

The Internet Computer An Overview

Thomas Locher (thomas.locher@dfinity.org)

Yvonne Anne Pignolet (<u>yvonneanne@dfinity.org</u>)

• What is the Internet Computer? Consensus on the Internet Computer The Internet Computer Today

What is the Internet Computer?

What is the Internet Computer?

Platform to run any computation, using blockchain technology for decentralisation and security

Coordination of nodes in independent datacenters, jointly performing any computation for anyone

ICP creates the Internet Computer blockchains

Guarantees safety and liveness of smart contract execution despite Byzantine participants

ICP protocol

IP / Internet

Data Centers

A REAL PROPERTY.

1 N N N

******* **********

Canister smart contract

Canister Smart Contracts: Combination of Data and Code

Code: WebAssembly bytecode

Developers and users interact directly with Canisters on the IC

DEPLOY

Internet Computer

Public cyberspace

Developers and users interact directly with Canisters on the IC

Internet Computer

Nodes are partitioned into subnets

Canister smart contracts are assigned to different subnets

Scalability: Nodes and Subnets

Nodes are partitioned into subnets

Canister smart contracts are assigned to different subnets

One subnet is special: it host the Network Nervous System (NNS) canisters which govern the IC

- ICP token holders vote on
- Creation of new subnets
- Upgrades to new protocol version
- Replacement of nodes
- . . .

Scalability: Nodes and Subnets

Public key of NNS never changes, nodes in NNS share private key

NNS generates key of subnets and certifies them

 Node in subnets use these keys to secure communication

Chain Key Technology

State:

canisters and their queues

Inputs:

- new canisters to be installed,
- messages from users and other canisters

Outputs:

 responses to users and other canisters

Transition function:

- message routing and scheduling
- canister code

Each Subnet is a Replicated State Machine

The Layers of the Internet Computer Protocol

Deterministic computation

Message acquisition and ordering

Consensus on the Internet Computer

Consensus Orders Messages

Replicas may receive input messages in different orders, but must process them in the same order, for example 123466

Consensus Orders Messages

• Message (user \rightarrow canister) • Message (canister \rightarrow canister)

- Validity: all agreed upon blocks are valid

Consensus Properties

Messages are placed in **blocks**. We reach agreement using a blockchain.

Block x+1 Block x+2 Block x

The following properties must hold even if up to f < n/3 nodes misbehave

upon, they must have the same block *i*-th block is agreed upon

- Safety: For any *i*, If two (honest) replicas think that the *i*-th block is agreed
- Liveness: For any *i*, at some point every (honest) replica will think that the

Neusen

• Message (user \rightarrow canister) • Message (canister \rightarrow canister)

Note: We need more than one block maker in each round, otherwise the IC would not be fault tolerant!

Block Maker

A block maker selects available messages and combines them into a

30

The notarization process ensures that a *valid* block proposal is published for every round

Step 1

Replica 1 receives a block proposal for height 30, building on some notarized height 29 block

Notarization

Step 2

Replica 1 sees that the block is valid, signs it, and broadcasts its notarization share

Step 3

Replica 1 sees that replicas 3 and 4 also published their notarization shares on the block

Step 4

3 notarization shares are sufficient approval: the shares are aggregated into a single full notarization. Block 30 is now notarized, and notaries wait for height 31 blocks

Replicas may notary-sign multiple blocks to ensure that at least one block becomes fully notarized

Step 1

Replica 1 receives a block proposal for height 30, building on some notarized height 29 block

Notarization

Step 2

Replica 1 sees that the block is valid, signs it, and broadcasts its *notarization* share

Step 3

Replicas 1 sees another height 30 block, which is also valid, and it broadcasts another notarization share

Step 4

Both height 30 blocks get enough support to become notarized

Notarization

Multiple notarized blocks may exist at the same height

At every height, there is a Random Beacon, an unpredictable random value shared by the replicas

Step 1

Replica 1 has Random Beacon 29 and wants to help constructing Random Beacon 30

Random Beacon

Step 2

Replica 1 signs RB29 using a threshold signature scheme, yielding a share of random beacon 30

Step 3

Replicas 1 sees that replica 2 also published a share of Random Beacon 30

Step 4

2 random beacon shares are sufficient to reconstruct a full threshold signature, which is Random Beacon 30

Block Maker Ranking

The Random Beacon is used to rank block makers

1Replica 4Replica 24Replica 3Replica 33Replica 1Replica 42Replica 2Replica 1		RB 24	RB 25
 4 Replica 3 Replica 3 3 Replica 1 Replica 4 2 Replica 2 Replica 1 	1	Replica 4	Replica 2
3Replica 1Replica 42Replica 2Replica 1	4	Replica 3	Replica 3
2 Replica 2 Replica 1	3	Replica 1	Replica 4
	2	Replica 2	Replica 1

Round 25 Round 26

Round 27

Round 28

Rounds are divided into time slots defining when block maker proposals are considered

Notarization with Block Maker Ranking

The block ranks can reduce the number of notarized blocks

Step 1

Replica 1 receives a rank-1 block proposal for height 30, building on some notarized height 29 block

Notarization with Block Maker Ranking

Step 2

Replica 1 is still in time slot 0, so not willing to notary-sign a rank-1 block yet

Step 3

Replicas 1 sees a valid rank-0 height 30 block, and it broadcasts a notarization share

Step 4

Eventually, only the rank 0 block becomes notarized

Notarization with Block Maker Ranking

One notarized block *b* at a height *h* = Agreement up to *h*

How can we detect this...?

Notarization with Block Maker Ranking

Synchronous communication \rightarrow Forks can be removed

37 Rank 0

Partially synchronous communication \rightarrow Forks cannot be removed!

Notarization with Block Maker Ranking

Replicas create finalization shares if they did not sign any other block at that height

Replica 1 observes that block *b* is fully notarized and will no longer notary-sign blocks at height \leq 30

Finalization

Step 2

Step 3

Since replica 1 did not notary-sign any other block than block b, it signs block *b*, creating a finalization-share on *b*

Replica 1 did not notary-sign any height 30 block other than b

Step 4

Replicas 2 and 4 also cast finalization shares on block *b*

Step 5

3 finalization-shares are sufficient approval: the shares are aggregated into a single full finalization

Finalization on block b at height h = Proof that no other block is notarized at height h

Proof:

- 1. A full finalization on *b* requires *n-f* replicas to finality-sign (by construction)
- - that $\leq f$ replicas are corrupt)
- h (by construction)
- 5. A full notarization requires *n-f* notarization-shares (by construction)
- sufficient to reach the notarization threshold of *n-f* (by 4. & 5.)

Safety of Finalization

If block b at height h is finalized, then there is no finalized block $b' \neq b$ at height h.

2. At least *n-2f* of the *n-f* replicas that finality-signed *b* must be honest (by assumption

3. An honest replica that finality-signed b did not notary-sign any other block at height

4. At least *n-2f* replicas did not notary-sign any height *h* block other than *b* (by 2. & 3.) 6. The *n-(n-2f) < n-f* remaining replicas that may have notary-signed a block b' are not

The Internet Computer Today

Live Since May 2021!

Currently 375 machines by 53 node providers

Network Status Operational *

https://dashboard.internetcomputer.org/

- Disseminating messages among all nodes in the same subset • Exchanging canister and control messages between subnets Scheduling and concurrent execution of canister messages Catching up after a node has been offline for a while Handling churn (adding and removing nodes) • Guaranteeing consistency (different users need a consistent view of data and operations) Upgrading to next protocol version

- Creating new subnets
- Load balancing

Many distributed systems problems

Fast Growing Blockchain Ecosystem

Average block time:

Finality:

TX per second:

Validation data:

Internet Computer vs. ...

1 block / 10 minutes

1 hour

7

380 GB

1 block / 15 seconds

3 minutes

15

550 GB

30 blocks / second

1-3 seconds

11,500 (write) / 250,000 (read)

48 bytes

Infographic: <u>here</u>

Technical Library: <u>here</u> (videos of talks) and <u>here</u> (blogposts) lacksquare

200,000,000 CHF Developer Grant Program <u>here</u>

• DFINITY SDK: <u>here</u>

More information

INTERNET COMPUTER		DFINITY.org Forum Support 🎔 🕓 🔍	Search	
Docs		Developer Center / Introduction		r
Introduction	~	For: First-Timers		
For: First-Timers			ON THIS PAGE	
For: Developers		The Internet Computer is a blockchain that runs at web speed with	For: First-Timer	s
For: Protocol Enthusiasts		unbounded capacity.	For: Developers	
		As a crash course in blockchain history, Bitcoin created digital gold.	For: Protocol	ack
Quick Start	>	Then, in the next step of the evolution, Ethereum developed smart	Enthusiasts	edb
Example Code	>	contracts and pioneered DeFi and NFT use cases.		Ъ.
Developer Docs	>	The Internet Computer is the third major blockchain innovation — a		
Protocol Docs	\$	blockchain that scales smart contract computation, runs them at		
FIGUEULDUCS		web speed, processes and stores data efficiently, and provides		
General Docs	>	powerful software frameworks to developers. By making this		
Additional Resources	>	possible, the Internet Computer enables the complete reimagination		
		of now systems and apps operate.		

Introducing the Internet **Computer Interface** Specification

It details how services and users communicate through the Internet Computer, and enables the community to for internet-scale services. create new development tools.

Mar 19 · 4 min read

	102 GRANTEES
Grantee	
AEDILE	
Project management dapp	
AGRYO	
Global risk intelligence for agriculture	
ASTROX	
Dart developer tools and "mini apps" framework	
B9 LABS	
Developer onboarding documentation	
BAUCTION	
Decentralized and transparent auction platform	

A Closer Look at Software **Canisters, an Evolution of** Smart Contracts

Canisters are smart contracts that scale — interoperable compute units designed

A Technical Overview of the Internet Computer

An explanation of the blockchain network's infrastructure, and how canister smart contracts enable web services to scale without bound.

Sep 18, 2020 · 12 min read

