

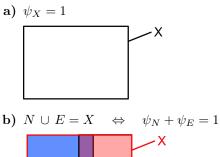
Networked Systems Group (NSG)

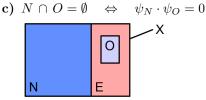
R. Jacob / T. Schneider based on Prof. L. Thiele's material

Discrete Event Systems Solution to Exercise Sheet 10

1 Sets Representation







d) $Q_1 = E \setminus O \iff \psi_{Q_1} = \psi_E \cdot \overline{\psi_O}$

Q1

Ν

e) $Q_2 = (O \cap E) \cup \overline{O} = (O \cup \overline{O}) \cap (E \cup \overline{O}) \iff \psi_{Q_2} = \psi_E + \overline{\psi_O}$ = $X \cap (E \cup \overline{O})$ = $E \cup \overline{O}$

 $\mathrm{HS}\ 2021$

1.2 Specification composition

- a) The specification for C1, C2 and C3 are the following:
 - C1 $\psi_{C1} = (x_1 + x_2 + x_3)x_s + \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3} = x_s + \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3}$ C2 $\psi_{C2} = x_1 \cdot \overline{x_2} \cdot \overline{x_3} + \overline{x_1} \cdot x_2 \cdot \overline{x_3} + \overline{x_1} \cdot \overline{x_2} \cdot x_3 + \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3}$ C3 $\psi_{C3} = x_b \cdot x_s \cdot \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3} + \overline{x_b} = x_s \cdot \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3} + \overline{x_b}$
- b) The specification consists in satisfying all constraints at all times:

 $\psi_N = \psi_{C1} \cdot \psi_{C2} \cdot \psi_{C3}$

2 Binary Decision Diagrams

2.1 Verification using BDDs

- **a)** $f_2: y = \overline{\overline{x_1 + x_2 + x_3} + \overline{x_1 + \overline{x_2} + \overline{x_3}} + \overline{\overline{x_1} + \overline{x_2} + x_3}}$
- **b)** for f_1 , we have
 - case $x_1 = 0$: $y_{|x_1=0} = \overline{x_2}x_3 + x_2\overline{x_3}$
 - case $x_2 = 0$: $y_{|x_1=0,x_2=0} = x_3$ - case $x_2 = 1$: $y_{|x_1=0,x_2=1} = \overline{x_3}$
 - case $x_1 = 1$: $y_{|x_1=1} = \overline{x_2} + x_3 + \overline{x_2}x_3$
 - case $x_2 = 0$: $y_{|x_1=1,x_2=0} = 1$ - case $x_2 = 1$:

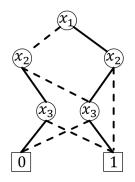
$$y_{|x_1=1,x_2=1} = x_3$$

for f_2 , we have

• case $x_1 = 0$: $y_{|x_1=0} = \overline{x_2 + x_3} + \overline{\overline{x_2} + \overline{x_3}}$ - case $x_2 = 0$: $y_{|x_1=0,x_2=0} = \overline{x_3} + \overline{1 + \overline{x_3}} = x_3$ - case $x_2 = 1$: $y_{|x_1=0,x_2=1} = \overline{1 + \overline{x_3}} = \overline{x_3}$

• case
$$x_1 = 1$$
:
 $y_{|x_1=1} = \overline{1} + \overline{1} + \overline{x_2} + x_3 = \overline{x_2} + x_3$
- case $x_2 = 0$:
 $y_{|x_1=1,x_2=0} = 1$
- case $x_2 = 1$:
 $y_{|x_1=1,x_2=1} = x_3$

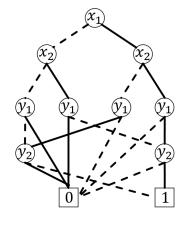
both robdds have the same falls. they are equivalent.



2.2 bdds with respect to different orderings

a)
$$g = x_1 \left\{ x_2 \left[y_1(y_2) + \overline{y_1}(0) \right] + \overline{x_2} \left[y_1(\overline{y_2}) + \overline{y_1}(0) \right] \right\} + \overline{x_1} \left\{ x_2 \left[y_1(0) + \overline{y_1}(y_2) \right] + \overline{x_2} \left[y_1(0) + \overline{y_1}(\overline{y_2}) \right] \right\}$$

b) The ROBDD for g is the following:



c) with the new ordering π' , the boole-shannon decomposition becomes

$$g = x_1 \Big\{ y_1 \big[x_2(y_2) + \overline{x_2}(\overline{y_2}) \big] + \overline{y_1}[0] \Big\} + \overline{x_1} \Big\{ y_1[0] + \overline{y_1} \big[x_2(y_2) + \overline{x_2}(\overline{y_2}) \big] \Big\}.$$

This is a better ordering as it leads to a robdd with fewer nodes as with π (6 instead of 9).

