately, these secondary hyperparameters are easier to set in the
sense that similar secondary hyperparameters can lead to acceptable
performance in a wide range of tasks.

6.5 Regularization

Everything discussed so far portraits neural networks as powerful function ap-
proximators. Neural networks can approximate any continuous functions and
even functions of high complexity, e.g., functions from a family with high VC di-
mension. The issue with this is that neural networks tend to overfit. To give an
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intuitive explanation why this is the case, recall the bias-variance trade-off from
the previous chapter. There, we saw that polynomials of too high degree yield
a high variance which leads to a bad generalization performance. Now, the uni-
versal approximation theorem states that a sufficiently large neural network can
approximate any continuous function. Hence, a sufficiently large neural network
can also approximate any polynomial. Without any restrictions, the variance
of a neural network can be very high and the generalization performance very
poor.

• To prevent it, classical parameter norm penalty can be applied, like the L2
(ridge) and L1 (lasso) penalties seen in Definition 5.23. These penalties
are applied by including the penalty term in the loss function of the model,
exactly the same as in Section 5.5.

• Furthermore, there are some other regularization techniques specific to
neural networks.

Definition 6.16 (Dropout). Dropout is a regularization technique: for each
sample at each training iteration, we set the output y of each node to zero with
probability p. After training has completed we do not drop nodes anymore as we
want to use the full capacity of the network. However, we multiply each activa-
tion where dropout was applied with 1 − p. This is done to keep the activation
on the same level as it was in expectation during training.

Remarks:

• Effectively, dropout trains a different model at each iteration, where
all models share the non-zeroed parameters. For large networks there
is no risk that dropout breaks the information flow between the input
and the output of the network.

• Dropout reduces the inter-dependencies between nodes in the network,
which helps the model to learn more robust features, and also reduces
overfitting.

• Dropout is computationally cheap and can be applied to any model
that uses distributed representations and that is trained with gradient
descent, i.e., any neural network.

• Dropout reduces overfitting but does not completely eliminate the
problem. Luckily, dropout can easily be combined with other regular-
ization strategies, for example, with early stopping.

Definition 6.17 (Early Stopping). Early stopping is a regularization strategy
that returns to the parameter setting that produces the lowest validation error. In
early stopping, training terminates when the best recorded validation error does
not improve for a predefined number of epochs; this number is called patience.
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Remarks:

• Early stopping can be understood as an efficient algorithm for selecting
the number of training steps, which is a hyperparameter.

• The cost of early stopping in terms of computation is that the vali-
dation needs to be run periodically after each epoch and that at least
one copy of the parameters needs to be stored in memory. These costs
are however small and generally do not cause any limitation.

• Early stopping does not affect the learning dynamics, can be used in
conjunction with other regularization strategies, and is easy to imple-
ment.

6.6 Advanced Layers

While neural networks can theoretically learn any function, large networks (with
too many weights) often struggle to converge to good solutions. We can use
knowledge about the underlying problem to reduce the number of weights sub-
stantially. Some early successes of neural networks were achieved in image pro-
cessing, where methods from classical computer vision were adapted to neural
networks in the form of convolutions.

Definition 6.18 (Convolutional Neural Network or CNN). A convolutional
neural network is a neural network layer that works on structured input data
such as the pixels of an image. A CNN applies the same function (the same
weights) to all neighborhoods of the input layer.

Figure 6.19: Convolution operation for a 4 × 4 input image X, a 3 × 3 filter
W , and a 2 × 2 output Y . The filter W slides over the image and for each
position of the filter, a value yi is calculated as the dot-product of the filter and
the sub-matrix of X that it covers, e.g., y1 = w1x1 + w2x2 + · · ·+ w9x11.

Example 6.20. We want to detect vertical edges in images. Vertical edges can
be found calculating the convolution (with symbol ~) of the image and a vertical
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Sobel filter, given by the matrix W :

W =

1 0 −1
2 0 −2
1 0 −1


As an example, consider the 3 × 5 greyscale image X where each pixel takes a
value from 0 to 255 represented by the following matrix:

X =

80 92 163 234 230
85 98 237 233 232
83 96 236 235 231


To compute the convolution operation, the filter W slides over the image X.
Generally, we require that the output Y = X ~W is of the same size as the
input X, for this, we need to pad the matrix X. To prevent the padding from
creating artificial edges, we extend the image by copying the border pixels X′:

X′ =


80 80 92 163 234 230 230
80 80 92 163 234 230 230
85 85 98 237 233 232 232
83 83 96 236 235 231 231
83 83 96 236 235 231 231


In a convolution, the filter W slides over the image X. For each position of
the filter on the padded image (see Figure 6.19), one element of Y is calculated
as the sum of the element-wise multiplication of the overlap. As the filter slides
horizontally and vertically, this operation is repeated to obtain the values of each
element of Y . The resulting matrix Y is:

Y =

−49 −401 −561 −196 13
−51 −540 −551 −52 10
−52 −611 −552 20 13


The large values in the second and third column of matrix Y indicate that there
is a strong gradient (variation) between those columns in the image, i.e., the
image has a vertical dark/light edge. This edge is less pronounced in the first
row.

Remarks:

• In this example the filter W was given. A CNN does not know these
weights, but only the information that W is a 3× 3 convolution filter
between two layers. With appropriate training data, the CNN will
learn the weights of W by using backpropagation.

• Bias (w0) and non-linearity (e.g. ReLU activation) are omitted in our
examples for improved clarity.

• Compared to a fully connected network with the same input size, a
CNN has a significantly lower number of weights.
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• Sometimes these learned patterns correspond to those that we as hu-
mans consider meaningful, e.g., edges. However, usually the patterns
extracted by CNNs are not understandable. The power of CNNs re-
side in learning complex patterns that humans would not be able to
design.

• Discrete convolutions can be performed beyond two dimensions. For
example, an audio signal can be represented by the signal intensity at
discrete time steps. In that case, a 1-dimensional convolution can be
applied over the time dimension to filter the signal.

• In general, to apply convolutions to a given input, the input has to be
structured as a tensor.

Definition 6.21 (Tensor). A tensor of order d is a d-dimensional array. A
tensor generalizes vectors (1-dimensional) and matrices (2-dimensional). The
shape of a tensor is a list of d integers defining the size of each dimension of
the tensor.

Remarks:

• An image, represented by its RGB (red, green, blue) pixel values can → notebook

be naturally represented as a tensor of order 3 and shape [3, height,
width]. An index (0, x, y) into this tensor yields the intensity of red
in the pixel at location (x, y).

• Note that the memory requirements of higher order tensors can be
high. E.g., an order 5 tensor with 100 values in each dimension stores
1005 values, which, given a floating point precision of 32 bits, requires
40 GB of memory.

• We have seen that CNNs exploit translation invariance in the structure
of the data. Are there other such structural biases we can exploit? For
example, what if we want a neural network to remember important
features over several time steps of a sequential input?

Definition 6.22 (Recurrent Neural Network or RNN). In contrast to feed-
forward neural networks, a recurrent neural network operates with time steps t.
Each time step t gets an input xt and a state st. It outputs an updated state
st+1 and an output yt. More formally, we define the mappings

yt = ĝ(xt, st)

st+1 = ĥ(xt, st)

where {xt}τt=0 and {yt}τt=0 are the input and corresponding output sequence of

length τ and ĝ(·) and ĥ(·) are differentiable functions with learnable parameters.
The initial state s0 can be a vector of learnable parameters, or simply initialized
to 0.

https://colab.research.google.com/drive/11Hr_FBnuaXWxe4X79OBRhts5ducL-RiV?usp=sharing
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Remarks:

• There are several ways of how to define ĝ(·) and ĥ(·), from simple
linear projections to complex combinations of operations to combine
the given inputs.

Example 6.23. Consider that we want to solve the multi-path problem of wire-
less transmission, i.e., given a signal we wish to filter delayed copies from the
signal. To do this online, i.e., while the signal is received, we have to remember
the current input signal to filter a similar pattern later. We therefore seek to
train an RNN to remember a given input for a few time steps and then reproduce
it for filtering purposes. E.g., given the input signal [5, 10, 0, 1.5, 3.5, 1] we want
the RNN to output [5, 10, 0, 0, 0, 0]. This can be achieved if we initialize the state

s0 to 0 and parametrize st+1 = ĥ(xt, st) = Wst + wh · xt with W and wh as

W =


0 1 0 0
0 0 1 0
0 0 0 1
−0.1 −0.3 0 0

 wh = [0, 0, 0, 1]T

where W shifts the state and filters new inputs and wh reads in the new symbol.
The readout is given by yt = ĝ(xt, st) = wT

g st + xt with

wg = [−0.1,−0.3, 0, 0]T

Note that this parametrization simply reads the input symbol into the state st,
propagates the symbol for some time steps and then subtracts it from a later
input.

Remarks:

• Instead of these given weights, neural networks will learn ĝ (W ,wg)

and ĥ (wh) when trained on real world signals. This is particularly
useful if the input is a vector of multiple correlated noisy signals and
a simple remember-and-reproduce solution is sub-optimal.

• Earlier we discussed that neural networks are directed acyclic graphs
(DAGs). But RNNs are cyclic, as the state from step t gets fed back
to the network in step t+ 1. How can we train such a network?

• The solution is to copy the network τ times, i.e., unroll the cycle (see
Figure 6.24). This yields one long DAG where the state st, calcu-
lated as intermediate output of one copy, is fed into the next copy.
The calculated gradients for each copy are then summed to update
the parameters. This is called backpropagation through time (BPTT).
Note that this can lead to vanishing/exploding gradients as we are
essentially trying to train a network of depth τ.

• RNNs that are commonly used today are Gated Recurrent Units (GRUs)
and Long Short Term Memories (LSTMs). These address the issue

of vanishing/exploding gradients in their definition of ĝ and ĥ. The
resulting architectures implement ideas similar to that of skip connec-
tions in feed-forward neural networks, albeit historically GRUs and
LSTMs came long before people started talking about skip connec-
tions in MLPs and CNNs.
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• As apparent from the equations in the definition above, RNNs are
inherently sequential. They can process one input only after the pre-
vious input has been processed. This is slower than approaches that
can process the whole sequence in parallel (such as CNNs).

• Both, CNNs and RNNs take advantage of weight sharing. In CNNs,
the same weights (filters) are applied to all locations of the image.

In RNNs, the same functions ĝ(·) and ĥ(·) (with the same learnable
weights) are applied to all time steps t.

• What if we do not want to apply the same function everywhere? More
specifically, what if only a selection of the input is of interest? Can
we design an architecture that favors solutions which select features
from the input instead of using the whole input? Can we index the
input in a differentiable way?

st

ĝ, ĥ

xt

yt

ĝ, ĥ

x0

y0

s0 ĝ, ĥ

x1

y1

s1 ĝ, ĥ

xτ

yτ

s2 sτ

Figure 6.24: Unrolling the RNN through time. At each time step, ĝ and ĥ
compute output yt and state st+1 respectively, given input xt and the previous
state st. BPTT propagates the gradients through the unrolled network.

Definition 6.25 (Attention). Attention is a method to aggregate inputs in a
selective manner. Given n input vectors {xi}n−1i=0 ∈ Rd, each input vector is
projected into a key vector ki ∈ Rdk and a value vector vi ∈ Rdv. The projection
is done by two learned matrices Wk ∈ Rd×dk and Wv ∈ Rd×d. Additionally,
attention is given a query vector q ∈ Rdk . For each input vector an attention
score si is calculated as the dot-product between the query q and the key vector
ki:

si = q ·Wkxi = q · ki
The attention scores are normalized by a softmax (Definition 5.34) operation and
each normalized score is multiplied by its corresponding value vector vi = Wvxi.
The results are added to produce the attention output y ∈ Rd:

y =

∑n−1
i=0 exp (si) · vi∑n−1
j=0 exp (sj)

Remarks:

• The attention mechanism described here is called dot-product atten-
tion. This is the most common type of attention, but other variants
exist as well.
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Example 6.26. Consider that we want to find in what position a sequence of
n = 5 integers contains the value “3”. Our input is x = [7,−5,−2, 3, 4]T . We

use a ReLU for the keys: ki = ReLU [xi − 3, 3− xi]T . And we use a one-hot
encoding for the values vi. For example, x1 = 7 gets key and value

k1 = [4, 0]T ,v1 = [1, 0, 0, 0, 0]T .

Using q = [−1,−1]T we get the scores s = [−4,−8,−5, 0,−1]T . Plugging the
scores and values into the softmax gives

y = [0.013, 0.000, 0.004, 0.718, 0.264]T .

Because of the softmax, the output is not quite as clean as one might hope, since
“4 ≈ 3”.

Remarks:

• Thanks to weight sharing, attention can process input vectors of any
length.

• A neural network can consist of multiple attention aggregations to
select multiple (potentially different) inputs.

• If the scores are calculated based on the inputs, i.e., si = fi({xi}k−1i=0 )
for some functions fi, attention is also referred to as self-attention, as
the input “attends” to itself.

• Attention architectures yield the state-of-the-art performance in nat-
ural language processing tasks, as most of the time some words are
more important than others to understand a sentence.

• All architectures presented in this section, i.e., CNNs/RNNs and At-
tention, take some domain knowledge to tailor the neural network to
a specific purpose. This is also referred to as an inductive bias.

6.7 Architectures

In the previous section we introduced several building blocks that give different
inductive biases. Let us now see how different losses and architectures can be
combined to solve advanced computational challenges.

Definition 6.27 (Autoencoder). An autoencoder is a neural architecture formed
by two neural networks: an encoder fenc(·), which encodes the input x ∈ Rn

into a representation z ∈ Rm called latent code; and a decoder fdec(·), which
decodes the latent code back into an approximation of the original input, i.e.,
fdec(fenc(x)) ≈ x. The representation is often designed to compress information
by setting m � n. Autoencoders minimize a loss term named “reconstruction
loss”, that represents the difference between the output and the input.
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Remarks:

• The encoder and the decoder can be any type of neural network, e.g.,
MLPs, CNNs, RNNs or a combination of them.

• An example of reconstruction loss is the L2 error:

L =
1

|D|
∑
x∈D
||x− fdec(fenc(x))||22

• A schematic depiction of an autoencoder is shown in Figure 6.28.

Encoder 
f
enc

Decoder 
f
dec

Latent code 
zInput Output

Figure 6.28: Schematic view of an autoencoder.

Remarks:

• The requirement m � n is not a necessity. We can also design au-
toencoders to have a specific structure in the latent code, or a latent
code tailored to a given purpose through an additional loss.

• The main advantage of autoencoders is that they learn the latent
representation (or code) in an unsupervised manner, i.e., without la-
bels. This makes them a versatile architecture that can be used in a
wide range of problems, such as dimensionality reduction, compres-
sion, data denoising or unsupervised feature extraction.

• There exist many different types of autoencoders, with different losses,
architectural elements or with additional inductive biases.

• Besides compression and encoding, neural networks can also be used
for data generation.

Definition 6.29 (Generative Adversarial Network or GAN). GANs are a class
of deep generative models in which two neural networks are trained simultane-
ously, while competing in a two-player minimax game. The generator’s fgen(r)
tries to produce realistic synthetic samples from a random input r. The bi-
nary classifier called discriminator fdis(x) estimates whether a sample x is real
or synthetic. The goal of the generator is to maximize the probability that the
discriminator makes a mistake on fdis(fgen(r)).
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Remarks:

• As in the case of autoencoders, the discriminator and generator can
be any type of neural network.

• During training, the discriminator improves its ability to recognize
synthetic samples while the generator learns to produce increasingly
realistic samples to deceive the discriminator. In this adversarial set-
ting, the equilibrium is reached when the generator produces realistic
samples such that the discriminator cannot distinguish whether they
are real or synthetic.

• The architecture of a vanilla GAN is shown in Figure 6.32.

• GANs achieved remarkable results in image generation. In partic-
ular, they can generate realistic-looking pictures and videos, which
has raised concerns about malicious uses of these models to generate
deepfakes.

• A GAN is a fully automated Turing Test with generator = testee, and
discriminator = tester.

Figure 6.30: GAN architecture for generation of synthetic images of celebrities.
For each sample, the discriminator needs to decide whether its input corresponds
to a real or to a synthetic celebrity.

Example 6.31. Faceswap-GAN is a popular implementation of a model trained
for deepfake generation. At high level, this model uses an autoencoder as gener-
ator. Given an image of a human face, it produces a segmentation mask as well
as the reconstructed input image. A segmentation mask is a representation of
an image that delineates the most important objects in the image; in the case of
human faces, these are the eyes, nose, ears, etc. Roughly speaking, an arbitrary
image of a face A can be combined with the segmentation mask of another face
B in order to generate an image that replaces the features of image B with those
of A, i.e., a deepfake. This is what the model does at inference time.

During training, Faceswap-GAN used a discriminator that determines whether
an input image is a real face or a deepfake, as well as some other advanced meth-
ods such as a perceptual loss that improve image quality.
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Figure 6.32: Architecture of Faceswap-GAN.

Remarks:

• Although originally conceived for generative tasks such as denoising,
reconstruction or data generation, GANs have proved useful in other
domains such as supervised learning, semi-supervised learning or re-
inforcement learning.

• Deep learning is applied in many different areas and consequently,
there is a wide range of architectures. We list some promising archi-
tectures in Table 6.33.
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Name Description Purpose

Transformer A family of sequence-to-
sequence models based on the
self-attention operation.

State of the art in natural lan-
guage processing (NLP) and
gaining relevance in other ar-
eas. Recently received a lot of
media attention with models
like BERT and GPT-3.

Variational
Auto-
Encoder
(VAE)

A generative model that tries
to match the data distribu-
tion by enforcing a simpli-
fied posterior distribution in
the latent space of an auto-
encoder.

Data generation and pos-
terior approximation in in-
herently stochastic models.
Disentangled representation
learning.

Contrastive
Learning

The same network applied to
different inputs, trained to re-
cover a notion of similarity in
the output representation.

Unsupervised representation
learning (e.g., recovering an
approximately metric space),
authentication, hashing and
matching

Graph
Neural
Network

Replicating a network on all
nodes of a graph and incorpo-
rating operations for message
exchanges with neighbors on
the graph.

Graph/node/edge classifica-
tion, community detection in
social network and predict-
ing protein/molecular inter-
actions

Implicit
Network

Training a neural network to
recover a value from an index.

Data compression, super-
resolution, image in-painting

Hyper
Network

A neural network that out-
puts the weights of another
neural network.

Mode abstraction and meta
learning

Table 6.33: A glossary of promising architectures.

6.8 Reinforcement Learning

A neural network and its corresponding loss have to be end-to-end differentiable
in order to apply gradient descent. So what if a problem is not differentiable?
What if we want to find an optimum in a sequential setting, like an optimal
sequence of decisions to reach a desired goal in an environment?

Definition 6.34 (Markov Decision Process or MDP). A Markov decision pro-
cess formally defines an environment. An MDP is a 5-tuple (S,A, T,R, s0),
where S is a set of states, A is a set of possible actions, T : S × A → S is a
state transition function, which describes the next state based on current state
and action. However, T could also be probabilistic, i.e., T : S ×A→ S × [0, 1].
s0 ∈ S (or s0 : S → [0, 1]) is an initial state (distribution). Finally, R is a re-
ward function. Rewards can be given when reaching certain states (R : S → R),
or when taking the right action in a state, R : S ×A→ R.

Problem 6.36. Figure 6.35 shows a simple example of an MDP with 6 states
S = {u0, u1, u2, u3, fail, pass} and two possible actions A = {study, party}. The
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Figure 6.35: An example Markov decision process to figure out whether and
when one should study (black) or party (red) in front of an exam.

states fail and pass are terminal states, and represent whether the agent fails
or passes the exam, respectively. The agent starts in state u0, i.e., s0 = u0.
The transition probabilities for choosing the ‘party’ action (red) or ‘study’ action
(black) are shown in the figure. Every time the agent chooses to party, it receives
a reward of +1. If the agent chooses to study, it receives a reward of -1 (studying
is painful). At the terminal states, the agent gets a reward of +10 for passing the
exam and -10 for failing. Intuitively, the states u1 and u3 represent states where
the agent has learned something. These states are more likely to be reached when
studying rather than partying, and from these states the agent is more likely
to pass the exam. How should the agent act? We can calculate the solution
backward from the terminal states by filling in a 2 × 4 matrix Q giving the
quality of each action in each of the non-terminal states. In u3 taking the
action ‘study’ will yield an expected reward of Q[u3, study] = −1 + 0.7 ·10 + 0.3 ·
(−10) = 3. Similarly, choosing ‘party’ in this state yields an expected reward
of Q[u3, party] = +1 + 0.3 · 10 + 0.7 · (−10) = −3. In all earlier states we can
assume that we take the action with higher expected reward in later states and
thereby calculate the remaining values recursively as given in Table 6.37.

State study party
u3 3 -3
u2 -1.9 -5.1
u1 0.53 0.57
u0 -1.171 -0.159

Table 6.37: Expected reward Q for each action in each non-terminal state. It’s
best to party in states u0 and u1, and best to study in states u2 and u3. Note
that filling in this table is dynamic programming (Definition 1.11).

Definition 6.38 (Policy). A policy π : S × A → [0, 1] describes how the agent
acts in the environment, i.e., how likely it will take an action a ∈ A in a given
state s ∈ S.
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Remarks:

• Given an MDP and a policy, the state distribution of the agent after
τ steps, i.e., how likely it is that the agent is in a given state after τ
actions can be calculated.

• The goal in reinforcement learning is to find a good policy π, that is,
a policy that accumulates positive rewards.

• More formally, we want to find the optimal policy π∗ that maximizes
the expected cumulative γ-discounted reward:

π∗ = max
π

E

[ ∞∑
t=0

γtR(st)

]

where γ ∈ [0, 1] is a discount factor that weighs immediate returns
relative to future returns, where st is the state at time step t, respec-
tively. The expectation is taken over actions sampled from the policy
and states sampled from the transition distribution P (·|s, a) given the
state s and action a.

• To find such a policy, we need to know how valuable each state is to
a given policy.

Definition 6.39 (Value Function). A value function Vπ : S → R is a policy
specific function that given a state returns the expected cumulative discounted
reward of the policy starting in state st.

Vπ(st) = E

[ ∞∑
τ=t

γτ−tR(sτ )

]

Definition 6.40 (Action-Value Function or Q-Function). An action-value func-
tion or Q(uality)-function Qπ : S×A→ R is a policy specific function that given
a state s and an action a returns the expected cumulative discounted reward of
taking action a in state s and following policy π thereafter. That is

Qπ(s, a) = R(s) + E [γVπ(s′)]

where the expectation is over states s′ sampled according to T (s′|a, s).

Remarks:

• The value function can also be defined in terms of the Q function as

Vπ(s) = Ea∼π [Qπ(s, a)] .

• Given the general definition of value and action-value function, we
can get a better understanding of what we want to find: the optimal
policy π∗

• Note that Vπ∗ gives us for each state s ∈ S the maximal expected
cumulative reward that can be achieved when starting in state s.
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• Further, if we are given Qπ∗ it is easy to derive the optimal policy by
simply taking the action that maximizes Qπ∗ , i.e.

π∗(a|s) =

{
1 if a = argmaxa′ Q

π∗(a′, s)

0 else

In other words, the optimal policy in an MDP is deterministic!

• Knowing that we can derive the optimal policy from a quantity which
requires the optimal policy might be a bit “recursive”, but we can
nevertheless try:

1 # S = states

2 # A = actions

3 # T = transitions

4 # R = rewards

5 def value_iteration(S, A, R, T):

6 V = zero vector of size len(S)

7 Q = zero matrix of size len(S) × len(A)

8 while Q not converged:

9 for s in S:

10 for a in A:

11 Q[s][a] = R(s) + γ
∑
s′∈S T(s′|a,s) * V[s′]

12 V[s] = max(Q[s]) # max over a in A

13 return Q

Algorithm 6.41: Value iteration

Remarks:

• If the MDP has cycles and γ → 1, then this algorithm may not con-
verge.

Lemma 6.42. If we are given an MDP that can be represented as a DAG, value
iteration converges in one iteration if we process the states s ∈ S in reversed
DAG order.

Proof. Reversed DAG order means we will start at the terminal states and
propagate the cumulative rewards back to the initial states. By induction, we
always propagate the maximal achievable value by the max operation in Line
12 of Algorithm 6.41. Therefore, after one iteration, all states have the optimal
value Vπ∗ assigned.
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Remarks:

• However, in many real world applications, the state space is just hi-
lariously large. The game Go for instance has 319×19 ≈ 10172 possible
states, so it is infeasible to compute or even store the whole Q-table.
We can however train a neural network to approximate how likely
a given position is to lead to a win. In combination with a bit of
look-ahead planning (recursion) a neural network was able to beat
the world champion.

Chapter Notes

While the beginnings of artificial neural networks go back to the 1940s [5], deep
learning only became widely adapted and efficient in recent years with the use
of GPUs to run computations in parallel. However, many of the theoretical
investigations and architectures presented here have been known for quite some
time by now. The universal approximation capability of neural networks was
first shown for sigmoid non-linearities [1] and later generalized to other non-
linearities [3]. Even before it was shown that learning various functions is NP-
complete [4, 6]. This is still an active research area, e.g. [2]. The VC Dimension
discussion is even older [7]. We summarize further milestones achieved by neural
networks in the table below.

Year Name Milestone
1989 MNIST Handwritten digit classification
2005 DARPA Self-driving car challenge: 212km in 7h
2012 AlexNet Image classification breakthrough
2014 Deepface Human level performance in face recognition
2014 DQN Superhuman performance in many Atari games
2016 AlphaGo Beats Champion in Go
2017 Waymo Fully autonomous self-driving on public roads
2018 Obvious Sells art generated by a GAN for $432,500
2020 OpenAI GPT-3 model can create poetry, code, etc.
2020 AlphaFold Achieves 90% in CASP protein folding

Table 6.43: Neural Network Milestones

This chapter was written in collaboration with Damian Pascual and Oliver
Richter.
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Chapter 7

Computability

Computability was pioneered by Alan Turing and Kurt Gödel. Turing probably
committed suicide by eating an apple he poisoned with cyanide. Gödel on the
other hand had an obsessive fear of being poisoned with food; when his wife
was hospitalized, he refused to eat, and eventually starved to death. Now it’s
your turn to study this intoxicating subject.

7.1 The Halting Problem

In the previous chapters, we have analyzed various computational tasks. While
some functions were easy to compute efficiently, others were difficult; in these
cases, we have focused on approximations or heuristics. However, given enough
time and resources, could we always find the solution to any problem?

Problem 7.1 (Halting problem). Given a program P and an input x to P ,
does P (x) halt (stop running) after a finite amount of time?

Remarks:

• Can we write a Python program that solves Problem 7.1? Somewhat
surprisingly, the input of our program is also a program (plus an input
parameter of this program).

• Naturally, we must somehow encode the input program. There are
various ways to do this. We can, for example, consider the whole code
of the program as a long string of text, encoding each character in this
string with a byte.

• The halting problem is sometimes easy to solve, for example, in case
of the simple programs in Algorithm 7.2. But is it always easy?

1 def P1(x):

2 print("Hello, world!")

3 return

4

140
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5 def P2(x):

6 while x > 0:

7 x += 1

8 return

Algorithm 7.2: Example programs; P1 is halting, P2 depends on the input.

Definition 7.3 (Undecidable). We say that a problem is undecidable if no
algorithm solves the problem in finite time for every possible finite input.

Remarks:

• This should be surprising! Definition 7.3 does not say that the runtime
increase will be exponential or even double exponential in the input
size, but that the problem really cannot be solved in any finite amount
of time.

Theorem 7.4. The halting problem is undecidable.

Proof. Assume for the sake of contradiction that there exists a program PH(P, x)
that solves the halting problem in finite time for any input. We design a new
program PT (x) that takes a bitstring as an input and calls PH as a subroutine:

1 def PT (x):

2 if PH(x, x) == True:

3 while True: pass #loop forever

4 else: return

Algorithm 7.5: Test program PT (x).

PT interprets its input x as a program encoding, and calls the halting solution
PH on program x with input x. Since we assumed that PH can always solve
this problem in finite time, Line 2 is evaluated in finite time for any x.

Since PT is also a program, it has a bitstring encoding τ according to our
encoding scheme. What happens when we call PT (τ)? Note that this means
that we are calling PH(τ, τ) as a subroutine, i.e., querying whether the program
described by τ (that is, PT ) halts on input τ .

• If PH(τ, τ) is true, then PT goes in to an infinite loop according to our
code, and never halts. Hence PH(τ, τ) should be false instead!

• If PH(τ, τ) is false, then PT immediately terminates according to our code,
so PH(τ, τ) should be true!

We get a contradiction in both cases, so the halting problem is undecidable.
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Remarks:

• We assumed that the encodings of a program and its input are simply
bitstrings. This is also close to practice. What if a bitstring is an
invalid program, not respecting the syntax of programs? We could
argue that in this case, the program simply halts (with an error).

• Of course Theorem 7.4 only holds in general: we cannot solve the
halting problem correctly in finite time for every algorithm-input pair.
Some specific algorithm-input pairs, e.g. the simple examples in Al-
gorithm 7.2, can be decided easily.

• Also, a program P that actually halts is easy as well: we just run/sim-
ulate P , which will eventually halt. The halting problem is only un-
decidable because of programs P that do not halt. In this case it is
difficult to distinguish if P is still running because it did not reach the
halting point yet, or because it is never going to halt.

• There is a name for this weaker kind of decidability that is only re-
quired to work in one of the two cases (unlike our original concept of
decidability in Definition 2.2).

Definition 7.6 (Semi-decidable). We say that a problem is semi-decidable if
there exists an algorithm A such that

• if the answer is True, then A outputs True in finite time,

• if the answer is False, then A either outputs False in finite time or keeps
running indefinitely.

Theorem 7.7. The halting problem is semi-decidable.

Remarks:

• Given the undecidability of halting, is there an easy way to show that
some other problems are also undecidable? Yes, we can use reductions
again (Definition 2.8). Given a problem Π, we can show that if Π was
decidable, then the halting problem would also be decidable. This im-
plies that Π is also undecidable. One slight difference from Definition
2.8, however, is that for this argument, we do not need the reductions
to run in polynomial time.

• Here is an example for such a reduction.

Problem 7.8 (Mortality problem). Given a program P , is it true that P (x)
halts for any possible input x?

Remarks:

• This is different from the halting problem, but only so much: instead
of a specific input, we now want to know if P halts on every input.

Theorem 7.9. The mortality problem is undecidable.
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Proof. Assume that we have a program PM that takes a program description
as an input, and solves the mortality problem in finite time. Then given a
specific input for the halting problem (a program P and an input x), consider
the following program:

1 def PT (y):

2 if y == x:

3 run program P (x)

4 else:

5 return

Algorithm 7.10: Another testing program.
Now let us run our mortality solution PM on the encoding of PT . We know

that PT certainly terminates in finite time for any input different from x. This
implies that PM (PT ) is true if and only if P (x) halts; hence a solution for the
mortality problem allows us to solve the halting problem on P and x. Since
halting is undecidable, such a solution cannot exist, so we have a contradiction.

Remarks:

• Well, that was not so surprising; after all, mortality is a close relative
of the halting problem.

• How about problems that are a far cry from halting? We need a clean
and simple theoretical definition of what we mean by a program, al-
gorithm or function. Let us make a brief detour into abstract machine
models and computation theory.

Definition 7.11 (Model of Computation). A model of computation defines the
rules how the output of a mathematical function is computed from a given input.

7.2 The Turing Machine

What kind of building blocks do we need to obtain a simple theoretical model
of a machine that can, intuitively speaking, do the same computations as a real
computer?

Remarks:

• First we need some abstract states that represent the current state of
our program, and we need to describe the transitions between these
states. Such a set of states with predefined transition rules is known
as a finite automaton.

• We also need some memory to store data. We usually assume that a
memory consists of cells; our program can read data from these cells,
write data into these cells, and move between these cells to be able
to access any of them. We will now consider a tape of cells that is
infinite in both directions, i.e. the cells can be enumerated by integers
...,−2,−1, 0, 1, 2, ... (from −∞ to ∞).
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• We also have a tape pointer that points to a specific tape cell at each
point in time, indicating that this is the tape cell that we can currently
read/write. Initially the tape pointer points to cell 0.

• What kind of data can we write onto this tape? We assume that
we have an alphabet Σ of possible symbols, and we can write exactly
one symbol into each cell. In the simplest case, this alphabet can be
binary, i.e. Σ = {0, 1}. We usually use some extra symbol, e.g. ⊥ for
the cells that we consider empty, and we use Σ := Σ ∪ {⊥}.

• These building blocks define a famous theoretical model of computa-
tion.

Definition 7.12 (Turing Machine or TM). A Turing Machine has a finite set
of states S, and a two-way infinite tape. Initially the machine is in a specified
starting state s0 ∈ S, the tape has some symbols on it (the input), and the tape
pointer points to cell 0 of the tape.

In each discrete time step, depending on the current state s and the current
tape cell content σ, the machine executes the following steps:

• change to another state s′ ∈ S,

• write the tape, i.e. change the content σ of the current tape cell to any
symbol σ′ ∈ Σ,

• possibly move the tape pointer one step to the left or one step to the right.

Formally a TM is defined by a function T : (S,Σ) → (S,Σ,m), where m ∈
{left, right, stay} indicates the movement of the tape pointer.

With a TM we usually also select a specific halting (accepting) state sh ∈ S.
We say that the TM accepts an input if, when executed on this input, the TM
eventually enters state sh.

Remarks:

• We assume that computation is over whenever the halting state sh
is reached: the machine does not do anything (i.e. never changes the
state/tape content/tape pointer) after this point, and the current tape
content is considered to be the output of the computation.

• While a TM acts as a model of computation, we can also interpret it
as a function: it converts an input (the initial content of the tape) to
an output (final content of the tape).

• However, the function is not complete: for some inputs, the output
may be undefined, since just like a Python program, a TM can easily
run forever and never halt.

• How can we do actual computations in this abstract setting? Let us
see an example for a simple operation: incrementing an integer.

Example 7.13 (Incrementation with a TM). Given a positive integer input x,
our task is to increment x by 1. We assume that the input x is given in a binary
representation, starting with least significant bit (LSB) first at cell 0, and going
until cell blog2 xc. The tape pointer starts at cell 0, and empty cells of the tape
are marked with a ⊥.



7.2. THE TURING MACHINE 145

Lemma 7.14. Example 7.13 can be solved on a simple TM with 2 states.

Proof. The formal process of incrementing a binary number is as follows. We
start going from the LSB to the most significant bit (MSB) until we encounter
a 0, and we change every 1 to a 0 during the process. When we first find a 0,
we change it to a 1 (or if we have left the MSB, we add an extra 1 to the front),
and the incrementation is done. We have to translate this process to states and
transitions.

This can be done with two states s0 and sh. The starting state is s0, this is
where the execution begins; sh is a halting state where none of the transitions
do anything. The transitions from s0 are defined as follows:

Transitions from state s0

Read Write Pointer Next state

1 −→ 0 right s0

0 or ⊥ −→ 1 stay sh

This ensures that the machine enters the halting state exactly when the
incrementation is finished, i.e. when the tape contains x+ 1 in the same binary
representation.

Remarks:

• Describing a TM for more complex computations can be some work,
since it usually requires a higher number of states and transitions.
Even in case of our incrementation example, if the number is in a
reversed representation (i.e. starting with MSB), we already need
an extra state to first move to the end of the input and then start
processing the input from the other direction.

• The definition of the halting problem on TMs is as follows: given
a description of a TM and an input (initial tape content), decide
if this TM ever goes into the halting state. Note that this is only a
reformulation of our original halting problem, so the same proof shows
that this problem is undecidable.

• There also various other versions of TMs, e.g. a TM that has multiple
tapes, and it can read/write these tapes simultaneously in every step.
One can show that this is equivalent to the single-tape setting in terms
of computability.

• There is one important concept in computation that this basic machine
model cannot capture: randomization. In order to model that, we
need to slightly extend the machine model.

Definition 7.15 (Randomized TM or RTM). In a Randomized Turing Ma-
chine, each transition is replaced by a set of available transitions, and a proba-
bility distribution over these transitions. In each step, a transition is chosen at
random according to this probability distribution.
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Remarks:

• For example, a program on an RTM might have a state where it
moves left on the tape with 50% probability, and moves right with
50% probability.

• Another formulation of RTMs is to take a deterministic TM, and
add an extra tape of infinite random bits to the machine. The TM
then reads bits from this extra tape, and (possibly) executes different
transitions based on the next random bit.

• Our argument uses an important assumption: that we can use a TM
to simulate the execution of another TM. We also need this property
when expressing the proof of Theorem 7.4 in a TM-based context.

• Luckily, this is possible:

Theorem 7.16 (Universal TM). There exists a Universal Turing Machine
which receives the encoding of another TM T (i.e., a program encoded as a
string) and an input x to T on its tape, and simulates the behavior of T on x.

Remarks:

• This is somewhat similar to a real-world Von Neumann computer ar-
chitecture, where source code, constants and inputs of a computation
are stored in the same memory.

• So how close are TMs to real computers? The fact that our program
moves between a finite number of states is pretty realistic. What is
unusual, however, is that we can only move in memory one step at a
time.

• More realistic machine models do exist:

Definition 7.17 (RAM Machine). A RAM Machine is a model of computation
that has explicit registers (instead of only cells) which can store integer values.
The machine is capable of addressing these registers indirectly through pointers
(instead of moving only sequentially between them).

Remarks:

• While RAM machines seem more expressive, they are in fact equiva-
lent to TMs: any program on a RAM machine can also be simulated
on a TM.

• Since TMs are simpler, we usually stick to TMs. We say that a prob-
lem Π is computable if a TM can compute Π. This means that we
can essentially use TMs to define the general notion of an algorithm.

7.3 Computing on Grids

Definition 7.18 (Tile). A tile is a 1×1 square. Each tile has a color, and each
side of the tile (left, top, right, and bottom) has a specific code (e.g., a letter or
a number). We assume that we are not allowed to rotate or flip tiles.
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Definition 7.19 (Correct Tiling). Two tiles can be placed next to each other if
their touching side has the same code. E.g., if tile t1 has code A on its top and
tile t2 has code A on its bottom, then we can place t2 directly above t1.

1

3

2 4

3

1

4 2

Figure 7.20: Example of a tile set consisting of two 2 tiles that tile the infinite
plane in a chessboard pattern

Remarks:

• Our goal is to tile a given pattern (e.g., a chessboard) or shape (e.g.,
a 4× 5 rectangle) with a set of tiles such that the tiling is correct.

Problem 7.21 (Tiling). Assume we are given a set of n tiles, and we can take
an arbitrary number of copies of each of these tiles. Does there exist a correct
tiling of the entire infinite plane with our given set of tiles?

Remarks:

• At first glance, this problem seems to have no connection to TMs or
the halting problem.

• The most simple correct tiling one can imagine is a periodic tiling,
when the same pattern of tiles keep repeating.

Definition 7.22 (Periodic Tiling). We say that a tiling of the plane is periodic
if there exist positive integers w, h such that for every pair of coordinates i, j ∈ Z,
grid square (i, j) has the same tile as grid squares (i+ w, j) and (i, j + h).

Remarks:

• In a periodic tiling, we tile a w × h rectangle R such that the tiling
within rectangle R is correct, and it is also correct to place two such
rectangles R next to each other top/bottom or left/right. Then we
can cover the entire plane with copies of R.

Lemma 7.23. If we know that a periodic tiling exists, we can find it in finite
time.

Proof. We take every possible rectangle size w × h, in an increasing ordering
according to the sum w + h: first 1× 1, then 1× 2 and 2× 1, then 1× 3, 2× 2
and 3× 1, and so on. For each such size, we can try all possible tilings in each
of these rectangles, and check their correctness.

If there exists a periodic tiling with a rectangle of size w × h, then we try
at most (w + h) total sizes, and thus at most (w + h)2 rectangle shapes before

reaching w × h. Each such shape has at most n(w+h)2 possible tilings. Since
(w + h)2 · n(w+h)2 is a finite number, the algorithm indeed terminates in finite
time.
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Remarks:

• Unfortunately, this does not answer the question whether the tiling
problem is decidable in general. There are sets of tiles where a tiling of
the entire plane is possible, but only in a fashion that is not periodic.

• To settle the question of decidability, we show that these tilings are
in fact a surprisingly expressive model: we can use them to simulate
any TM. This property will allow a reduction to the halting problem.

Theorem 7.24. Some tile sets are Turing-complete: tilings can simulate the
run of any TM on any input x.

Proof. To outline the main idea of the proof, we will assume a slightly simpler
setting: that we only need to tile the bottom half of the plane, i.e. below the
origin. This is only for convenience; with further tricks, the same proof method
can be extended to the entire plane.

The main idea of the proof is that each row describes the complete state
of the tape of a TM in a specific time step, with the top row corresponding to
time step 0, the row immediately below corresponding to time step 1, and so
on. We can design the tiles carefully such that given a specific row (i.e. current
configuration of the TM), the only possible tiling of the row directly below is
the next configuration of the TM. For simplicity, we assume all tiles have no
color.

For each tape symbol σ, we can create a tile that has code σ on top and
bottom, and a special empty code on the left and right. This already allows us
to automatically copy the content of the tape into the row below. Furthermore,
we use special tiles to keep track of the tape pointer and the current state: the
tape cell with the pointer will also be marked with the current state. If, for
example, we have a transition from state q1 to q2 that also replaces a 0 by a
1 on the tape and moves the tape pointer one step to the right, then we can
describe this behavior with the tiles shown in Figure 7.25.

1

(q1, 0)

q2

(q2, σ)

σ

q2

Figure 7.25: Example tiles to simulate a transition of the TM.

The number of tiles we require altogether is only a function of the tape
alphabet size and the number of states and transitions in the TM, and thus it
is a finite number. By defining some special tiles for the first row, one can also
ensure that the only possible tiling of the first row is to have the input x on the
tape, the tape pointer at position 0 and the TM in its initial state s0 (note that
this is a significant technical step that we do not discuss here).

With such a set of tiles, if the TM halts on x in k steps, then this allows us
to tile the first k rows of the plane, and then no tiling will be possible for the
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(k+1)th row (since there is no following configuration of the TM). On the other
hand, if the TM runs forever, then there is always a next configuration, so the
tile set allows us to tile the entire lower half of the plane.

Remarks:

• So we can do actual computations with a set of tiles!

Theorem 7.26. The tiling problem is undecidable.

Proof. Consider an instance of the halting problem with TM T and input x. As
we have seen in Theorem 7.24, we can create a set of tiles that correspond to
running T on x, and a tiling with this set is possible if and only if T does not
halt on x. Thus solving this tiling problem allows us to decide whether T halts
on x; however, the halting problem is undecidable, so the tiling problem must
be undecidable, too.

Remarks:

• There are other models of computation that work on grids. A popular
example is Game of Life.

Definition 7.27 (Game of Life or GoL). In Game of Life, each cell has two
states, black (alive) and white (dead), and the update rule is as follows:

• If the cell is black: if it has exactly 2 or 3 black neighbors among its 8
neighboring cells, it remains black, otherwise it becomes white.

• If the cell is white: if it has exactly 3 black neighbors among its 8 neigh-
boring cells, it becomes black, otherwise it remains white.

Remarks:

• These simple rules create a surprisingly wide range of patterns. There
are stable configurations which keep their shape without changing;
there are oscillators that keep repeating a few specific configurations
periodically; there are “gliders” that exhibit a similar periodicity but
also slowly move through the grid in the meantime. There are more
complex patterns that repeatedly create smaller oscillators or gliders.

• These constructions can then be used to form gadgets on a higher
abstraction level: we can create logical AND and OR gates, and ulti-
mately a finite automaton. These tools then allow us to simulate the
behavior of a TM in GoL, similarly to the tiles before.

Theorem 7.28. Game of Life is Turing-complete.

Remarks:

• As a result, we can also formulate some undecidable problems in this
model.

Problem 7.29 (GoL Reachability). Given an initial configuration c, the task
is to decide if another configuration c′ will ever occur.

Theorem 7.30. GoL Reachability is undecidable.
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Remarks:

• GoL is a in fact a special case of a widespread model of computation
on grids called Cellular Automaton.

Definition 7.31 (Cellular Automaton or CA). A Cellular Automaton consists
of a (two-dimensional) grid of cells, where each cell is in a specific state. In each
iteration, every cell (concurrently and independently) changes its state based on
the current states of the cells in its immediate neighborhood.

Remarks:

• If we denote the set of states by S, then a CA is essentially described
by a function f : S×SN → S (with N denoting the size of the neigh-
borhood). Each cell executes this function in each round to obtain
the state in the next round.

• Since GoL is a special case of Cellular Automata, CAs in general are
also Turing-complete.

• CAs can model various processes in natural sciences, ranging from
Physics to Biology, with the cells of the automaton representing any-
thing from chemical molecules to actual (biological) cells.

• There are many other areas (beyond halting and grids) where we can
find undecidable problems. To mention another surprising example:
Given a couple of k×k matrices with integer entries, it is undecidable
if they can be multiplied in some order, possibly with repetitions, such
that we obtain the zero matrix as a result.

7.4 Post Correspondence Problem

Finally, we discuss some variants of the so-called Post Correspondence Problem.
This problem is an interesting conclusion to our whole lecture: it demonstrates
that seemingly similar problems can easily have a completely different complex-
ity.

Problem 7.32 (PCP). We have a set of dominoes, where each domino (α, β)
has two words written on the domino: one word α on the top, and one word β on
the bottom. Can we make a sequence of these dominoes, possibly with repetitions,
such that the concatenation of words on top is the same as the concatenation of
words on the bottom?

Remarks:

• Given a finite alphabet of symbols Σ, a word is a finite string formed
from these letters, possibly with repetitions. A concatenation of words
α1, α2, . . . is the word obtained by writing these words after each other
in this order.

Theorem 7.34. PCP is undecidable.
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caa

c

b

a

b

a

da

bbda

Figure 7.33: Example solution of a PCP: both the top and the bottom string is
caabbda. The sequence consists of 4 dominoes, using one of the dominoes twice.

Proof. The proof is quite technical, so we only outline the main idea. Similarly
to tiles, we can use dominoes to simulate the running of a TM. The concatenated
string will describe the history of the run of the TM as a list of subsequent
configurations. The bottom string is always “one step ahead” the top string
in this computation; thus by defining an appropriate domino for each possible
transition in the TM, we can ensure that the next configuration is always a valid
follow-up to the current configuration. If the TM reaches a terminal state, then
some extra dominoes ensure that the top string can catch up to the bottom
string; this way the two strings become identical, and thus we have a valid
sequence of dominoes that solves the PCP problem.

Since such a PCP solution exists if and only if the TM halts. Since the
halting problem is undecidable, the PCP problem is also undecidable.

Remarks:

• However, there is a simple algorithm that terminates in finite time if
the answer is yes.

Theorem 7.35. PCP is semi-decidable.

Proof. We can enumerate all possible domino sequences based on their length
in increasing order. Then if there exists a solution with a domino sequence of
length k for some finite number k, then until reaching this sequence, we check
at most

n+ n2 + ...+ nk ≤ k · nk

possible sequences. Since each such check takes at most O(k) time, we can find
the solution in finite time.

Remarks:

• The PCP problem is often used in reductions when analyzing problems
related to formal languages.

• In terms of the number of dominoes used, the best known method to
simulate a TM requires 5 different dominoes. This shows that if we
have the correct 5 dominoes, then the problem is undecidable. How-
ever, what happens if we restrict the problem to less than 5 dominoes?



152 CHAPTER 7. COMPUTABILITY

Theorem 7.36. With only 1 domino, the PCP problem is decidable in polyno-
mial time.

Proof. In this case, any sequence consists of a specific number of repetitions of
our single domino. In this case, the top and bottom strings are only identical
if our single domino has the same word on the top and bottom side (and in
this case, a single instance of the domino already provides a solution). We can
easily check this in linear time: we only need to read the two words and compare
them.

Theorem 7.37. With only 2 dominoes, the PCP problem is decidable.

Proof. The proof of this claim is quite involved, so we do not discuss it here.

Remarks:

• With 3 or 4 dominoes, it is still an open question whether PCP is
undecidable or not.

• Another possible modification is to restrict the size of the alphabet.
More specifically we need an alphabet of at least |Σ| ≥ 2 letters for un-
decidability. If Σ only consists of a single character, then the problem
becomes decidable.

Theorem 7.38. PCP with |Σ| = 1 is solvable in polynomial time.

Proof. In this case, we only need to make sure that the top and bottom words
have the same length, i.e. the same number of occurrences of our single char-
acter. This means that for each available domino, we only need to consider
the difference of length between the top and bottom words, which gives us a
(not necessarily positive) integer. The task then reduces to analyzing this set
of integers, and selecting a subset of them (with possible repetitions) that sums
up to 0.

Solving this is rather easy in polynomial time. If one of the integers is 0,
then this already forms a valid sequence on its own. If not, then we need to
check if there is at least one positive number xi > 0 and at least one negative
number xj < 0 among our integers: then a sequence consisting of xi copies of
the number xj and |xj | copies of the number xi also sums up to 0. Otherwise,
all the numbers are positive (or negative); in this case, the sum of any sequence
is also positive (or negative, respectively).

Remarks:

• For another variant, we can also restrict the size of the allowed domino
sequence.

Problem 7.39 (Bounded PCP). In Bounded PCP, the input also contains an
integer k, and we only accept domino sequences that have length at most k.

Theorem 7.40. Bounded PCP is decidable but NP-hard.

Proof. With n dominoes, we only have nk possible domino sequences. By enu-
merating and checking all these possibilities, the problem is clearly decidable in
finite time.

The proof of NP-hardness can be shown through a reduction from the longest
common substring problem; we do not discuss it here.



7.4. POST CORRESPONDENCE PROBLEM 153

Chapter Notes

The Turing Machine was developed by Alan Turing in 1936, shortly after the
Gödel machine motivated the mechanisation of reasoning, but long before the
invention of modern day computers [16]. Turing has specifically defined the
model in order to study the halting problem, and prove its incomputability.
The halting problem (and its different variants) has kept its central place in
the area; the majority of known incomputability results are shown through a
reduction that comes either directly or indirectly from this problem.

Turing submitted his paper to the London Mathematical Society in May
1936. Emil Post, working independently from the United States, submitted a
manuscript detailing a machine almost identical to that of Turing in September
of the same year. Turing’s paper, however, was published first, in early 1937.
Even though he was only four months late, Post’s work was overlooked and only
dug up by historians years later.

A very similar line of thought and proof technique to the halting problem’s
incomputability has also appeared in the work of Kurt Gödel, who was studying
incompleteness theorems and the axiomatization of natural numbers at about
the same time [14]. The general message of these two results has caused a large
surprise (even shock) in the scientific community, where the general belief (based
on Hilbert’s conjectures) was that, intuitively speaking, every well-defined ques-
tion can be answered. The results have shown that this is not the case, which
had far-reaching philosophical consequences for the beliefs about the nature of
reasoning at the time. The modern-day interpretation of Gödel’s incomplete-
ness theorems, however, is that they are a minor technical difficulty subject to
the use of first order predicate calculus for proofs with finitely many steps.

The Turing Machine has also remained the most approachable model to
study computations ever since. The closely related concepts (e.g. Universal
Turing Machine, Turing-completeness, or different formulations of the Church-
Turing thesis) have been gradually developed and refined in the following decades.
This rapidly developing area was studied by some of the most important math-
ematicians of the 20th century, including John von Neumann, Alonzo Church,
or Stephen Kleene.

In 1960s, Kurt Gödel strongly attacked the increasing belief that the Church-
Turing thesis “holds”, and his points still stand today. Roger Penrose led an-
other, more recent high-profile attack in [12].

The tiling problem was first discussed by Wang in 1961 [17]. However, in
his first work, Wang conjectured that whenever a tiling exists, a periodic tiling
also exists. A few years later his student Berger showed that some tile sets
only allow an aperiodic tiling, and that the problem is undecidable due to its
connection to the halting problem [3].

Game of Life was devised by John Conway in 1970 [8], and has been analyzed
in numerous papers and books since then [2]. There are many simulators online
where you can create different patterns and follow their development through
the rounds [1].

As for Cellular Automata in general, there is an immense literature dis-
cussing different aspects of the topic. Different variants of automata have been
used in a very wide range of applications, e.g. generating pseudo-random num-
bers in computer science [15], modeling the crystallization of snowflakes [4],
modeling the geometric patterns on seashells [6] or modeling the flow of traffic
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on the freeway [10].
The PCP problem was introduced by Emil Post in 1946 [13]. A long line of

works have followed that tried to reduce the number of dominoes required for
undecidability, going down to set of 7 dominoes in 1996 [9], and then finally 5
tiles in the work of Neary in 2015 [11]. The decidability for 2 dominoes was
proven by Ehrenfeucht, Karhumäki and Rozenberg [7], while the NP-hardness
of Bounded PCP was first discussed in [5]. In [18] Zhao presents some strategies
for solving the PCP problem and the hardest known instances for 5 subclasses
of the PCP consisting of few tiles and short words.

This chapter was written in collaboration with Pál András Papp and Peter
Belcak.
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