
Networked Systems Group (NSG)

HS 2021 Prof. L. Vanbever / R. Schmid
based on Prof. R. Wattenhofer’s material

Discrete Event Systems
Solution to Exercise Sheet 2

1 Nondeterministic Finite Automata

a) The following automaton also accepts strings containing a b b a b b a as a substring.

a, b

a b b a

a

a, b

a b b a

a, b

b) The following automaton is obtained using the transformations presented in the lecture.

ε

ε

0 0

ε

0

ε

ε

ε

0

ε

ε

1

ε

ε

ε

ε

This automaton, however, is not minimal. If you take a closer look at the regular expression
(00 ∪ (0(0 ∪ 1)∗))∗, you will see that it can be simplified to (0(0 ∪ 1)∗)∗ and this in turn to
ε ∪ 0(0 ∪ 1)∗. A minimal automaton for this regular expression is given by

0

0,1

Note: The absence of a transition with label 1 in the left state means that if a 1 is read,
the automaton goes into a non-accepting state and stays there for the rest of the execution.
NFAs may be under-determined in this notion, but FAs must provide a transition for every
symbol of the alphabet and potentially a crash state to “capture” non-accepting executions.

c) Three states are enough if we can use NFAs. With FAs, we needed at least four states.

1

ε 1

0

1

1

d) A deterministic machine for which every state is an accepting state, accepts every string of
the corresponding alphabet. However, this does not hold for a nondeterministic automaton,
namely if it is under-determined.

2 Exam question [2018]

q1 q2 q3 q4

q5

q6
0, 1 0, 1 0, 1 0

0

0, 1

0, 1

1

3 De-Randomization

a) The automaton accepts strings adhering to the regular expression 0∗1∗2∗. Without ε-
transitions we get the following automaton.

0

1

2

1

2

2

b) The deterministic automaton can be found by applying the power set construction pre-
sented in the lecture followed by the state minimization algorithm. However, it is obvious
that the automaton shown below does the job.

2

A

0

1

2

1

2

0

2

0, 1

0, 1, 2

4 States Minimization

State q0 can be omitted as it is not reachable. Moreover, states q1 and q5 can be merged, as
there is no input sequence which will show a difference between these two states. A regular
expression of the language is ((ba ∪ ab)a∗c)∗.

q3 q4 q5q2q1

q0

aba b
a a

b

c cwww�

q3q2 q4

q1,5

b a

a b
c

a

5 Derandomizing a large NFA [Exam HS14]

We could use the systematic transformation scheme presented in the lecture. Considering the
large number of states, however, this will easily lead to an explosion of states in the derandomized
automaton. Hence, we build the deterministic finite automaton in a step-wise manner, only
creating those states that are actually required (i.e. reachable by any sequence from the starting
state): Initially, the automaton requires a 0. Subsequently, only a 1 is accepted. Including the
various transitions, this 1 can lead to three different states, namely states 2, 3, and 4.

{1} {2, 4} {2, 3, 4}0 1

3

In any of the states 2, 3, and 4, only a 1 is accepted. Assume that the automaton is currently
in state 2, this 1 can lead to states {2, 3, 4} when including all ε-transitions. When in state 3,
the 1 leads to states {2, 3, 4, 5} and finally, when being in state 4, the reachable states given
a 1 are {2, 3, 4}. Hence, a 1 leads from state {2, 3, 4} to state {2, 3, 4, 5}. Repeating the same
process for state {2, 3, 4, 5}, we can see that, again, only a 1 is accepted, which leads to state
{2, 3, 4, 5, 6}. Because the state 6 in the original NFA was an accepting state, {2, 3, 4, 5, 6} is also
accepting in the DFA. From state {2, 3, 4, 5, 6}, an additional 1 will lead to another accepting
state {1, 2, 3, 4, 5, 6}. And from this state, any subsequent 1 returns to state {1, 2, 3, 4, 5, 6} as
well.

{1} {2, 4} {2, 3, 4} {2, 3,
4, 5}

{2, 3, 4,
5, 6}

{1, 2, 3,
4, 5, 6}

0 1 1 1 1
1

What happens if a 0 occurs in the input? This is feasible only when the deterministic state
includes either state 1 or state 6. In state {2, 3, 4, 5, 6}, a 0 necessarily leads to state {4}, whereas
in state {1, 2, 3, 4, 5, 6} a 0 leads to state {2, 4}. In both of these states, the only acceptable input
symbol is a 1 and leads to the state {2, 3, 4}. Hence, the deterministic finite automaton looks
like this:

{1} {2, 4} {2, 3, 4} {2, 3,
4, 5}

{2, 3, 4,
5, 6}

{1, 2, 3,
4, 5, 6}

{4}

0 1 1 1 1

0

1

1

0

Observe that the states {4} are equivalent {2, 4} and can thus be merged. Subsequently, the
states {2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6} can also be merged and the automaton can be reduced as
follows:

{1} {2, 4} {2, 3, 4} {2, 3,
4, 5}

{1, 2, 3,
4, 5, 6}

0 1 1 1
1

0

This is not a DFA yet, because the crash state is still missing. The final deterministic automaton
looks like this:

{1} {2, 4} {2, 3, 4} {2, 3,
4, 5}

{1, 2, 3,
4, 5, 6}

A

0

1

1

0

1

0

1

0

1

0

0,1

4

6 “Regular” Operations in UNIX

In UNIX, the special symbol “$” stands for the end of a line. We have:

egrep ’passwor(d|t)(a|e|i|o|u|A|E|I|O|U)*$’ <file>

5

