ETH

Discrete Event Systems

Exercise Sheet 3

1 From DFA to Regular Expression

First generate the GNFA.

Then remove node 2.

Then remove node 3.

Then remove node 1 and derive the corresponding regular expression.

Note that we could also start by removing the node 3 .

2 Transforming Automata [Exam HS14]

The regular expression can be obtained from the finite automaton using the transformation presented in the script. After ripping out state q_{2}, the corresponding GNFA looks like this:

After also removing state q_{1}, the GNFA looks as follows.

Eliminating the last state q_{3} yields the final solution, which is $\left(01^{*} 0\right)^{*} 1\left(0 \cup 11^{*} 0\left(01^{*} 0\right)^{*} 1\right)^{*}$.
Note: Ripping out the interior states in a different order yields a distinct yet equivalent regular expression. The order q_{3}, q_{2}, q_{1}, for example, results in $\left(\left(0 \cup 10^{*} 1\right) 1^{*} 0\right)^{*} 10^{*}$.

3 Pumping Lemma

The Pumping Lemma in a Nutshell

Given a language L, assume for contradiction that L is regular and has the pumping length p. Construct a suitable word $w \in L$ with $|w| \geq p$ ("there exists $w \in L$ ") and show that for all divisions of w into three parts, $w=x y z$, with $|x| \geq 0,|y| \geq 1$, and $|x y| \leq p$, there exists a pumping exponent $i \geq 0$ such that $w^{\prime}=x y^{i} z \notin L$. If this is the case, L is not regular.
a) We claim that L_{1} is not regular and prove our claim with the pumping lemma recipe:

1. Assume for contradiction that L_{1} was regular.
2. There must exist some p, s.t. any word $w \in L_{1}$ with $|w| \geq p$ is pumpable.
3. Choose the string $w=1^{p} 02^{p} \in L_{1}$ with length $|w|>p$.
4. Consider all ways to split $w=x y z$ s.t. $|x y| \leq p$ and $|y| \geq 1$. \rightarrow Hence, $y \in 1^{+}$.
5. Observe that $x y^{0} z \notin L_{1}-$ a contradiction to p being a valid pumping length.
6. Consequently, L_{1} cannot be regular.
b) Language L_{2} can be shown to be non-regular using the pumping lemma. Assume for contradiction that L_{1} is regular and let p be the corresponding pumping length. Choose w to be the word $0110^{p} 1^{p}$. Because w is an element of L_{1} and has length more than p, the pumping lemma guarantees that w can be split into three parts, $w=x y z$, where $|x y| \leq p$ and for any $i \geq 0$, we have $x y^{i} z \in L_{1}$. In order to obtain the contradiction, we must prove that for every possible partition into three parts $w=x y z$ where $|x y| \leq p$, the word w cannot be pumped. We therefore consider the various cases.
(1) If y starts anywhere within the first three symbols (i.e. 011) of w, deleting y (pumping with $i=0$) creates a word with an illegal prefix (e.g. $10^{p} 1^{p}$ for $y=01$).
(2) If y consists of only 0 s from the second block, the word $w^{\prime}=x y^{2} z$ has more 0 s than 1 s in the last $\left|w^{\prime}\right|-3$ symbols and hence $c \neq d$.

Note that y cannot contain 1 s from the second block because of the requirement $|x y| \leq p$.
We have shown that for all possible divisions of w into three parts, the pumped word is not in L_{1}. Therefore, L_{1} cannot be regular and we have a contradiction.
Note that we could have also used the pumping lemma recipe to prove that L_{2} is not regular.

Be Careful!

The argumentation above is based on the closure properties of regular languages and only works in the direction presented. That is, for an operator $\diamond \in\{\cup, \cap, \bullet\}$, we have:

$$
\text { If } L_{1} \text { and } L_{2} \text { are regular, then } L=L_{1} \diamond L_{2} \text { is also regular. }
$$

If either L_{1} or L_{2} or both are non-regular, we cannot deduce the non-regularity of L or vice-versa. Moreover, L being regular does not imply that L_{1} and L_{2} are regular as well. This may sound counter-intuitive which is why we give examples for the three operators.

- $L=L_{1} \cup L_{2}$: Let L_{1} be any non-regular language and L_{2} its complement. Then $L=\Sigma^{*}$ is regular.
- $L=L_{1} \cap L_{2}$: Let L_{1} be any non-regular language and L_{2} its complement. Then $L=\emptyset$ is regular.
- $L=L_{1} \bullet L_{2}$: Let $L_{1}=\left\{a^{*}\right\}$ (a regular language) and $L_{2}=\left\{a^{p} \mid p\right.$ is prime $\}$ (a non-regular language) then $L=\left\{a a a^{*}\right\}$ is regular.

Hence, to prove that a language L_{x} is non-regular, you assume it to be regular for contradiction. Then you combine it with a regular language L_{r} to obtain a language $L=L_{x} \diamond L_{r}$. If L is non-regular, L_{x} could not have been regular either.

4 Pumping Lemma Revisited

a) Let us assume that L is regular and show that this results in a contradiction.

We have seen that any regular language fulfills the pumping lemma. This means, there exists a number p, such that every word $w \in L$ with $|w| \geq p$ can be written as $w=x y z$ with $|x y| \leq p$ and $|y| \geq 1$, such that $x y^{i} z \in L$ for all $i \geq 0$.
In order to obtain the contradiction, we need to find at least one word $w \in L$ with $|w| \geq p$ that does not adhere to the above proposition. We choose $w=x y z=1^{p^{2}}$ and consider the case $i=2$ for which the Pumping Lemma claims $w^{\prime}=x y^{2} z \in L$.
We can relate the lengths of $w=x y z$ and $w^{\prime}=x y^{2} z$ as follows.

$$
p^{2}=|w|=|x y z|<\left|w^{\prime}\right|=\left|x y^{2} z\right| \leq p^{2}+p<p^{2}+2 p+1=(p+1)^{2}
$$

So we have $p^{2}<\left|w^{\prime}\right|<(p+1)^{2}$ which implies that $\left|w^{\prime}\right|$ cannot be a square number since it lies between two consecutive square numbers. Therefore, $w^{\prime} \notin L$ and hence, L cannot be regular.
b) Consider the alphabet $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and the language $L=\bigcup_{i=1}^{n} a_{i}^{*}=a_{1}^{*} \cup a_{2}^{*} \cup \cdots \cup a_{n}^{*}$. In other words, each word of the language L contains an arbitrary number of just one symbol a_{i}. The language is regular, as it is the union of regular languages, and the smallest possible pumping number p for L is 1 . But any DFA needs at least $n+2$ states to accept
the empty word, distinguish the n different characters of the alphabet, and for a failing state. Thus, for the DFA, we cannot deduce any information from p about the minimum number of states.
The same argument holds for the NFA.

5 Minimum Pumping Length

To begin with, observe that the minimum pumping length p of a language $L=L_{1} \cup L_{2}$ is at most $p \leq \max \left\{p_{1}, p_{2}\right\}$, where p_{1} and p_{2} are the minimum pumping lengths of L_{1} and L_{2}, respectively. This holds because if there is already a string w that is pumpable in L_{1}, then w will also be pumpable in L. Hence, let $L_{1}=1^{*} 0^{+} 1^{+} 0^{*}$ and $L_{2}=111^{+} 0^{+}$.

- The minimum pumping length of L_{2} cannot be 4 because 1110 cannot be pumped. Now consider the string s that belongs to L_{2} and that has a size of 5 . If $s=11110$, then it can be divided into $x y z$ where $x=111, y=1$ and $z=0$ and thus can be pumped. If $s=11100$, then it can be divided into $x y z$ where $x=111, y=0$ and $z=0$ and thus can be pumped. Similarly, all longer words can be pumped. The minimum pumping length for $L 2$ is thus 5 .
- A string s of size 3 and belonging to L1 can always be pumped.

Considering the word 1110 , observe that it can also not be pumped in $L=L_{1} \cup L_{2}$. In conclusion, the minimum pumping length of L is 5 .

6 The art of being regular

L is not regular. We show it using the pumping lemma. We start by choosing a string in L. Let $w=100^{p} \# 10^{p}$. Then $w \in L$ since $\mathrm{x}\left(100^{p}\right)$ is equal to 2 y (where y is 10^{p}) for $p>=0$. We must consider three cases for where y can fall:
a) $y=1$ Pump out. Arithmetic is wrong. The left side is 0 but right side isn't.
b) $\mathrm{y}=10^{*}$ Pump out. Arithmetic is wrong.
c) $\mathrm{y}=0^{p}$ Pump out. Arithmetic is wrong. Decreased left side but not right. So, in particular, it is no longer the case that $x \geq y$ (required since $y \emptyset 0$).

Bonus tasks: - solutions provided by student Angéline Pouget in HSZO

- Determine whether $L=\{x \# y \mid x+y=3 y\}$ is context-free.

To begin with, we observe that

$$
\begin{aligned}
L & =\{x \# y \mid x+y=3 y\} \\
& =\{x \# y \mid x=2 y\} \\
& =\left\{w 0 \# w \mid w \in 1(0 \cup 1)^{*}\right\} .
\end{aligned}
$$

We prove that $L=\left\{w 0 \# w \mid w \in 1(0 \cup 1)^{*}\right\}$ is not context-free using the tandem-pumping lemma. First, we assume for contradiction that L is context-free and hence there is a number p such that any string in L of length $\geq p$ is tandem-pumpable within a substring of length p. We choose $w=1^{p} 0^{p}$ and thereby consider the word $\alpha=w 0 \# w=1^{p} 0^{p} 0 \# 1^{p} 0^{p}$ with $|\alpha| \geq p$.
We now want to split $\alpha=u v x y z$ with $|v y| \geq 1,|v x y| \leq p$ and $u v^{i} x y^{i} z \in L$ for all $i \geq 0$. Because we have $|v x y| \leq p$, there are the following options:
$-\# \notin v x y\left(v x y=1^{m}\right.$ or $v x y=0^{m}$ with $1 \leq m \leq p$ or $v x y=1^{n} 0^{s}$ with $\left.n+s \leq p\right)$. Any one of these sequences can either be before or after the \# but independent of this choice, if we pump v and y and choose for example $i=0$, we will have $\alpha^{\prime}=w^{\prime} 0 \# w^{\prime \prime}$ with $w^{\prime} \neq w$ and hence $\alpha^{\prime} \notin L$.

- \# $\in v x y$. In this case, we can choose $x=\#$ because we know that there is only one \# and therefore this cannot be the pumpable part. This leaves us with $v=0^{n}$ and $y=1^{s}$ with $1 \leq n+s \leq p-1$ and if we for example set $i=0$ this leaves us with $\alpha^{\prime}=1^{p} 0^{p+1-n} \# 1^{p-s} 0^{p}$ which is $\notin L$.

Because we have now considered all possible splits of this word into $\alpha=u v x y z$, we can safely say that language L is not context-free.

- Show whether $L^{\prime}=\{x \# y \mid x+\operatorname{reverse}(y)=3 \cdot \operatorname{reverse}(y)\}$ is context-free.

The reverse()-function takes an integer as a bitstring and reverses the order of its bits.
Let $w^{\prime}=\operatorname{reverse}(w)$. Applying the same transformations as above, we obtain

$$
L^{\prime}=\{x \# y \mid x=2 \cdot \operatorname{reverse}(y)\}=\left\{w 0 \# w^{\prime} \mid w \in 1(0 \cup 1)^{*}\right\} .
$$

We can show that this language is context-free by drawing a push-down automaton that accepts this language. This automaton is depicted below with " $>$ " representing stack operations " \rightarrow ".

We could have alternatively shown that the language is context-free by providing a context free grammar (V, Σ, R, S) such as the following:
$-V=\{S\}$
$-\Sigma=\{0,1, \#\}$

- R:S \quad, $1 S 1|0 S 0| 0 \#$
$-S=S$

