
Distributed

 Computing

HS 2021 Prof. R. Wattenhofer
Peter Belcak

Computational Thinking

Sample Solution to Exercise 4

1 Bicolored Edges

a) Consider the example graph and initial coloring shown in Figure 1a. One can observe that
none of the nodes in this graph is wasteful, so the algorithm does not even enter the loop
once, and returns this initial coloring with 4 bicolored edges.

On the other hand, the optimal solution on Figure 1b is a coloring with 5 bicolored edges.

(a) (b)

Figure 1: Example where the greedy algorithms is worse than the optimum.

b) Whenever the algorithm switches the color of a wasteful node (i.e. in each iteration of the
main loop), the number of bicolored edges in the graph strictly increases. Since the number
of bicolored edges is ≥ 0 in the beginning, and cannot ever increase over |E| = O(n2), the
algorithm executes at most O(n2) such steps.

c) Let m = |E|. Note that we have v∗ ≤ m for the optimum v∗, since there are only m edges
in the graph. Thus to prove that the algorithm is a 2-approximation, it is enough to show
that it always returns a coloring with at least m

2 bicolored edges.

Consider the final coloring returned by the algorithm. Since the main loop of the algorithm
has terminated, we know that under this coloring, G does not have any wasteful nodes
anymore. Let degv denote the degree of v, and bicv denote the number of bicolored edges
where v is one of the endpoints. As v is not wasteful, we have bicv ≥ 1

2 · degv for each node
v. Summing this up for all nodes, we get∑

v∈V
bicv ≥

∑
v∈V

1

2
· degv =

1

2
·
∑
v∈V

degv = m.

The sum on the left-hand side of this equation counts each bicolored edge twice (at both of
its endpoints), so the number of bicolored edges in the graph is

1

2
·
∑
v∈V

bicv ≥
m

2
.

2 Finding 4-segments

Let S denote the set of disjoint 4-segments returned by the algorithm, and S∗ the optimal set
of disjoint 4-segments. To show that our algorithm is a 4-approximation, we need to prove that
|S∗| ≤ 4 · |S| for any possible input graph.

Assume for a contradiction that the opposite is true, and we have |S∗| ≥ 4 · |S| + 1 for some
graph. On the one hand, the 4-segments in S altogether consists of exactly 4 · |S| edges. On the
other hand, in S∗ we have at least 4 · |S| + 1 distinct 4-segments; since these are all disjoint, all
the 4 · |S| edges of S can only appear in one of these 4-segments. Thus there has to be at least
one 4-segment s ∈ S∗ that does not contain any of the edges of the 4-segments in S. However,
this means that this s is still free with respect to S, so our greedy algorithm should not have
terminated without adding s to S.

This gives us a contradiction, so we must indeed have |S∗| ≤ 4 · |S|.

2

