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1 Quorum Systems

1.1 The Resilience of a Quorum System

a) No such quorum system exists. According to the definition of a quorum system, every two
quorums of a quorum system intersect, so at least one server is part of both quorums. The
fact that all servers of a particular quorum fail implies that in each other quorum at least
one server fails, namely the one which lies in the intersection. Therefore, it is not possible
to achieve a quorum anymore and the quorum system does not work anymore.

b) Just 1—as soon as 2 servers fail, no quorum survives.

c) Imagine a quorum system in which all quorums overlap exactly in one single node; i.e. each
element of the powerset of the remaining n − 1 nodes joined with this special node is a
quorum. This gives 2n−1 quorums.
Can there be more? No! Consider a set from the powerset of n servers. Its complement
cannot be a quorum as well, as they do not overlap. So, from each such couple, at most one
set can be part of the quorum system. This gives an upper bound of 2n/2 = 2n−1 quorums.

1.2 A Quorum System
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Figure 1: Quorum System

a) This quorum system consists of 7 quorums. As work is defined as the minimum expected
number of servers in an accessed quorum (over all access strategies), this system’s work is
3 (all strategies induce the same work on a system where all quorums are the same size).
Observe that all nodes are in precisely 3 quorums, so the uniform access strategy induces the
same load on all nodes. Since the quorum system is also 3-uniform, by exercise 3 it follows
that the uniform strategy is optimal; it’s load being 3/7.



b) The resilience is R(S) = 2. Proof: every node is in exactly 3 quorums, so 2 nodes can be
contained in at most 2 · 3 = 6 < 7 = |S| quorums, thus, if no more than 2 nodes fail, there
will be at least 1 quorum without a faulty node. If, on the other hand, for example, the
nodes 101, 010 and 111 fail, no quorum can be achieved; see also exercise 1a).

1.3 S-Uniform Quorum Systems

Definitions:
s-uniform: A quorum system S is s-uniform if every quorum in S has exactly s elements.
Balanced access strategy: An access strategy Z for a quorum system S is balanced if it
satisfies LZ(vi) = L for all vi ∈ V , for some value L.

Claim: An s-uniform quorum system S reaches an optimal load with a balanced access strategy,
if such a strategy exists.

a) In an s-uniform quorum system each quorum has exactly s elements, so independently of
which quorum is accessed, s servers have to work. Summed up over all servers we reach a
total load of s, which is the work of the quorum system. As the load induced by an access
strategy is defined as the maximum load on any server, the best strategy would be to evenly
distribute this work on all servers. If such a strategy exists, then it is therefore optimal.

b) Let V = {v1, v2, ..., vn} be the set of servers and S = {Q1, Q2, ..., Qm} an s-uniform quorum
system on V . Let Z be an access strategy, thus it holds that:

∑
Q∈S PZ(Q) = 1. Further-

more, let LZ(vi) =
∑

Q∈S;vi∈Q PZ(Q) be the load of server vi induced by Z.

Then it holds that:∑
vi∈V

LZ(vi) =
∑
vi∈V

∑
Q∈S;vi∈Q

PZ(Q) =
∑
Q∈S

∑
vi∈Q

PZ(Q)

=
∑
Q∈S

PZ(Q) · |Q| ∗=
∑
Q∈S

PZ(Q) · s = s ·
∑
Q∈S

PZ(Q) = s

The transformation marked with an asterisk uses the uniformity of the quorum system.

To minimize the maximal load on any server, the optimal strategy would be to evenly dis-
tribute this load on all servers. Thus, if a balanced access strategy exists, this leads to an
optimal system load of s/n.

Note: A balanced access strategy does not always exist for example for the following 2-
uniform quorum system: V = {1, 2, 3}, S = {{1, 2}, {1, 3}}. We have min{LZ(2), LZ(3)} <
LZ(1) = 1 for any access strategy on this system.

2 Distributed Storage

Quiz

2.1 Hypercubic Networks

The hypergraphs are drawn as shown in Figure 2. The 4-dimensional hypercube M(2, 4) can also
be drawn as two cubes side-by-side with connected corners.
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Figure 2: Drawings of M(3, 1), M(3, 2), SE(2) and M(2, 4). Note that we have used dashed lines
and solid lines for SE(2) the other way around compared to the lecture.

2.2 Iterative vs. Recursive Lookup

a) In the recursive lookup there is no difference between a request originating at the node
and a request being forwarded. Only once the lookup is finished do we need to care about
forwarding the result to the previous node or returning it to the caller. This allows the
same lookup logic to be reused for both. Furthermore, if the response is returned through
the same path as the request was sent through, then the intermediate nodes can cache the
result, potentially speeding up future lookups and distributing the load of a popular item.

b) Recursive lookups can easily be misused to mount Denial-of-Service attacks, since a sin-
gle request message from an originating node is forwarded over multiple hops. Each hop
multiplies the impact this message has on the network. Thus the attacker’s bandwidth is
potentially multiplied by the number of hops the request is routed through. Furthermore, if
the result is returned over the same path as the request, then the attacker is hidden behind
a number of hops and the victim only sees traffic originating from the last hop.

2.3 Building a set of Hash functions

The salted hashing function derivation allows random access to any of the derived hashing functions
without having to recompute the intermediate functions, as is the case in the iterative hashing
function derivation scheme. Furthermore, iterative hashing allows a user which knows the first
hash value to deduce all the others by repeatedly applying h. This information can be used by an
attacker to target specific nodes storing a movie.

Advanced

2.4 Multiple Skiplists

a) Figure 3 shows the structure of a multi-skiplist with 8 nodes and 3 levels. Notice that each
of the lists would wrap around at the ends.
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b) Unlike in the single skiplist each node now has a constant degree of 2 · d, i.e., on each level
it has a right and a left neighbor, including the full list at l = 0.

c) The number of hops is still O(log n), just like for the simple skiplist.

000 001 010 011 100 101 110 111

Figure 3: A multi-skiplist with 3 levels and 8 nodes.
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