
Networked Systems Group (NSG)

HS 2021 Prof. L. Vanbever / R. Schmid
based on Prof. R. Wattenhofer’s material

Discrete Event Systems
Exercise Sheet 3

1 From DFA to Regular Expression

First generate the GNFA.

1

2

3s

e

ε

ε

a

b

b a
⋃
b

a

Then remove node 2.

1 3s

e

ε

b(a
⋃
b)

a

b
⋃
a(a

⋃
b)

b

a

Then remove node 3.

1s

e

ε

b(a
⋃
b)
⋃
a(b

⋃
a(a

⋃
b))

b
⋃
aa

Then remove node 1 and derive the corresponding regular expression.

s e
(b(a

⋃
b)
⋃
a(b

⋃
a(a

⋃
b)))

∗
(b
⋃
aa)

Note that we could also start by removing the node 3.

2 Transforming Automata [Exam HS14]

The regular expression can be obtained from the finite automaton using the transformation
presented in the script. After ripping out state q2, the corresponding GNFA looks like this:

s q1 q3 a
ε

1

01∗0

ε

11∗0

0

After also removing state q1, the GNFA looks as follows.

s q3 a
(01∗0)∗1 ε

0 ∪ 11∗0(01∗0)∗1

Eliminating the last state q3 yields the final solution, which is (01∗0)∗1(0 ∪ 11∗0(01∗0)∗1)∗.

Note: Ripping out the interior states in a different order yields a distinct yet equivalent regular
expression. The order q3, q2, q1, for example, results in ((0 ∪ 10∗1)1∗0)∗10∗.

3 Pumping Lemma

The Pumping Lemma in a Nutshell

Given a language L, assume for contradiction that L is regular and has the pumping length
p. Construct a suitable word w ∈ L with |w| ≥ p (“there exists w ∈ L”) and show that for
all divisions of w into three parts, w = xyz, with |x| ≥ 0, |y| ≥ 1, and |xy| ≤ p, there exists
a pumping exponent i ≥ 0 such that w′ = xyiz /∈ L. If this is the case, L is not regular.

a) We claim that L1 is not regular and prove our claim with the pumping lemma recipe:

1. Assume for contradiction that L1 was regular.

2. There must exist some p, s.t. any word w ∈ L1 with |w| ≥ p is pumpable.

3. Choose the string w = 1p02p ∈ L1 with length |w| > p.

4. Consider all ways to split w = xyz s.t. |xy| ≤ p and |y| ≥ 1.
→ Hence, y ∈ 1+.

5. Observe that xy0z /∈ L1 – a contradiction to p being a valid pumping length.

6. Consequently, L1 cannot be regular.

b) Language L2 can be shown to be non-regular using the pumping lemma. Assume for
contradiction that L1 is regular and let p be the corresponding pumping length. Choose w
to be the word 0110p1p. Because w is an element of L1 and has length more than p, the
pumping lemma guarantees that w can be split into three parts, w = xyz, where |xy| ≤ p
and for any i ≥ 0, we have xyiz ∈ L1. In order to obtain the contradiction, we must prove
that for every possible partition into three parts w = xyz where |xy| ≤ p, the word w
cannot be pumped. We therefore consider the various cases.

2

(1) If y starts anywhere within the first three symbols (i.e. 011) of w, deleting y (pumping
with i = 0) creates a word with an illegal prefix (e.g. 1 0p 1p for y = 01).

(2) If y consists of only 0s from the second block, the word w′ = xy2z has more 0s than
1s in the last |w′| − 3 symbols and hence c 6= d.

Note that y cannot contain 1s from the second block because of the requirement |xy| ≤ p.
We have shown that for all possible divisions of w into three parts, the pumped word is
not in L1. Therefore, L1 cannot be regular and we have a contradiction.

Note that we could have also used the pumping lemma recipe to prove that L2 is not regular.

Be Careful!

The argumentation above is based on the closure properties of regular languages and only
works in the direction presented. That is, for an operator � ∈ {∪,∩, •}, we have:

If L1 and L2 are regular, then L = L1 � L2 is also regular.

If either L1 or L2 or both are non-regular, we cannot deduce the non-regularity of L or
vice-versa. Moreover, L being regular does not imply that L1 and L2 are regular as well.
This may sound counter-intuitive which is why we give examples for the three operators.

• L = L1 ∪ L2: Let L1 be any non-regular language and L2 its complement. Then
L = Σ∗ is regular.

• L = L1∩L2: Let L1 be any non-regular language and L2 its complement. Then L = ∅
is regular.

• L = L1 • L2: Let L1 = {a∗} (a regular language) and L2 = {ap | p is prime} (a
non-regular language) then L = {aaa∗} is regular.

Hence, to prove that a language Lx is non-regular, you assume it to be regular for contra-
diction. Then you combine it with a regular language Lr to obtain a language L = Lx �Lr.
If L is non-regular, Lx could not have been regular either.

4 Pumping Lemma Revisited

a) Let us assume that L is regular and show that this results in a contradiction.

We have seen that any regular language fulfills the pumping lemma. This means, there
exists a number p, such that every word w ∈ L with |w| ≥ p can be written as w = xyz
with |xy| ≤ p and |y| ≥ 1, such that xyiz ∈ L for all i ≥ 0.

In order to obtain the contradiction, we need to find at least one word w ∈ L with |w| ≥ p
that does not adhere to the above proposition. We choose w = xyz = 1p

2

and consider the
case i = 2 for which the Pumping Lemma claims w′ = xy2z ∈ L.

We can relate the lengths of w = xyz and w′ = xy2z as follows.

p2 = |w| = |xyz| < |w′| = |xy2z| ≤ p2 + p < p2 + 2p+ 1 = (p+ 1)2

So we have p2 < |w′| < (p+ 1)2 which implies that |w′| cannot be a square number since it
lies between two consecutive square numbers. Therefore, w′ /∈ L and hence, L cannot be
regular.

b) Consider the alphabet Σ = {a1, a2, ..., an} and the language L =
⋃n

i=1 a
∗
i = a∗1∪a∗2∪· · ·∪a∗n.

In other words, each word of the language L contains an arbitrary number of just one
symbol ai. The language is regular, as it is the union of regular languages, and the smallest
possible pumping number p for L is 1. But any DFA needs at least n+ 2 states to accept

3

the empty word, distinguish the n different characters of the alphabet, and for a failing
state. Thus, for the DFA, we cannot deduce any information from p about the minimum
number of states.

The same argument holds for the NFA.

5 Minimum Pumping Length

To begin with, observe that the minimum pumping length p of a language L = L1∪L2 is at most
p ≤ max{p1, p2}, where p1 and p2 are the minimum pumping lengths of L1 and L2, respectively.
This holds because if there is already a string w that is pumpable in L1, then w will also be
pumpable in L. Hence, let L1 = 1∗0+1+0∗ and L2 = 111+0+.

• The minimum pumping length of L2 cannot be 4 because 1110 cannot be pumped. Now
consider the string s that belongs to L2 and that has a size of 5. If s = 11110, then it
can be divided into xyz where x = 111, y = 1 and z = 0 and thus can be pumped. If
s = 11100, then it can be divided into xyz where x = 111, y = 0 and z = 0 and thus can
be pumped. Similarly, all longer words can be pumped. The minimum pumping length for
L2 is thus 5.

• A string s of size 3 and belonging to L1 can always be pumped.

Considering the word 1110, observe that it can also not be pumped in L = L1∪L2. In conclusion,
the minimum pumping length of L is 5.

6 The art of being regular

L is not regular. We show it using the pumping lemma. We start by choosing a string in L. Let
w = 100p#10p. Then w ∈ L since x (100p) is equal to 2y (where y is 10p) for p >= 0. We must
consider three cases for where y can fall:

a) y = 1 Pump out. Arithmetic is wrong. The left side is 0 but right side isn’t.

b) y = 10* Pump out. Arithmetic is wrong.

c) y = 0p Pump out. Arithmetic is wrong. Decreased left side but not right. So, in particular,
it is no longer the case that x ≥ y (required since y 6 0).

Bonus tasks: – solutions provided by student Angéline Pouget in HS20

• Determine whether L = {x#y | x+ y = 3y} is context-free.

To begin with, we observe that

L = {x#y | x+ y = 3y}
= {x#y | x = 2y}
= {w0#w | w ∈ 1(0 ∪ 1)∗}.

We prove that L = {w0#w | w ∈ 1(0 ∪ 1)∗} is not context-free using the tandem-pumping
lemma. First, we assume for contradiction that L is context-free and hence there is a
number p such that any string in L of length ≥ p is tandem-pumpable within a substring
of length p. We choose w = 1p0p and thereby consider the word α = w0#w = 1p0p0#1p0p

with |α| ≥ p.

We now want to split α = uvxyz with |vy| ≥ 1, |vxy| ≤ p and uvixyiz ∈ L for all i ≥ 0.
Because we have |vxy| ≤ p, there are the following options:

– # /∈ vxy (vxy = 1m or vxy = 0m with 1 ≤ m ≤ p or vxy = 1n0s with n + s ≤ p).
Any one of these sequences can either be before or after the # but independent of this
choice, if we pump v and y and choose for example i = 0, we will have α′ = w′0#w′′

with w′ 6= w and hence α′ /∈ L.

4

– # ∈ vxy. In this case, we can choose x = # because we know that there is only one
and therefore this cannot be the pumpable part. This leaves us with v = 0n and
y = 1s with 1 ≤ n + s ≤ p − 1 and if we for example set i = 0 this leaves us with
α′ = 1p0p+1−n#1p−s0p which is /∈ L.

Because we have now considered all possible splits of this word into α = uvxyz, we can
safely say that language L is not context-free.

• Show whether L′ = {x#y | x+ reverse(y) = 3 · reverse(y)} is context-free.
The reverse()-function takes an integer as a bitstring and reverses the order of its bits.

Let w′ = reverse(w). Applying the same transformations as above, we obtain

L′ = {x#y | x = 2 · reverse(y)} = {w0#w′ | w ∈ 1(0 ∪ 1)∗}.

We can show that this language is context-free by drawing a push-down automaton that
accepts this language. This automaton is depicted below with “>” representing stack
operations “→”.

We could have alternatively shown that the language is context-free by providing a context
free grammar (V,Σ, R, S) such as the following:

– V = {S}
– Σ = {0, 1,#}
– R : S → 1S1 | 0S0 | 0#

– S = S

5

