
Chapter 20

Time, Clocks & GPS

“A man with a clock knows what time it is – a man with two is
never sure.” (Segal’s Law)

20.1 Time & Clocks

Definition 20.1 (Second). A second is the time that passes during 9,192,631,770
oscillation cycles of a caesium-133 atom.

Remarks:

� This definition is a bit simplified. The official definition is given by
the Bureau International des Poids et Mesures.

� Historically, a second was defined as one in 86,400 parts of a day,
dividing the day into 24 hours, 60 minutes and 60 seconds.

� Since the duration of a day depends on the unsteady rotation cycle
of the Earth, the novel oscillation-based definition has been adopted.
Leap seconds are used to keep time synchronized to Earth’s rotation.

Definition 20.2 (Wall-Clock Time). The wall-clock time t∗ is the true time
(a perfectly accurate clock would show).

Definition 20.3 (Clock). A clock is a device which tracks and indicates time.

Remarks:

� A clock’s time t is a function of the wall-clock time t∗, i.e., t = f(t∗).
Ideally, t = t∗, but in reality there are often errors.

Definition 20.4 (Clock Error). The clock error or clock skew is the difference
between two clocks, e.g., t−t∗ or t−t′. In practice the clock error is often modeled
as t = (1 + δ)t∗ + ξ(t∗).

62

20.1. TIME & CLOCKS 63

Figure 20.8: Drift (left) and Jitter (right). On top is a square wave, the wall-
clock time t∗.

Remarks:

� The importance of accurate timekeeping and clock synchronization
is reflected in the following statement by physicist Steven Jefferts:
“We’ve learned that every time we build a better clock, somebody
comes up with a use for it that you couldn’t have foreseen.”

Definition 20.5 (Drift). The drift δ is the predictable clock error.

Remarks:

� Drift is relatively constant over time, but may change with supply
voltage, temperature and age of an oscillator.

� Stable clock sources, which offer a low drift, are generally preferred,
but also more expensive, larger and more power hungry, which is why
many consumer products feature inaccurate clocks.

Definition 20.6 (Parts Per Million). Clock drift is indicated in parts per mil-
lion (ppm). One ppm corresponds to a time error growth of one microsecond
per second.

Remarks:

� In PCs, the so-called real-time clock normally is a crystal oscillator
with a maximum drift between 5 and 100 ppm.

� Applications in signal processing, for instance GPS, need more accu-
rate clocks. Common drift values are 0.5 to 2 ppm.

Definition 20.7 (Jitter). The jitter ξ is the unpredictable, random noise of
the clock error.

Remarks:

� In other words, jitter is the irregularity of the clock. Unlike drift,
jitter can vary fast.

� Jitter captures all the errors that are not explained by drift. Fig-
ure 20.8 visualizes the concepts.

64 CHAPTER 20. TIME, CLOCKS & GPS

20.2 Clock Synchronization

Definition 20.9 (Clock Synchronization). Clock synchronization is the pro-
cess of matching multiple clocks (nodes) to have a common time.

Remarks:

� A trade-off exists between synchronization accuracy, convergence time,
and cost.

� Different clock synchronization variants may tolerate crashing, erro-
neous or byzantine nodes.

Algorithm 20.10 Network Time Protocol NTP

1: Two nodes, client u and server v

2: while true do
3: Node u sends request to v at time tu
4: Node v receives request at time tv
5: Node v processes the request and replies at time t′v
6: Node u receives the response at time t′u

7: Propagation delay δ =
(t′u−tu)−(t

′
v−tv)

2 (assumption: symmetric)

8: Clock skew θ =
(tv−(tu+δ))−(t′u−(t

′
v+δ))

2 =
(tv−tu)+(t′v−t

′
u)

2
9: Node u adjusts clock by +θ

10: Sleep before next synchronization
11: end while

Remarks:

� Many NTP servers are public, answering to UDP packets.

� The most accurate NTP servers derive their time from atomic clocks,
synchronized to UTC. To reduce those server’s load, a hierarchy of
NTP servers is available in a forest (multiple trees) structure.

� The regular synchronization of NTP limits the maximum error despite
unpredictable clock errors. Synchronizing clocks just once is only suf-
ficient for a short time period.

Definition 20.11 (PTP). The Precision Time Protocol (PTP) is a clock
synchronization protocol similar to NTP, but which uses medium access con-
trol (MAC) layer timestamps.

Remarks:

� MAC layer timestamping removes the unknown time delay incurred
through messages passing through the software stack.

� PTP can achieve sub-microsecond accuracy in local networks.

Definition 20.12 (Global Synchronization). Global synchronization estab-
lishes a common time between any two nodes in the system.

20.2. CLOCK SYNCHRONIZATION 65

Remarks:

� For example, email needs global timestamps. Also, event detection
for power grid control and earthquake localization need global times-
tamps.

� Earthquake localization does not need real-time synchronization; it is
sufficient if a common time can be reconstructed when needed, also
known as “post factum” synchronization.

� NTP and PTP are both examples of clock synchronization algorithms
that optimize for global synchronization.

� However, two nodes that constantly communicate may receive their
timestamps through different paths of the NTP forest, and hence they
may accumulate different errors. Because of the clock skew, a message
sent by node u might arrive at node v with a timestamp in the future.

Algorithm 20.13 Local Time Synchronization

1: while true do
2: Exchange current time with neighbors
3: Adapt time to neighbors, e.g., to average or median
4: Sleep before next synchronization
5: end while

Remarks:

� Local synchronization is the method of choice to establish time-division
multiple access (TDMA) and coordination of wake-up and sleeping
times in wireless networks. Only close-by nodes matter as far-away
nodes will not interfere with their transmissions.

� Local synchronization is also relevant for precise event localization.
For instance, using the speed of sound, measured sound arrival times
from co-located sensors can be used to localize a shooter.

� While global synchronization algorithm such as NTP usually synchro-
nize to an external time standard, local algorithms often just synchro-
nize among themselves, i.e., the notion of time does not reflect any
time standards.

� In wireless networks, one can simplify and improve synchronization.

66 CHAPTER 20. TIME, CLOCKS & GPS

Algorithm 20.14 Wireless Clock Synchronization with Known Delays

1: Given: transmitter s, receivers u, v, with known transmission delays du, dv
from transmitter s, respectively.

2: s sends signal at time ts
3: u receives signal at time tu
4: v receives signal at time tv

5: ∆u = tu − (ts + du)
6: ∆v = tv − (ts + dv)

7: Clock skew between u and v: θ = ∆v −∆u = tv − dv + du − tu

20.3 Time Standards

Definition 20.15 (TAI). The International Atomic Time (TAI) is a time
standard derived from over 400 atomic clocks distributed worldwide.

Remarks:

� Using a weighted average of all involved clocks, TAI is an order of
magnitude more stable than the best clock.

� The involved clocks are synchronized using simultaneous observations
of GPS or geostationary satellite transmissions using Algorithm 20.14.

� While a single satellite measurement has a time uncertainty on the
order of nanoseconds, averaging over a month improves the accuracy
by several orders of magnitude.

Definition 20.16 (Leap Second). A leap second is an extra second added to a
minute to make it irregularly 61 instead of 60 seconds long.

Remarks:

� Time standards use leap seconds to compensate for the slowing of the
Earth’s rotation. In theory, also negative leap seconds can be used to
make some minutes only 59 seconds long. But so far, this was never
necessary.

� For easy implementation, not all time standards use leap seconds, for
instance TAI and GPS time do not.

Definition 20.17 (UTC). The Coordinated Universal Time (UTC) is a
time standard based on TAI with leap seconds added at irregular intervals to
keep it close to mean solar time at 0◦ longitude.

20.4. CLOCK SOURCES 67

Remarks:

� The global time standard Greenwich Mean Time (GMT) was already
established in 1884. With the invention of caesium atomic clocks and
the subsequent redefinition of the SI second, UTC replaced GMT in
1967.

� Before time standards existed, each city set their own time according
to the local mean solar time, which is difficult to measure exactly.
This was changed by the upcoming rail and communication networks.

� Different notations for time and date are in use. A standardized format
for timestamps, mostly used for processing by computers, is the ISO
8601 standard. According to this standard, a UTC timestamp looks
like this: 1712-02-30T07:39:52Z. T separates the date and time parts
while Z indicates the time zone with zero offset from UTC.

� Why UTC and not “CUT”? Because France insisted. Same for other
abbreviations in this domain, e.g. TAI.

Definition 20.18 (Time Zone). A time zone is a geographical region in which
the same time offset from UTC is officially used.

Remarks:

� Time zones serve to roughly synchronize noon with the sun reaching
the day’s highest apparent elevation angle.

� Some time zones’ offset is not a whole number of hours, e.g. India.

20.4 Clock Sources

Definition 20.19 (Atomic Clock). An atomic clock is a clock which keeps
time by counting oscillations of atoms.

Remarks:

� Atomic clocks are the most accurate clocks known. They can have a
drift of only about one second in 150 million years, about 2e-10 ppm!

� Many atomic clocks are based on caesium atoms, which led to the
current definition of a second. Others use hydrogen-1 or rubidium-87.

� In the future, atoms with higher frequency oscillations could yield
even more accurate clocks.

� Atomic clocks are getting smaller and more energy efficient. Chip-
scale atomic clocks (CSAC) are currently being produced for space
applications and may eventually find their way into consumer elec-
tronics.

Definition 20.20 (System Clock). The system clock in a computer is an
oscillator used to synchronize all components on the motherboard.

68 CHAPTER 20. TIME, CLOCKS & GPS

Remarks:

� Usually, a quartz crystal oscillator with a frequency of some tens to
hundreds MHz is used.

� Therefore, the system clock can achieve a precision of some ns!

� The CPU clock is usually a multiple of the system clock, generated
from the system clock through a clock multiplier.

� To guarantee nominal operation of the computer, the system clock
must have low jitter. Otherwise, some components might not get
enough time to complete their operation before the next (early) clock
pulse arrives.

� Drift however is not critical for system stability.

� Applications of the system clock include thread scheduling and ensur-
ing smooth media playback.

� If a computer is shut down, the system clock is not running; it is
reinitialized when starting the computer.

Definition 20.21 (RTC). The real-time clock (RTC) in a computer is a
battery backed oscillator which is running even if the computer is shut down or
unplugged.

Remarks:

� The RTC is read at system startup to initialize the system clock.

� This keeps the computer’s time close to UTC even when the time
cannot be synchronized over a network.

� RTCs are relatively inaccurate, with a common maximum drift of 5,
20 or even 100 ppm, depending on quality and temperature.

� In many cases, the RTC frequency is 32.768 kHz, which allows for
simple timekeeping based on binary counter circuits because the fre-
quency is exactly 215 Hz.

Definition 20.22 (Radio Time Signal). A Radio Time Signal is a time code
transmitted via radio waves by a time signal station, referring to a time in a
given standard such as UTC.

Remarks:

� Time signal stations use atomic clocks to send as accurate time codes
as possible.

� Radio-controlled clocks are an example application of radio signal time
synchronization.

� In Europe, most radio-controlled clocks use the signal transmitted by
the DCF77 station near Frankfurt, Germany.

20.5. GPS 69

� Radio time signals can be received much farther than the horizon of
the transmitter due to signal reflections at the ionosphere. DCF77 for
instance has an official range of 2,000 km.

� The time synchronization accuracy when using radio time signals is
limited by the propagation delay of the signal. For instance the delay
Frankfurt-Zurich is about 1 ms.

Definition 20.23 (Power Line Clock). A power line clock measures the os-
cillations from electric AC power lines, e.g. 50 Hz.

Remarks:

� Clocks in kitchen ovens are usually driven by power line oscillations.

� AC power line oscillations drift about 10 ppm, which is remarkably
stable.

� The magnetic field radiating from power lines is strong enough that
power line clocks can work wirelessly.

� Power line clocks can be synchronized by matching the observed noisy
power line oscillation patterns.

� Power line clocks operate with as little as a few ten µW.

Definition 20.24 (Sunlight Time Synchronization). Sunlight time synchro-
nization is a method of reconstructing global timestamps by correlating annual
solar patterns from light sensors’ length of day measurements.

Remarks:

� Sunlight time synchronization is relatively inaccurate.

� Due to low data rates from length of day measurements, sunlight time
synchronization is well-suited for long-time measurements with data
storage and post-processing, requiring no communication at the time
of measurement.

� Historically, sun and lunar observations were the first measurements
used for time determination. Some clock towers still feature sun dials.

� . . . but today, the most popular source of time is probably GPS!

20.5 GPS

Definition 20.25 (Global Positioning System). The Global Positioning Sys-
tem (GPS) is a Global Navigation Satellite System (GNSS), consisting
of at least 24 satellites orbiting around the Earth, each continuously transmitting
its position and time code.

70 CHAPTER 20. TIME, CLOCKS & GPS

Remarks:

� Positioning is done in space and time!

� GPS provides position and time information to receivers anywhere on
Earth where at least four satellite signals can be received.

� Line of sight (LOS) between satellite and receiver is advantageous.
GPS works poorly indoors, or with reflections.

� Besides the US GPS, three other GNSS exist: the European Galileo,
the Russian GLONASS and the Chinese BeiDou.

� GPS satellites orbit around Earth approximately 20,000 km above the
surface, circling Earth twice a day. The signals take between 64 and
89 ms to reach Earth.

� The orbits are precisely determined by ground control stations, op-
timized for a high number of satellites being concurrently above the
horizon at any place on Earth.

Algorithm 20.26 GPS Satellite

1: Given: Each satellite has a unique 1023 bit (±1, see below) PRN sequence,
plus some current navigation data D (also ±1).

2: The code below is a bit simplified, concentrating on the digital aspects,
ignoring that the data is sent on a carrier frequency of 1575.42 MHz.

3: while true do
4: for all bits Di ∈ D do
5: for j = 0 . . . 19 do
6: for k = 0 . . . 1022 do {this loop takes exactly 1 ms}
7: Send bit PRNk ·Di

8: end for
9: end for

10: end for
11: end while

Definition 20.27 (PRN). Pseudo-Random Noise (PRN) sequences are
pseudo-random bit strings. Each GPS satellite uses a unique PRN sequence
with a length of 1023 bits for its signal transmissions.

Remarks:

� The GPS PRN sequences are so-called Gold codes, which have low
cross-correlation with each other.

� To simplify our math (abstract from modulation), each PRN bit is
either 1 or −1.

Definition 20.28 (Navigation Data). Navigation Data is the data transmit-
ted from satellites, which includes orbit parameters to determine satellite po-
sitions, timestamps of signal transmission, atmospheric delay estimations and
status information of the satellites and GPS as a whole, such as the accuracy
and validity of the data.

20.5. GPS 71

Remarks:

� As seen in Algorithm 20.26 each bit is repeated 20 times for better
robustness. Thus, the navigation data rate is only 50 bit/s.

� Due to this limited data rate, timestamps are sent every 6 seconds,
satellite orbit parameters (function of the satellite position over time)
only every 30 seconds. As a result, the latency of a first position
estimate after turning on a receiver, which is called time-to-first-fix
(TTFF), can be high.

Definition 20.29 (Circular Cross-Correlation). The circular cross-correlation
is a similarity measure between two vectors of length N , circularly shifted by
a given displacement d:

cxcorr(a, b, d) =

N−1∑
i=0

ai · bi+d mod N

Remarks:

� The two vectors are most similar at the displacement d where the sum
(cross-correlation value) is maximum.

� The vector of cross-correlation values with all N displacements can ef-
ficiently be computed using a fast Fourier transform (FFT) inO(N logN)
instead of O(N2) time.

Algorithm 20.30 Acquisition

1: Received 1 ms signal s with sampling rate r · 1, 023 kHz
2: Possible Doppler shifts F , e.g. {-10 kHz, -9.8 kHz, . . . , +10 kHz}
3: Tensor A = 0: Satellite × carrier frequency × time

4: for all satellites i do
5: PRN ′i = PRNi stretched with ratio r
6: for all Doppler shifts f ∈ F do
7: Build modulated PRN ′′i with PRN ′i and Doppler frequency f
8: for all delays d ∈ {0, 1, . . . , 1, 023 · r − 1} do
9: Ai(f, d) = |cxcorr(s,PRN ′′

i , d)|
10: end for
11: end for
12: Select d∗ that maximizes maxd maxf Ai(f, d)
13: Signal arrival time ri = d∗/(r · 1, 023 kHz)
14: end for

Remarks:

� Multiple milliseconds of acquisition can be summed up to average out
noise and therefore improve the arrival time detection probability.

Definition 20.31 (Acquisition). Acquisition is the process in a GPS receiver
that finds the visible satellite signals and detects the delays of the PRN sequences
and the Doppler shifts of the signals.

72 CHAPTER 20. TIME, CLOCKS & GPS

Remarks:

� The relative speed between satellite and receiver introduces a signif-
icant Doppler shift to the carrier frequency. In order to decode the
signal, a frequency search for the Doppler shift is necessary.

� The nested loops make acquisition the computationally most intensive
part of a GPS receiver.

Algorithm 20.32 Classic GPS Receiver

1: h: Unknown receiver handset position
2: θ: Unknown handset time offset to GPS system time
3: ri: measured signal arrival time in handset time system
4: c: signal propagation speed (GPS: speed of light)

5: Perform Acquisition (Algorithm 20.30)
6: Track signals and decode navigation data
7: for all satellites i do
8: Using navigation data, determine signal transmit time si and position pi
9: Measured satellite transmission delay di = ri − si

10: end for
11: Solve the following system of equations for h and θ:
12: ||pi − h||/c = di − θ, for all i

Remarks:

� GPS satellites carry precise atomic clocks, but the receiver is not syn-
chronized with the satellites. The arrival times of the signals at the
receiver are determined in the receiver’s local time. Therefore, even
though the satellite signals include transmit timestamps, the exact
distance between satellites and receiver is unknown.

� In total, the positioning problem contains four unknown variables,
three for the handset’s spatial position and one for its time offset from
the system time. Therefore, signals from at least four transmitters are
needed to find the correct solution.

� Since the equations are quadratic (distance), with as many observa-
tions as variables, the system of equations has two solutions in princi-
ple. For GPS however, in practice one of the solutions is far from the
Earth surface, so the correct solution can always be identified without
a fifth satellite.

� More received signals help reducing the measurement noise and thus
improving the accuracy.

� Since the positioning solution, which is also called position fix, in-
cludes the handset’s time offset ∆, this establishes a global time for
all handsets. Thus, GPS is useful for global time synchronization.

20.5. GPS 73

� For a handset with unknown position, GPS timing is more accurate
than time synchronization with a single transmitter, like a time signal
station (cf. Definition 20.22). With the latter, the unknown signal
propagation delays cannot be accounted for.

Definition 20.33 (A-GPS). An Assisted GPS (A-GPS) receiver fetches
the satellite orbit parameters and other navigation data from the Internet, for
instance via a cellular network.

Remarks:

� A-GPS reduces the data transmission time, and thus the TTFF, from
a maximum of 30 seconds per satellite to a maximum of 6 seconds.

� Smartphones regularly use A-GPS. However, coarse positioning is usu-
ally done based on nearby Wi-Fi base stations only, which saves energy
compared to GPS.

� Another GPS improvement is Differential GPS (DGPS): A receiver
with a fixed location within a few kilometers of a mobile receiver
compares the observed and actual satellite distances. This error is
then subtracted at the mobile receiver. DGPS achieves accuracies in
the order of 10 cm.

Definition 20.34 (Snapshot GPS Receiver). A snapshot receiver is a GPS
receiver that captures one or a few milliseconds of raw GPS signal for a position
fix.

Remarks:

� Snapshot receivers aim at the remaining latency that results from the
transmission of timestamps from the satellites every six seconds.

� Since time changes continuously, timestamps cannot be fetched to-
gether with the satellite orbit parameters that are valid for two hours.

� A snapshot receiver can determine the ranges to the satellites modulo
1 ms, which corresponds to 300 km. An approximate time and location
of the receiver is used to resolve these ambiguities without a timestamp
from the satellite signals themselves.

Definition 20.35 (CTN). Coarse Time Navigation (CTN) is a snapshot
receiver positioning technique measuring sub-millisecond satellite ranges from
correlation peaks, like conventional GPS receivers.

Remarks:

� A CTN receiver determines the signal transmit times and satellite
positions from its own approximate location by subtracting the signal
propagation delay from the receive time. The receiver location and
time is not exactly known, but since signals are transmitted exactly
at whole milliseconds, rounding to the nearest whole millisecond gives
the signal transmit time.

74 CHAPTER 20. TIME, CLOCKS & GPS

� With only a few milliseconds of signal, noise cannot be averaged out
well and may lead to wrong signal arrival time estimates. Such wrong
measurements usually render the system of equations unsolvable, mak-
ing positioning infeasible.

Algorithm 20.36 Collective Detection Receiver

1: Given: A raw 1 ms GPS sample s, a set H of location/time hypotheses
2: In addition, the receiver learned all navigation and atmospheric data

3: for all hypotheses h ∈ H do
4: Vector r = 0
5: Set V = satellites that should be visible with hypothesis h
6: for all satellites i in V do
7: r = r + ri, where ri is expected signal of satellite i. The data of vec-

tor ri incorporates all available information: distance and atmospheric
delay between satellite and receiver, frequency shift because of Doppler
shift due to satellite movement, current navigation data bit of satellite,
etc.

8: end for
9: Probability Ph = cxcorr(s, r, 0)

10: end for
11: Solution: hypothesis h ∈ H maximizing Ph

Definition 20.37 (Collective Detection). Collective detection (CD) is a
maximum likelihood snapshot receiver localization method, which does not de-
termine an arrival time for each satellite, but rather combine all the available
information and take a decision only at the end of the computation.

Remarks:

� CD can tolerate a few low quality satellite signals and is thus more
robust than CTN.

� In essence, CD tests how well position hypotheses match the received
signal. For large position and time uncertainties, the high number of
hypotheses require a lot of computation power.

� CD can be sped up by a branch and bound approach, which reduces
the computation per position fix to the order of one second even for
uncertainties of 100 km and a minute.

20.6 Lower Bounds

In the clock synchronization problem, we are given a network (graph) with n
nodes. The goal for each node is to have a (logical) clock such that the clock
values are well synchronized, and close to real time. Each node is equipped
with a hardware (system) clock, that ticks more or less in real time, i.e., the
time between two pulses is arbitrary between [1− ε, 1 + ε], for a constant ε� 1.
We assume that messages sent over the edges of the graph have a delivery time

20.6. LOWER BOUNDS 75

between [0, 1]. In other words, we have a bounded but variable drift on the
hardware clocks and an arbitrary jitter in the delivery times. The goal is to
design a message-passing algorithm that ensures that the logical clock skew of
adjacent nodes is as small as possible at all times.

Definition 20.38 (Local and Global Clock Skew). In a network of nodes, the
local clock skew is the skew between neighboring nodes, while the global clock
skew is the maximum skew between any two nodes.

Remarks:

� Of interest is also the average global clock skew, that is the average
skew between any pair of nodes.

Theorem 20.39. The global clock skew (Definition 20.12) is Ω(D), where D
is the diameter of the network graph.

Proof. For a node u, let tu be the logical time of u and let (u → v) denote a
message sent from u to a node v. Let t(m) be the time delay of a message m
and let u and v be neighboring nodes. First consider a case where the message
delays between u and v are 1/2. Then, all the messages sent by u and v at time
t according to the clock of the sender arrive at time t + 1/2 according to the
clock of the receiver.

Then consider the following cases

� tu = tv + 1/2, t(u→ v) = 1, t(v → u) = 0

� tu = tv − 1/2, t(u→ v) = 0, t(v → u) = 1,

where the message delivery time is always fast for one node and slow for the
other and the logical clocks are off by 1/2. In both scenarios, the messages sent
at time i according to the clock of the sender arrive at time i + 1/2 according
to the logical clock of the receiver. Therefore, for nodes u and v, both cases
with clock drift seem the same as the case with perfectly synchronized clocks.
Furthermore, in a linked list of D nodes, the left- and rightmost nodes l, r cannot
distinguish tl = tr +D/2 from tl = tr −D/2.

Remarks:

� From Theorem 20.39, it directly follows that any reasonable clock
synchronization algorithm must have a global skew of Ω(D).

� Many natural algorithms manage to achieve a global clock skew of
O(D).

� As both message jitter and hardware clock drift are bounded by con-
stants, it feels like we should be able to get a constant drift at least
between neighboring nodes.

� Let us look at the following algorithm:

Lemma 20.41. The clock synchronization protocol of Algorithm 20.40 has a
local skew of Ω(n).

76 CHAPTER 20. TIME, CLOCKS & GPS

Algorithm 20.40 Local Clock Synchronization (at node v)

1: repeat
2: send logical time tv to all neighbors
3: if Receive logical time tu, where tu > tv, from any neighbor u then
4: tv = tu
5: end if
6: until done

Proof. Let the graph be a linked list of D nodes. We denote the nodes by
v1, v2, . . . , vD from left to right and the logical clock of node vi by ti. Apart
from the left-most node v1 all hardware clocks run with speed 1 (real time).
Node v1 runs at maximum speed, i.e. the time between two pulses is not 1 but
1− ε. Assume that initially all message delays are 1. After some time, node v1
will start to speed up v2, and after some more time v2 will speed up v3, and
so on. At some point of time, we will have a clock skew of 1 between any two
neighbors. In particular t1 = tD +D − 1.

Now we start playing around with the message delays. Let t1 = T . First we
set the delay between the v1 and v2 to 0. Now node v2 immediately adjusts its
logical clock to T . After this event (which is instantaneous in our model) we set
the delay between v2 and v3 to 0, which results in v3 setting its logical clock to T
as well. We perform this successively to all pairs of nodes until vD−2 and vD−1.
Now node vD−1 sets its logical clock to T , which indicates that the difference
between the logical clocks of vD−1 and vD is T − (T − (D − 1)) = D − 1.

Remarks:

� The introduced examples may seem cooked-up, but examples like this
exist in all networks, and for all algorithms. Indeed, it was shown
that any natural clock synchronization algorithm must have a bad
local skew. In particular, a protocol that averages between all neigh-
bors (like Algorithm 20.13) is even worse than Algorithm 20.40. An
averaging algorithm has a clock skew of Ω(D2) in the linked list, at
all times.

� It was shown that the local clock skew is Θ(logD), i.e., there is a pro-
tocol that achieves this bound, and there is a proof that no algorithm
can be better than this bound!

� Note that these are worst-case bounds. In practice, clock drift and
message delays may not be the worst possible, typically the speed of
hardware clocks changes at a comparatively slow pace and the mes-
sage transmission times follow a benign probability distribution. If we
assume this, better protocols do exist, in theory as well as in practice.

Chapter Notes

Atomic clocks can be used as a GPS fallback for data center synchroniza-
tion [CDE+13].

BIBLIOGRAPHY 77

GPS has been such a technological breakthrough that even though it dates
back to the 1970s, the new GNSS still use essentially the same techniques. Sev-
eral people worked on snapshot GPS receivers, but the technique has not pene-
trated into commercial receivers yet. Liu et al. [LPH+12] presented a practical
CTN receiver and reduced the solution space by eliminating solutions not lying
on the ground. CD receivers are studied since at least 2011 [ABD+11] and have
recently been made practically feasible through branch and bound [BEW17]

It has been known for a long time that the global clock skew is Θ(D) [LL84,
ST87]. The problem of synchronizing the clocks of nearby nodes was intro-
duced by Fan and Lynch in [LF04]; they proved a surprising lower bound of
Ω(logD/ log logD) for the local skew. The first algorithm providing a non-
trivial local skew of O(

√
D) was given in [LW06]. Later, matching upper and

lower bounds of Θ(logD) were given in [LLW10]. The problem has also been
studied in a dynamic setting [KLO09, KLLO10] or when a fraction of nodes ex-
perience byzantine faults and the other nodes have to recover from faulty initial
state (i.e., self-stabilizing) [DD06, DW04]. The self-stabilizing byzantine case
has been solved with asymptotically optimal skew [KL18].

Clock synchronization is a well-studied problem in practice, for instance
regarding the global clock skew in sensor networks, e.g. [EGE02, GKS03,
MKSL04, PSJ04]. One more recent line of work is focussing on the problem
of minimizing the local clock skew [BvRW07, SW09, LSW09, FW10, FZTS11].

This chapter was written in collaboration with Manuel Eichelberger.

Bibliography

[ABD+11] Penina Axelrad, Ben K Bradley, James Donna, Megan Mitchell, and
Shan Mohiuddin. Collective Detection and Direct Positioning Using
Multiple GNSS Satellites. Navigation, 58(4):305–321, 2011.

[BEW17] Pascal Bissig, Manuel Eichelberger, and Roger Wattenhofer. Fast
and Robust GPS Fix Using One Millisecond of Data. In Informa-
tion Processing in Sensor Networks (IPSN), 2017 16th ACM/IEEE
International Conference on, pages 223–234. IEEE, 2017.

[BvRW07] Nicolas Burri, Pascal von Rickenbach, and Roger Wattenhofer.
Dozer: Ultra-Low Power Data Gathering in Sensor Networks. In
International Conference on Information Processing in Sensor Net-
works (IPSN), Cambridge, Massachusetts, USA, April 2007.

[CDE+13] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes,
Christopher Frost, Jeffrey John Furman, Sanjay Ghemawat, An-
drey Gubarev, Christopher Heiser, Peter Hochschild, et al. Span-
ner: Google’s globally distributed database. ACM Transactions on
Computer Systems (TOCS), 31(3):8, 2013.

[DD06] Ariel Daliot and Danny Dolev. Self-Stabilizing Byzantine Pulse Syn-
chronization. Computing Research Repository, 2006.

[DW04] Shlomi Dolev and Jennifer L. Welch. Self-stabilizing clock synchro-
nization in the presence of Byzantine faults. September 2004.

78 CHAPTER 20. TIME, CLOCKS & GPS

[EGE02] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained
Network Time Synchronization Using Reference Broadcasts. ACM
SIGOPS Operating Systems Review, 36:147–163, 2002.

[FW10] Roland Flury and Roger Wattenhofer. Slotted Programming for
Sensor Networks. In International Conference on Information Pro-
cessing in Sensor Networks (IPSN), Stockholm, Sweden, April 2010.

[FZTS11] Federico Ferrari, Marco Zimmerling, Lothar Thiele, and Olga Saukh.
Efficient Network Flooding and Time Synchronization with Glossy.
In Proceedings of the 10th International Conference on Information
Processing in Sensor Networks (IPSN), pages 73–84, 2011.

[GKS03] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. Timing-
sync Protocol for Sensor Networks. In Proceedings of the 1st interna-
tional conference on Embedded Networked Sensor Systems (SenSys),
2003.

[KL18] Pankaj Khanchandani and Christoph Lenzen. Self-Stabilizing
Byzantine Clock Synchronization with Optimal Precision. January
2018.

[KLLO10] Fabian Kuhn, Christoph Lenzen, Thomas Locher, and Rotem Osh-
man. Optimal Gradient Clock Synchronization in Dynamic Net-
works. In 29th Symposium on Principles of Distributed Computing
(PODC), Zurich, Switzerland, July 2010.

[KLO09] Fabian Kuhn, Thomas Locher, and Rotem Oshman. Gradient Clock
Synchronization in Dynamic Networks. In 21st ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), Calgary,
Canada, August 2009.

[LF04] Nancy Lynch and Rui Fan. Gradient Clock Synchronization. In
Proceedings of the 23rd Annual ACM Symposium on Principles of
Distributed Computing (PODC), 2004.

[LL84] Jennifer Lundelius and Nancy Lynch. An Upper and Lower Bound
for Clock Synchronization. Information and Control, 62:190–204,
1984.

[LLW10] Christoph Lenzen, Thomas Locher, and Roger Wattenhofer. Tight
Bounds for Clock Synchronization. In Journal of the ACM, Volume
57, Number 2, January 2010.

[LPH+12] Jie Liu, Bodhi Priyantha, Ted Hart, Heitor Ramos, Antonio A.F.
Loureiro, and Qiang Wang. Energy Efficient GPS Sensing with
Cloud Offloading. In 10th ACM Conference on Embedded Networked
Sensor Systems (SenSys 2012). ACM, November 2012.

[LSW09] Christoph Lenzen, Philipp Sommer, and Roger Wattenhofer. Op-
timal Clock Synchronization in Networks. In 7th ACM Conference
on Embedded Networked Sensor Systems (SenSys), Berkeley, Cali-
fornia, USA, November 2009.

BIBLIOGRAPHY 79

[LW06] Thomas Locher and Roger Wattenhofer. Oblivious Gradient Clock
Synchronization. In 20th International Symposium on Distributed
Computing (DISC), Stockholm, Sweden, September 2006.

[MKSL04] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. The
Flooding Time Synchronization Protocol. In Proceedings of the 2nd
international Conference on Embedded Networked Sensor Systems,
SenSys ’04, 2004.

[PSJ04] Santashil PalChaudhuri, Amit Kumar Saha, and David B. Johnson.
Adaptive Clock Synchronization in Sensor Networks. In Proceedings
of the 3rd International Symposium on Information Processing in
Sensor Networks, IPSN ’04, 2004.

[ST87] T. K. Srikanth and S. Toueg. Optimal Clock Synchronization. Jour-
nal of the ACM, 34:626–645, 1987.

[SW09] Philipp Sommer and Roger Wattenhofer. Gradient Clock Synchro-
nization in Wireless Sensor Networks. In 8th ACM/IEEE Inter-
national Conference on Information Processing in Sensor Networks
(IPSN), San Francisco, USA, April 2009.

	Time, Clocks & GPS
	Time & Clocks
	Clock Synchronization
	Time Standards
	Clock Sources
	GPS
	Lower Bounds

