## Discrete Event Systems

## Exercise Session 1



Roland Schmid<br>nsg.ee.ethz.ch

ETH Zürich (D-ITET)
23 September 2021

## Formal Definition of a Finite Automaton

A finite automaton (FA) is a 5 -tuple ( $Q, \Sigma, \delta, q_{0}, F$ ), where

- $Q$ is a finite set called the states
- $\Sigma$ is a finite set called the alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the transformation function
- $q_{0} \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states (a.k.a. final states).


## Vending Machine Java Code

Soda vend() \{
int total $=0$, coin;
while (total ! = 45) \{
receive(coin);
if ((coin==10 \&\& total==40)
||(coin==25 \&\& total>=25))
reject(coin);
else
total += coin;
\}
return new Soda();
\}


## Vending Machine "Logics"



## Cartesian Product Construction

- We want to construct a finite automaton $M$ that recognizes any strings belonging to $L_{1}$ or $L_{2}$.
- Idea: Build M such that it simulates both $M_{1}$ and $M_{2}$ simultaneously and accept if either of the automatons accepts

Formal Definition

- Given two automata

$$
M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right) \text { and } M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)
$$

- Define the unioner of $M_{1}$ and $M_{2}$ by: $M_{U}=\left(Q_{1} \times Q_{2}, \Sigma, \delta_{1} \times \delta_{2},\left(q_{1}, q_{2}\right), F_{U}\right)$
- where the accept state ( $q_{1}, q_{2}$ ) is the combined start state of both automata
- where $F_{U}$ is the set of ordered pairs in $Q_{1} \times Q_{2}$ with at least one state an accept state. That is: $F_{\cup}=Q_{1} \times F_{2} \cup F_{1} \times Q_{2}$
- where the transition function $\delta$ is defined as

$$
\delta\left(\left(q_{1}, q_{2}\right), j\right)=\left(\delta_{1}\left(q_{1}, j\right), \delta_{2}\left(q_{2}, j\right)\right)=\delta_{1} \times \delta_{2}
$$

Other constructions: Intersector

- Other constructions are possible, for example an intersector:
- Accept only when both ending states are accept states. So the only difference is in the set of accept states. Formally the intersector of $M_{1}$ and $M_{2}$ is given by
$M_{\mathrm{n}}=\left(Q_{1} \times Q_{2}, \Sigma, \delta_{1} \times \delta_{2},\left(q_{0,1}, q_{0,2}\right), F_{\cap}\right)$, where $F_{\mathrm{n}}=F_{1} \times F_{2}$.


## Complement

- How about the complement? The complement is only defined with respect to some universe.
- Given the alphabet $\Sigma$, the default universe is just the set of all possible strings $\Sigma^{*}$. Therefore, given a language $L$ over $\Sigma$, i.e. $L \subseteq \Sigma^{*}$ the complement of $L$ is $\Sigma^{*}-L$
- Note: Since we know how to compute set difference, and we know how to construct the automaton for $\Sigma^{*}$ we can construct the automaton for $\bar{L}$
- Question: Is there a simpler construction for $\bar{L}$ ?
- Answer: Just switch accept-states with non-accept states.

