**ETTH** Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Networked Systems Group (NSG)

Prof. L. Vanbever / R. Schmid based on Prof. R. Wattenhofer's material

# Discrete Event Systems Exercise Sheet 3

# 1 From DFA to Regular Expression

First generate the GNFA.



Then remove node 2.



Then remove node 3.



Then remove node 1 and derive the corresponding regular expression.

 $\mathrm{HS}\ 2021$ 

Note that we could also start by removing the node 3.

# 2 Transforming Automata [Exam HS14]

The regular expression can be obtained from the finite automaton using the transformation presented in the script. After ripping out state  $q_2$ , the corresponding GNFA looks like this:



After also removing state  $q_1$ , the GNFA looks as follows.



Eliminating the last state  $q_3$  yields the final solution, which is  $(01^*0)^*1(0 \cup 11^*0(01^*0)^*1)^*$ .

*Note:* Ripping out the interior states in a different order yields a distinct yet equivalent regular expression. The order  $q_3, q_2, q_1$ , for example, results in  $((0 \cup 10^*1)1^*0)^*10^*$ .

## 3 Pumping Lemma

#### The Pumping Lemma in a Nutshell

Given a language L, assume for contradiction that L is regular and has the pumping length p. Construct a suitable word  $w \in L$  with  $|w| \ge p$  ("there exists  $w \in L$ ") and show that for all divisions of w into three parts, w = xyz, with  $|x| \ge 0$ ,  $|y| \ge 1$ , and  $|xy| \le p$ , there exists a pumping exponent  $i \ge 0$  such that  $w' = xy^i z \notin L$ . If this is the case, L is not regular.

- a) We claim that  $L_1$  is not regular and prove our claim with the pumping lemma recipe:
  - 1. Assume for contradiction that  $L_1$  was regular.
  - 2. There must exist some p, s.t. any word  $w \in L_1$  with  $|w| \ge p$  is pumpable.
  - 3. Choose the string  $w = 1^p 02^p \in L_1$  with length |w| > p.
  - 4. Consider all ways to split w = xyz s.t.  $|xy| \le p$  and  $|y| \ge 1$ .  $\rightarrow$  Hence,  $y \in 1^+$ .
  - 5. Observe that  $xy^0z \notin L_1$  a contradiction to p being a valid pumping length.
  - 6. Consequently,  $L_1$  cannot be regular.
- b) Language  $L_2$  can be shown to be non-regular using the pumping lemma. Assume for contradiction that  $L_1$  is regular and let p be the corresponding pumping length. Choose w to be the word  $0110^p 1^p$ . Because w is an element of  $L_1$  and has length more than p, the pumping lemma guarantees that w can be split into three parts, w = xyz, where  $|xy| \leq p$  and for any  $i \geq 0$ , we have  $xy^i z \in L_1$ . In order to obtain the contradiction, we must prove that for every possible partition into three parts w = xyz where  $|xy| \leq p$ , the word w cannot be pumped. We therefore consider the various cases.

- (1) If y starts anywhere within the first three symbols (i.e. 011) of w, deleting y (pumping with i = 0) creates a word with an illegal prefix (e.g.  $10^p 1^p$  for y = 01).
- (2) If y consists of only 0s from the second block, the word  $w' = xy^2 z$  has more 0s than 1s in the last |w'| 3 symbols and hence  $c \neq d$ .

Note that y cannot contain 1s from the second block because of the requirement  $|xy| \leq p$ . We have shown that for all possible divisions of w into three parts, the pumped word is not in  $L_1$ . Therefore,  $L_1$  cannot be regular and we have a contradiction.

Note that we could have also used the pumping lemma recipe to prove that  $L_2$  is not regular.

#### Be Careful!

The argumentation above is based on the closure properties of regular languages and only works in the direction presented. That is, for an operator  $\diamond \in \{\cup, \cap, \bullet\}$ , we have:

If  $L_1$  and  $L_2$  are regular, then  $L = L_1 \diamond L_2$  is also regular.

If either  $L_1$  or  $L_2$  or both are non-regular, we cannot deduce the non-regularity of L or vice-versa. Moreover, L being regular does not imply that  $L_1$  and  $L_2$  are regular as well. This may sound counter-intuitive which is why we give examples for the three operators.

- $L = L_1 \cup L_2$ : Let  $L_1$  be any non-regular language and  $L_2$  its complement. Then  $L = \Sigma^*$  is regular.
- $L = L_1 \cap L_2$ : Let  $L_1$  be any non-regular language and  $L_2$  its complement. Then  $L = \emptyset$  is regular.
- $L = L_1 \bullet L_2$ : Let  $L_1 = \{a^*\}$  (a regular language) and  $L_2 = \{a^p \mid p \text{ is prime}\}$  (a non-regular language) then  $L = \{aaa^*\}$  is regular.

Hence, to prove that a language  $L_x$  is non-regular, you assume it to be regular for contradiction. Then you combine it with a *regular* language  $L_r$  to obtain a language  $L = L_x \diamond L_r$ . If L is non-regular,  $L_x$  could not have been regular either.

## 4 Pumping Lemma Revisited

a) Let us assume that L is regular and show that this results in a contradiction.

We have seen that any regular language fulfills the pumping lemma. This means, there exists a number p, such that every word  $w \in L$  with  $|w| \ge p$  can be written as w = xyz with  $|xy| \le p$  and  $|y| \ge 1$ , such that  $xy^i z \in L$  for all  $i \ge 0$ .

In order to obtain the contradiction, we need to find at least one word  $w \in L$  with  $|w| \ge p$  that does not adhere to the above proposition. We choose  $w = xyz = 1^{p^2}$  and consider the case i = 2 for which the Pumping Lemma claims  $w' = xy^2z \in L$ .

We can relate the lengths of w = xyz and  $w' = xy^2z$  as follows.

$$p^{2} = |w| = |xyz| < |w'| = |xy^{2}z| \le p^{2} + p < p^{2} + 2p + 1 = (p+1)^{2}$$

So we have  $p^2 < |w'| < (p+1)^2$  which implies that |w'| cannot be a square number since it lies between two consecutive square numbers. Therefore,  $w' \notin L$  and hence, L cannot be regular.

b) Consider the alphabet  $\Sigma = \{a_1, a_2, ..., a_n\}$  and the language  $L = \bigcup_{i=1}^n a_i^* = a_1^* \cup a_2^* \cup \cdots \cup a_n^*$ . In other words, each word of the language L contains an arbitrary number of just **one** symbol  $a_i$ . The language is regular, as it is the union of regular languages, and the smallest possible pumping number p for L is 1. But any DFA needs at least n + 2 states to accept the empty word, distinguish the n different characters of the alphabet, and for a failing state. Thus, for the DFA, we cannot deduce any information from p about the minimum number of states.

The same argument holds for the NFA.

# 5 Minimum Pumping Length

To begin with, observe that the minimum pumping length p of a language  $L = L_1 \cup L_2$  is at most  $p \leq max\{p_1, p_2\}$ , where  $p_1$  and  $p_2$  are the minimum pumping lengths of  $L_1$  and  $L_2$ , respectively. This holds because if there is already a string w that is pumpable in  $L_1$ , then w will also be pumpable in L. Hence, let  $L_1 = 1^*0^+1^+0^*$  and  $L_2 = 111^+0^+$ .

- The minimum pumping length of  $L_2$  cannot be 4 because 1110 cannot be pumped. Now consider the string s that belongs to  $L_2$  and that has a size of 5. If s = 1110, then it can be divided into xyz where x = 111, y = 1 and z = 0 and thus can be pumped. If s = 11100, then it can be divided into xyz where x = 111, y = 0 and z = 0 and thus can be pumped. If s = 11100, then it can be divided into xyz where x = 111, y = 0 and z = 0 and thus can be pumped. Similarly, all longer words can be pumped. The minimum pumping length for L2 is thus 5.
- A string s of size 3 and belonging to L1 can always be pumped.

Considering the word 1110, observe that it can also not be pumped in  $L = L_1 \cup L_2$ . In conclusion, the minimum pumping length of L is 5.

### 6 The art of being regular

L is not regular. We show it using the pumping lemma. We start by choosing a string in L. Let  $w = 100^p \# 10^p$ . Then  $w \in L$  since x  $(100^p)$  is equal to 2y (where y is  $10^p$ ) for  $p \ge 0$ . We must consider three cases for where y can fall:

- a) y = 1 Pump out. Arithmetic is wrong. The left side is 0 but right side isn't.
- **b)**  $y = 10^*$  Pump out. Arithmetic is wrong.
- c)  $y = 0^p$  Pump out. Arithmetic is wrong. Decreased left side but not right. So, in particular, it is no longer the case that  $x \ge y$  (required since  $y \not 0$ ).

Bonus tasks: - solutions provided by student Angéline Pouget in HS20

• Determine whether  $L = \{x \# y \mid x + y = 3y\}$  is context-free.

To begin with, we observe that

$$L = \{x \# y \mid x + y = 3y\}$$
  
=  $\{x \# y \mid x = 2y\}$   
=  $\{w 0 \# w \mid w \in 1(0 \cup 1)^*\}.$ 

We prove that  $L = \{w0 \# w \mid w \in 1(0 \cup 1)^*\}$  is not context-free using the tandem-pumping lemma. First, we assume for contradiction that L is context-free and hence there is a number p such that any string in L of length  $\geq p$  is tandem-pumpable within a substring of length p. We choose  $w = 1^{p}0^{p}$  and thereby consider the word  $\alpha = w0 \# w = 1^{p}0^{p}0 \# 1^{p}0^{p}$ with  $|\alpha| \geq p$ .

We now want to split  $\alpha = uvxyz$  with  $|vy| \ge 1$ ,  $|vxy| \le p$  and  $uv^ixy^iz \in L$  for all  $i \ge 0$ . Because we have  $|vxy| \le p$ , there are the following options:

 $- \# \notin vxy \ (vxy = 1^m \text{ or } vxy = 0^m \text{ with } 1 \le m \le p \text{ or } vxy = 1^n 0^s \text{ with } n + s \le p).$ Any one of these sequences can either be before or after the # but independent of this choice, if we pump v and y and choose for example i = 0, we will have  $\alpha' = w' 0 \# w''$  with  $w' \ne w$  and hence  $\alpha' \notin L$ .  $- \# \in vxy$ . In this case, we can choose x = # because we know that there is only one # and therefore this cannot be the pumpable part. This leaves us with  $v = 0^n$  and  $y = 1^s$  with  $1 \le n + s \le p - 1$  and if we for example set i = 0 this leaves us with  $\alpha' = 1^p 0^{p+1-n} \# 1^{p-s} 0^p$  which is  $\notin L$ .

Because we have now considered all possible splits of this word into  $\alpha = uvxyz$ , we can safely say that language L is not context-free.

 Show whether L' = {x#y | x + reverse(y) = 3 · reverse(y)} is context-free. The reverse()-function takes an integer as a bitstring and reverses the order of its bits.

Let w' = reverse(w). Applying the same transformations as above, we obtain

 $L' = \{x \# y \mid x = 2 \cdot reverse(y)\} = \{w 0 \# w' \mid w \in 1(0 \cup 1)^*\}.$ 

We can show that this language is context-free by drawing a push-down automaton that accepts this language. This automaton is depicted below with ">" representing stack operations " $\rightarrow$ ".



We could have alternatively shown that the language is context-free by providing a context free grammar  $(V, \Sigma, R, S)$  such as the following:

 $-V = \{S\}$  $-\Sigma = \{0, 1, \#\}$ 

$$-\Sigma = \{0, 1, \#\}$$

- $-~R:~S \rightarrow 1S1 \mid 0S0 \mid 0 \#$
- -S = S