HS 2021

Prof. L. Vanbever / R. Schmid based on Prof. R. Wattenhofer's material

## Discrete Event Systems

Exercise Sheet 2

#### 1 Nondeterministic Finite Automata

- a) Consider the alphabet  $\{a,b\}$ . Construct an NFA that accepts all strings containing the substring abba at least twice. (This means that words containing abbaba as a substring should also be accepted!)
- b) Construct an NFA which accepts the following regular expression:  $(00 \cup (0(0 \cup 1)^*))^*$ .
- c) Construct an NFA accepting  $1*0*1^+$  with as few states as possible. (cf. Exercise 1.1.a)
- d) Consider a machine  $M := (Q, \Sigma, \delta, q_0, Q)$ . Is it possible to make a statement about the strings being accepted by M? Does it make a difference whether M is deterministic or not?

## 2 Exam question [2018]

Assume that the alphabet  $\Sigma$  is  $\{0,1\}$  and consider the language  $L = \{w \mid \text{there exist two zeros in } w \text{ that are separated by a string whose length is } 4i \text{ for some } i \geq 0\}$ . For example, the strings 1001 and 10110101 belong to L, whereas the strings 101 and 010101 do not. Design an NFA that recognizes L with 6 states or less.

#### 3 De-Randomization

a) Give a regular expression for the following NFA and construct an equivalent NFA without  $\varepsilon$ -transitions.



b) Finally, transform the machine into a deterministic automaton.

### 4 States Minimization

Simplify the following automaton. Explain why your changes are allowed. Finally, give the corresponding regular expression.



## 5 Derandomizing a large NFA [Exam HS14]

Transform the given NFA into an equivalent DFA, while assuming  $\Sigma = \{0, 1\}$ . Hint: Only construct states which are necessary!



# 6 "Regular" Operations in UNIX

In this exercise you are asked to provide a UNIX command to output all lines in a file ending with "password" or "passwort", followed by an unknown number (potentially zero) of vowels.