Discrete Event Systems

Exercise Sheet 2

1 Nondeterministic Finite Automata

a) Consider the alphabet $\{a, b\}$. Construct an NFA that accepts all strings containing the substring $a b b a$ at least twice. (This means that words containing $a b b a b b a$ as a substring should also be accepted!)
b) Construct an NFA which accepts the following regular expression: $\left(00 \cup\left(0(0 \cup 1)^{*}\right)\right)^{*}$.
c) Construct an NFA accepting $1^{*} 0^{*} 1^{+}$with as few states as possible. (cf. Exercise 1.1.a)
d) Consider a machine $M:=\left(Q, \Sigma, \delta, q_{0}, Q\right)$. Is it possible to make a statement about the strings being accepted by M ? Does it make a difference whether M is deterministic or not?

2 Exam question [2018]

Assume that the alphabet Σ is $\{0,1\}$ and consider the language $L=\{w \mid$ there exist two zeros in w that are separated by a string whose length is $4 i$ for some $i \geq 0\}$. For example, the strings 1001 and 10110101 belong to L, whereas the strings 101 and 010101 do not. Design an NFA that recognizes L with 6 states or less.

3 De-Randomization

a) Give a regular expression for the following NFA and construct an equivalent NFA without ε-transitions.

b) Finally, transform the machine into a deterministic automaton.

4 States Minimization

Simplify the following automaton. Explain why your changes are allowed. Finally, give the corresponding regular expression.

5 Derandomizing a large NFA [Exam HS14]

Transform the given NFA into an equivalent DFA, while assuming $\Sigma=\{0,1\}$.
Hint: Only construct states which are necessary!

6 "Regular" Operations in UNIX

In this exercise you are asked to provide a UNIX command to output all lines in a file ending with "password" or "passwort", followed by an unknown number (potentially zero) of vowels.

