Automata & languages

A primer on the Theory of Computation

Roland Schmid

nsg.ee.ethz.ch

ETH Zürich (D-ITET)

7 October 2021

Part 3 out of 4

Last week, we started to learn about closure and equivalence of regular languages

Last week, we started to learn about closure and equivalence of regular languages

The class of regular languages is closed under the

- union
- concatenation
- star

regular operations

The class of regular languages is closed under the

union

concatenation

star

regular operations

if L_1 and L_2 are regular, then so are

 $L_1 \cup L_2$

 L_1 L_2

 L_1^*

Last week, we started to learn about closure and equivalence of regular languages

DFA

NFA

N

REX

We'll finish that today then start asking ourselves whether all languages are regular

- $L_1 \quad \{0^n 1^n \mid n \ge 0\}$
- L₂ {w I w has an equal number of 0s and 1s}
- L₃ {w I w has an equal number of occurrences of 01 and 10}

(only one of them actually is)

Advanced Automata

Thu Oct 7

1 Equivalence (the end)

DFA

NFA

Regular Expression

Non-regular languages

3 Context-free languages