
Networked Systems Group (NSG)

HS 2021 R. Jacob / T. Schneider
based on Prof. L. Thiele’s material

Discrete Event Systems
Solution to Exercise Sheet 11

1 Temporal Logic

a) (i) Q “ t0, 1, 2, 3u

(ii) Q “ t0, 3u

(iii) (AX a) holds for t2, 3u, thus Q “ t1, 2u

(iv) (a AND EX NOT(a)) is true for states where a is true and there exists a direct successor
for which it is not. Only state 0 satisfy this (from it you can transition to 1, where a
does not hold). Moreover, state 0 is reachable for all states in this automaton (”from
all states there exists a path going through 0 at some point”). Hence Q “ t0, 1, 2, 3u

b) (i) AFZ ” EG Z

(ii) We will first compute the function Qk |ù EG Z, which we can compute quite easily
(following the procedure given in the lecture), and take the negation in the end.

Q0 “ SzZ

Qi`1 “ Qi X PrepQi, fq

k “ minti | Qi`1 “ Qiu

QAF Z “ ZzQk

The main idea is that we start with the states that are not in Z. Then, at each itera-
tion, we create an intersection between the current set of states, and all predecessors
from which we can reach one of the states in the set. By doing this, we will remove
any states from which there exists some future, in which Z does not hold. We stop the
iteration once nothing changes anymore (we define k to be the first index for which
the set of states remains the same). Hence, we express have Qk |ù EG Z. What is
left to do is to negate the final set (every state which is not present in Qk).

(iii) We translate the procedure above directly into an algorithm:

Require: ψZ , ψf

ψcur Ð ψZ
ψnext Ð ψcur ^ ψPrepψcur,fq

while ψcur ‰ ψnext do
ψcur Ð ψnext
ψnext Ð ψcur ^ ψPrepψcur,fq

end while
return ψAFZ “ ψcur

2 Safe Network-Wide Configuration Updates

a) A forwarding loop exists in the following forwarding states. We only show the necessary
parts, the others can be chosen arbitrarily:

(i) ρ1pv0q “ v0

(ii) ρ2pv0q “ v1, ρ2pv1q “ v0

(iii) ρ3pv0q “ v1, ρ3pv1q “ v1

(iv) ρ4pv0q “ v1, ρ4pv1q “ v2, ρ4pv2q “ v0

(v) ρ5pv0q “ v1, ρ5pv1q “ v2, ρ5pv2q “ v1

(vi) ρ6pv0q “ v1, ρ6pv1q “ v2, ρ6pv2q “ v2

(vii) ρ7pv0q “ v2, ρ7pv2q “ v0

(viii) ρ8pv0q “ v2, ρ8pv2q “ v1, ρ8pv1q “ v0

(ix) ρ9pv0q “ v2, ρ9pv2q “ v1, ρ9pv1q “ v1

(x) ρ10pv0q “ v2, ρ10pv2q “ v1, ρ10pv1q “ v2

(xi) ρ11pv0q “ v2, ρ11pv2q “ v2

b) ρpv0q ‰ t is the only next hop that is not allowed. Hence, we write:

ψtopopZq “
`

z10z
0
0

˘

c) We start by case distinction. The first case is where v0 routes traffic towards v1, where v1
either sends traffic to t either directly, or via v2. The second case is where v0 sends traffic
towards v2, which is to be handled symmetrically to before.

ψtpZq “

ˆ

sz10z
0
0

”

z11z
0
1 `

`

z11
sz01z

1
2z

0
2

˘

ı

˙

{{ z0 Ñ z1

`

ˆ

z10
sz00

”

`

z11z
0
1
sz12z

0
2

˘

` z12z
0
2

ı

˙

{{ z0 Ñ z2

d) We will perform a similar case distinction as in Exercise b):

ψv2pZq “
sz10z

0
0z

1
1
sz01 {{ z0 Ñ z1

` z10
sz00 {{ z0 Ñ z2

e) Notice, that we can simply write ψφpZq “ ψtpZq ¨ ψv2pZq.

ψφpZq “ ψtpZq ¨ ψv2pZq

“

«

ˆ

sz10z
0
0

”

z11z
0
1 `

`

z11
sz01z

1
2z

0
2

˘

ı

˙

`

ˆ

z10
sz00

”

pz11z
0
1
sz12z

0
2q ` z

1
2z

0
2

ı

˙

ff

¨

«

sz10z
0
0z

1
1
sz01 ` z

1
0
sz00

ff

“

ˆ

sz10z
0
0z

1
1
sz01z

1
2z

0
2

˙

`

ˆ

z10
sz00

”

`

z11z
0
1
sz12z

0
2

˘

` z12z
0
2

ı

˙

Another way to solve this problem is to repeat the same idea from Exercise b) and c). In
fact, there only exists three valid paths through the network, that satisfy both constraints.
These are: rv0, v1, v2, ts, rv0, v2, ts, and rv1, v2, v1, ts.

f) By plugging σpρ0q “ 01 10 11, and σpρf q “ 10 01 11, and plugging them into ψφ, we see
that both states satisfy the constraints.

2

g) We start by expressing this function using quantifiers (like @ and D), and then unroll these
quantifiers into a quantifier-free expression:

ψtranspZ,Z
1q “ Di P t0, 1, 2u : @k P t0, 1, 2u :

"

zk “ z1k if k ‰ i
zk ‰ z1k if k “ i

“
“

pz0 ‰ z10q ¨ pz1 “ z11q ¨ pz2 “ z12q
‰

`
“

pz0 “ z10q ¨ pz1 ‰ z11q ¨ pz2 “ z12q
‰

`
“

pz0 “ z10q ¨ pz1 “ z11q ¨ pz2 ‰ z12q
‰

h) First of all, we will build the state machine with 26 “ 64 states. Each state corresponds to
a particular routing state (Z). We introduce transitions between two states if and only if
they differ in the routing decision of exactly one router. For the final state Zf , we remove
all existing outgoing state transitions, and replace them with a self-looping transition. The
initial state of that state machine is the initial state σpρ0q.

Then, we prepare the the property φ1, which only holds for states that satisfy both the
topological constraints ψtopo and the routing constraints ψφ. Additionally, the property φf
is defined to be true only for the final state σpρf q.

Let us express the CTL constraints which hold only for states for which there exists a safe
sequence of states to migrate to the final state. We wish that there exists a sequence of
states, which all satisfy φ1, and that end in the state φf .

EGpφ1 ^EFφf q

Since the model checker can only find counter-examples, we need to modify the expression
above. The goal is that the modified expression will return true only if there exists no such
safe sequence of states that migrate to the final state. The inverted expression is given as
follows:

 EG
`

φ1 ^EF φf
˘

“ AF
`

φ1 ^EF φf
˘

“ AF
`

 φ1 _ EF φf
˘

“ AF
`

 φ1 _AG φf
˘

If the model checker will find a counter-example to the inverted expression on the generated
state machine, then this counter-example will describe a valid and safe sequence of states
which can be used to perform the network migration.

i) We need to build one boolean expression that encapsulates all aspects of the migration.
Since we know that we can reach the final state in three state transitions, we need to add
fours states to the equation: Z0, Z1, Z2, and Z3. We add the following constraints to
the equation: First, we must ensure that the final state Z0 is the initial state σpρ0q, and
that Z3 is the final state σpρf q. To achieve that, we define the following two characteristic
functions:

ψρ0pZq “
sz10z

0
0 z

1
1
sz01 z

1
2z

0
2

ψρf pZq “ z10
sz00

sz11z
0
1 z

1
2z

0
2

Second, we must make sure that we can transition from any state to its successor. Finally,
every state must both satisfy the topological constraints ψtopo, as well as the constraints

3

from ψφ. It suffices that we only check Z1 and Z1, as we already have verified Z0 and Zf
to satisfy our constraints. Hence, we get:

ψ˚ “ ψ0pZ0q ¨ ψf pZ3q

¨ ψtranspZ0,Z1q

¨ ψtranspZ1,Z2q

¨ ψtranspZ2,Z3q

¨ ψtopopZ1q ¨ ψφpZ1q

¨ ψtopopZ2q ¨ ψφpZ2q

In fact, there exists only a single solution to the problem above, which is Z0 “ σpρ0q,
Z1 “ 10 10 11, Z2 “ 10 11 11, and Z3 “ σpρf q. The resulting ROBDD is drawn in Figure ??.

z01,0

z11,0

z01,1

z11,1

z01,2

z11,2

z02,0

z12,0

z02,1

z12,1

z02,2

z12,2

1 0

Figure 1: Resulting ROBDD of the complete network migration in 3 steps. This ROBDD only
shows the two intermediate states Z1 and Z2, since the initial and final states are given.

4

