1

Chapter 7
Computability

Computability was pioneered by Alan Turing and Kurt Godel. Turing probably
committed suicide by eating an apple he poisoned with cyanide. Gddel on the
other hand had an obsessive fear of being poisoned with food; when his wife
was hospitalized, he refused to eat, and eventually starved to death. Now it’s
your turn to study this intoxicating subject.

7.1 Undecidability

In the previous chapters, we have analyzed various computational tasks. While
some functions were easy to compute efficiently, others were difficult; in these
cases, we have focused on approximations or heuristics. However, given enough
time and resources, could we always find the solution to a problem?

Problem 7.1 (Halting problem). Given a program P and an input x to P,
does P(x) halt (stop running) after a finite amount of time?

Remarks:

e Can we write a Python program that solves Problem 7.17 Somewhat
surprisingly, the input of our program is also a program (plus an input
parameter of this program).

Naturally, we must somehow encode the input program. There are
various ways to do this. We can, for example, consider the whole code
of the program as a long string of text, encoding each character in this
string with a byte.

The halting problem is sometimes easy to solve, for example, in case
of the simple programs in Algorithm 7.2. But is it always?

def Pi(z):
print("Hello, world!")
return

7.1. UNDECIDABILITY 151

def Py(z):
x =1
while x > O:
x += 1

return

Algorithm 7.2: Example programs; P; is halting, P is not.

Definition 7.3 (Undecidable). We say that a problem is undecidable if no
algorithm solves the problem in finite time for every possible finite input.

Remarks:

e This should be surprising! Definition 7.3 does not say that the runtime
increase will be exponential or even double exponential in the input
size, but that the problem really cannot be solved in any finite amount
of time.

Theorem 7.4. The halting problem is undecidable.
Proof. Assume for the sake of contradiction that there exists a program Py (P, x)

that solves the halting problem in finite time for any input. We design a new
program Pr(x) that takes a bitstring as an input and calls Py as a subroutine:

def Pr(z):
if Py(z,z) == True:
while True: pass #loop forever

else: return

Algorithm 7.5: Test program Pr(z).

Pr interprets its input z as a program encoding, and calls the halting solution
Py on program z with input z. Since we assumed that Py can always solve
this problem in finite time, Line 2 is evaluated in finite time for any

Since Pr is also a program, it has a bitstring encoding 7 according to our
encoding scheme. What happens when we call Pr(7)? Note that this means
that we are calling Py (7, 7) as a subroutine, i.e., querying whether the program
described by 7 (that is, Pr) halts on input 7.

o If Py(7,7) is true, then Pr goes in to an infinite loop according to our
code, and never halts. Hence Py (7,7) should be false instead!

o If Py (7, 7) is false, then Pr immediately terminates according to our code,
so Py (7,7) should be true!

We get a contradiction in both cases, so the halting problem is undecidable. [

152 CHAPTER 7. COMPUTABILITY

Remarks:

o We assumed that the encodings of a program and its input are simply
bitstrings. This is also close to practice. What if a bitstring is an
invalid program, not respecting the syntax of programs? We could
argue that in this case, the program simply halts (with an error).

Of course Theorem 7.4 only holds in general: we cannot solve the
halting problem correctly in finite time for every algorithm-input pair.
Some specific algorithm-input pairs, e.g. the simple examples in Al-
gorithm 7.2, can be decided easily.

Also, a program P that actually halts is easy as well: we just run/sim-
ulate P, which will eventually halt. The halting problem is only un-
decidable because of programs P that do not halt. In this case it is
difficult to distinguish if P is still running because it did not reach the
halting point yet, or because it is never going to halt.

e There is a name for this weaker kind of decidability that is only re-
quired to work in one of the two cases (unlike our original concept of
decidability in Definition 2.3).

Definition 7.6 (Semi-decidable). We say that a problem is semi-decidable if
there exists an algorithm A such that

e if the answer is True, then A oulpuls True in finite lime,

o if the answer is False, then A either outputs False in finite time or keeps
running indefinitely.

Theorem 7.7. The halting problem is semi-decidable.

Remarks:

o Given the undecidability of halting, is there an easy way to show that
some other problems are also undecidable? Yes, we can use reductions
again (Definition 2.6). Given a problem II, we can show that if IT was
decidable, then the halting problem would also be decidable. This im-
plies that IT is also undecidable. One slight difference from Definition
2.6, however, is that for this argument, we do not need the reductions
to run in polynomial time.

e Here is an example for such a reduction.

Problem 7.8 (Mortality problem). Given a program P, is it true that P(x)
halts for any possible input x?

Remarks:

e This is different from the halting problem, but only so much: instead
of a specific input, we now want to know if P halts on every input.

Theorem 7.9. The mortality problem is undecidable.

7.2. THE TURING MACHINE 153

Proof. Assume that we have a program Py, that takes a program description
as an input, and solves the mortality problem in finite time. Then given a
specific input for the halting problem (a program P and an input z), consider
the following program:

def Pr(y):
S8R ==
run program P(z)
else:
return

Algorithm 7.10: Another testing program.

Now let us run our mortality solution Py on the encoding of Pp. We know
that Pr certainly terminates in finite time for any input different from . This
implies that Py;(Pr) is true if and only if P(z) halts; hence a solution for the
mortality problem allows us to solve the halting problem on P and z. Since
halting is undecidable, such a solution cannot exist, so we have a contradiction.

[}

Remarks:

e Well, that was not so surprising; after all, mortality is a close relative
of the halting problem.

e How about problems that are a far cry from halting? We need a clean
and simple theoretical definition of what we mean by a program, al-
gorithm or function. Let us make a brief detour into abstract machine
models and computation theory.

Definition 7.11 (Model of Computation). A model of computation defines the
rules how an output of a mathematical function is computed from a given input.

7.2 The Turing Machine

What kind of building blocks do we need to obtain a simple theoretical model
of a machine that can, intuitively speaking, do the same computations as a real
computer?

Remarks:

e First we need some abstract states that represent the current state of
our program, and we need to describe the transitions between these
states. Such a set of states with predefined transition rules is known
as a finite automaton.

We also need some memory to store data. We usually assume that a
memory consists of cells; our program can read data from these cells,
write data into these cells, and move between these cells to be able
to access any of them. We will now consider a tape of cells that is
infinite in both directions, i.e. the cells can be enumerated by integers
w0y —2,-1,0,1,2, ... (from —o0 to o0).

154 CHAPTER 7. COMPUTABILITY

o We also have a tape pointer that points to a specific tape cell at each
point in time, indicating that this is the tape cell that we can currently
read/write. Initially the tape pointer points to cell 0.

‘What kind of data can we write onto this tape? We assume that
we have an alphabet ¥ of possible symbols, and we can write exactly
one symbol into each cell. In the simplest case, this alphabet can be
binary, i.e. ¥ = {0,1}. We usually use some extra symbol, e.g. L for
the cells that we consider empty, and we use ¥ := X U {L}.

These building blocks define a famous theoretical model of computa-
tion.

Definition 7.12 (Turing Machine or TM). A Turing Machine has a finite set
of states S, and a two-way infinite tape. Initially the machine is in a specified
starting state sy € S, the tape has some symbols on it (the input), and the tape
pointer points to cell 0 of the tape.

In each discrete time step, depending on the current state s and the current
tape cell content o, the machine executes the following steps:

e change to another state s' € S,

e write the tape, i.e. change the content o of the current tape cell to any
symbol o' € 2,

e possibly move the tape pointer one step to the left or one step to the right.

Formally a TM is defined by a function T : (S,%) — (S,X,m), where m €
{left, right, stay} indicates the movement of the tape pointer.

With a TM we usually also select a specific halting (accepting) state s;, € S.
We say that the TM accepts an input if, when executed on this input, the TM
eventually enters state sy,.

Remarks:

e We assume that computation is over whenever the halting state s,
is reached: the machine does not do anything (i.e. never changes the
state/tape content/tape pointer) after this point, and the current tape
content is considered to be the output of the computation.

‘While a TM acts as a model of computation, we can also interpret it
as a function: it converts an input (the initial content of the tape) to
an output (final content of the tape).

However, the function is not complete: for some inputs, the output
may be undefined, since just like a Python program, a TM can easily
run forever and never halt.

How can we do actual computations in this abstract setting? Let us
see an example for a simple operation: incrementing an integer.

Example 7.13 (Incrementation with a TM). Given a positive integer input x,
our task is to increment x by 1. We assume that the input x is given in a binary
representation, starting with least significant bit (LSB) first at cell 0, and going
until cell [log, z|. The tape pointer starts at cell 0, and empty cells of the tape
are marked with a 1.

7.2. THE TURING MACHINE 155

Lemma 7.14. Ezample 7.13 can be solved on a simple TM with 2 states.

Proof. The formal process of incrementing a binary number is as follows. We
start going from the LSB to the most significant bit (MSB) until we encounter
a 0, and we change every 1 to a 0 during the process. When we first find a 0,
we change it to a 1 (or if we have left the MSB, we add an extra 1 to the front),
and the incrementation is done. We have to translate this process to states and
transitions.

This can be done with two states sp and sj,. The starting state is sg, this is
where the execution begins; s;, is a halting state where none of the transitions
do anything. The transitions from sj are defined as follows:

Transitions from state sg

Read Write Pointer Next state
1 — 0 right S0
OQorl — 1 stay Sh

This ensures that the machine enters the halting state exactly when the
incrementation is finished, i.e. when the tape contains z + 1 in the same binary
representation. [}

Remarks:

e Describing a TM for more complex computations can be some work,
since it usually requires a higher number of states and transitions.
Even in case of our incrementation example, if the number is in a
reversed representation (i.e. starting with MSB), we already need
an extra state to first move to the end of the input and then start
processing the input from the other direction.

The definition of the halting problem on TMs is as follows: given
a description of a TM and an input (initial tape content), decide
if this TM ever goes into the halting state. Note that this is only a
reformulation of our original halting problem, so the same proof shows
that this problem is undecidable.

There also various other versions of TMs, e.g. a TM that has multiple
tapes, and it can read/write these tapes simultaneously in every step.
One can show that this is equivalent to the single-tape setting in terms
of computability.

There is one important concept in computation that this basic machine
model cannot capture: randomization. In order to model that, we
need to slightly extend the machine model.

Definition 7.15 (Randomized TM or RTM). In a Randomized Turing Ma-
chine, each transition is replaced by a set of available transitions, and a proba-
bility distribution over these transitions. In each step, a transition is chosen at
random according to this probability distribution.

156 CHAPTER 7. COMPUTABILITY

Remarks:

e For example, a program on an RTM might have a state where it
moves left on the tape with 50% probability, and moves right with
50% probability.

Another formulation of RTMs is to take a deterministic TM, and
add an extra tape of infinite random bits to the machine. The TM
then reads bits from this extra tape, and (possibly) executes different
transitions based on the next random bit.

Randomness is a useful tool. However, strictly speaking, randomness
does not increase the power of the machine in terms of computability.
If we can solve a decision problem II on an RTM in finite time, then
we can also solve IT on a regular TM, by enumerating and simulating
all the possible randomized outcomes. Note that this might increase
the running time drastically.

Our argument uses an important assumption: that we can use a TM
to simulate the execution of another TM. We also need this property
when expressing the proof of Theorem 7.4 in a TM-based context.

o Luckily, this is possible:

Theorem 7.16 (Universal TM). There exists a Universal Turing Machine
which receives the encoding of another TM T (i.e., a program encoded as a
string) and an input x to T on its tape, and simulates the behavior of T on x.

Remarks:

e This is somewhat similar to a real-world Von Neumann computer ar-
chitecture, where source code, constants and inputs of a computation
are stored in the same memory.

So how close are TMs to real computers? The fact that our program
moves between a finite number of states is pretty realistic. What is
unusual, however, is that we can only move in memory one step at a
time.

e More realistic machine models do exist:

Definition 7.17 (RAM Machine). A RAM Machine is a model of computation
that has explicit registers (instead of only cells) which can store integer values.
The machine is capable of addressing these registers indirectly through pointers
(instead of moving only sequentially between them,).

Remarks:

e While RAM machines seem more expressive, they are in fact equiva-
lent to TMs: any program on a RAM machine can also be simulated
on a TM.

e Since TMs are simpler, we usually stick to TMs. We say that a prob-
lem II is computable if a TM can compute II. This means that we
can essentially use TMs to define the general notion of an algorithm.

7.3. COMPUTING ON GRIDS 157

Theorem 7.18 (Church-Turing Thesis). Any real-world algorithm or compu-
tation can be translated into an equivalent computation on a TM.

Remarks:

e Intuitively, we can imagine an algorithm as a computation we can do
with pen and paper, using a finite set of rules. This describes both
our notion of real-world programs and the set of computations that
are doable on a TM.

The term Church-Turing thesis is often used differently in different
contexts. The version shown above is a slightly informal phrasing,
relating TMs to real-world computations. Sometimes the Church-
Turing thesis is not considered as a theorem, but rather as a definition
of the term algorithm.

The Church-Turing Thesis allows us to classify models of computation:
we consider a model “complete” if it can be used to run any algorithm
according to this definition.

Definition 7.19 (Turing-complete). We say that a model of computation is
Turing-complete if it can simulate any TM.
Remarks:

e Naturally, TMs are Turing-complete. And so are RAM-machines,
RNNs (Definition 6.25), and all popular programming languages, e.g.
Python, C++ or Java.

‘While a futuristic quantum computer surely is an impressive vision,
it only allows us speed up the computation of problems. As such,
quantum computers are also not “more” than Turing-complete: they
can solve the same computational problems as a (Randomized) TM.
In fact, there is no known computational model that can compute
more than a TM!

It is also not so easy to think of reasonable computational models
that can execute a smaller subclass of computations than TMs. Some
examples for such models are finite automata (essentially TMs without
tape) or regular expressions.

How about very different models that do not look anything like com-
puters or programming languages? Can we also use them to do com-
putations?

7.3 Computing on Grids

Definition 7.20 (Tile). A tile is a 1x 1 square. Each tile has a color, and each
side of the tile (left, top, right, and bottom) has a specific code (e.g., a letter or
a number). We assume that we are not allowed to rotate or flip tiles.

Definition 7.21 (Correct Tiling). Two tiles can be placed neat to each other if
their touching side has the same code. E.g., if tile t; has code A on its top and
tile ty has code A on its bottom, then we can place ty directly above t,.

158 CHAPTER 7. COMPUTABILITY

1

Figure 7.22: Example of a tile set consisting of two 2 tiles that tile the infinite
plane in a chessboard pattern

Remarks:

e Our goal is to tile a given pattern (e.g., a chessboard) or shape (e.g.,
a 4 x 5 rectangle) with a set of tiles such that the tiling is correct.

Problem 7.23 (Tiling). Assume we are given a set of n tiles, and we can take
an arbitrary number of copies of each of these tiles. Does there exist a correct
tiling of the entire infinite plane with our given set of tiles?

Remarks:

e At first glance, this problem seems to have no connection to TMs or
the halting problem.

e The most simple correct tiling one can imagine is a periodic tiling,
when the same pattern of tiles keep repeating.

Definition 7.24 (Periodic Tiling). We say that a tiling of the plane is periodic
if there exist positive integers w, h such that for every pair of coordinatesi,j € Z,
grid square (i,j) has the same tile as grid squares (i +w,j) and (i,j + h).

Remarks:

e In a periodic tiling, we tile a w x h rectangle R such that the tiling
within rectangle R is correct, and it is also correct to place two such
rectangles R next to each other top/bottom or left/right. Then we
can cover the entire plane with copies of R.

Lemma 7.25. If we know that a periodic tiling exists, we can find it in finite
time.

Proof. We take every possible rectangle size w x h, in an increasing ordering
according to the sum w + h: first 1 x 1, then 1 x 2 and 2 x 1, then 1 x 3,2 x 2
and 3 x 1, and so on. For each such size, we can try all possible tilings in each
of these rectangles, and check their correctness.

If there exists a periodic tiling with a rectangle of size w x h, then we try
at most (w + h) total sizes, and thus at most (w + h)? rectangle shapes before
reaching w x h. Each such shape has at most nlw+h)? possible tilings. Since
(w+ h)?* - n(@+M?* is a finite number, the algorithm indeed terminates in finite
time. O

7.3. COMPUTING ON GRIDS 159

Remarks:

e Unfortunately, this does not answer the question whether the tiling
problem is decidable in general. There are sets of tiles where a tiling of
the entire plane is possible, but only in a fashion that is not periodic.

e To settle the question of decidability, we show that these tilings are
in fact a surprisingly expressive model: we can use them to simulate
any TM. This property will allow a reduction to the halting problem.

1ot

Theorem 7.26. Some tile sets are Turing-complete: tilings can simulate the
run of any TM on any input x.

Proof. To outline the main idea of the proof, we will assume a slightly simpler
setting: that we only need to tile the bottom half of the plane, i.e. below the
origin. This is only for convenience; with further tricks, the same proof method
can be extended to the entire plane.

The main idea of the proof is that each row describes the complete state
of the tape of a TM in a specific time step, with the top row corresponding to
time step 0, the row immediately below corresponding to time step 1, and so
on. We can design the tiles carefully such that given a specific row (i.e. current
configuration of the TM), the only possible tiling of the row directly below is
the next configuration of the TM. For simplicity, we assume all tiles have no
color.

For each tape symbol o, we can create a tile that has code ¢ on top and
bottom, and a special empty code on the left and right. This already allows us
to automatically copy the content of the tape into the row below. Furthermore,
we use special tiles to keep track of the tape pointer and the current state: the
tape cell with the pointer will also be marked with the current state. If, for
example, we have a transition from state ¢, to go that also replaces a 0 by a
1 on the tape and moves the tape pointer one step to the right, then we can
describe this behavior with the tiles shown in Figure 7.27.

(q1,0) o

q2 q2

1 (q2,0)

Figure 7.27: Example tiles to simulate a transition of the TM.

The number of tiles we require altogether is only a function of the tape
alphabet size and the number of states and transitions in the TM, and thus it
is a finite number. By defining some special tiles for the first row, one can also
ensure that the only possible tiling of the first row is to have the input x on the
tape, the tape pointer at position 0 and the TM in its initial state so (note that
this is a significant technical step that we do not discuss here).

With such a set of tiles, if the TM halts on z in k steps, then this allows us
to tile the first k rows of the plane, and then no tiling will be possible for the

160 CHAPTER 7. COMPUTABILITY

(k1) row (since there is no following configuration of the TM). On the other
hand, if the TM runs forever, then there is always a next configuration, so the
tile set allows us to tile the entire lower half of the plane. O

Remarks:
e So we can do actual computations with a set of tiles!
Theorem 7.28. The tiling problem is undecidable.

Proof. Consider an instance of the halting problem with TM 7" and input 2. As
we have seen in Theorem 7.26, we can create a set of tiles that correspond to
running 7' on z, and a tiling with this set is possible if and only if 7" does not
halt on z. Thus solving this tiling problem allows us to decide whether 7" halts
on x; however, the halting problem is undecidable, so the tiling problem must
be undecidable, too. O

Remarks:

e There are other models of computation that work on grids. A popular
example is Game of Life.

Definition 7.29 (Game of Life or GoL). In Game of Life, each cell has two
states, black (alive) and white (dead), and the update rule is as follows:

o If the cell is black: if it has exactly 2 or 3 black neighbors among its 8
neighboring cells, it remains black, otherwise it becomes white.

o If the cell is white: if it has exactly 3 black neighbors among its 8 neigh-
boring cells, it becomes black, otherwise it remains white.

Remarks:

e These simple rules create a surprisingly wide range of patterns. There
are stable configurations which keep their shape without changing;
there are oscillators that keep repeating a few specific configurations
periodically; there are “gliders” that exhibit a similar periodicity but
also slowly move through the grid in the meantime. There are more
complex patterns that repeatedly create smaller oscillators or gliders.

These constructions can then be used to form gadgets on a higher
abstraction level: we can create logical AND and OR gates, and ulti-
mately a finite automaton. These tools then allow us to simulate the
behavior of a TM in GoL, similarly to the tiles before.

Theorem 7.30. Game of Life is Turing-complete.

Remarks:

e As a result, we can also formulate some undecidable problems in this
model.

Problem 7.31 (GoL Reachability). Given an initial configuration c, the task
is to decide if another configuration ¢’ will ever occur.

Theorem 7.32. GoL Reachability is undecidable.

7.4. POST CORRESPONDENCE PROBLEM 161

Remarks:

e GoL is a in fact a special case of a widespread model of computation
on grids called Cellular Automaton.

Definition 7.33 (Cellular Automaton or CA). A Cellular Automaton cc 5
of a (two-dimensional) grid of cells, where each cell is in a specific state. In each
iteration, every cell (concurrently and independently) changes its state based on
the current states of the cells in its immediate neighborhood.

Remarks:

o If we denote the set of states by S, then a CA is essentially described
by a function f: S x S¥ — S (with N denoting the size of the neigh-
borhood). Each cell executes this function in each round to obtain
the state in the next round.

Since GoL is a special case of Cellular Automata, CAs in general are
also Turing-complete.

CAs can model various processes in natural sciences, ranging from
Physics to Biology, with the cells of the automaton representing any-
thing from chemical molecules to actual (biological) cells.

There are many other areas (beyond halting and grids) where we can
find undecidable problems. To mention another surprising example:
Given a couple of k& x k matrices with integer entries, it is undecidable
if they can be multiplied in some order, possibly with repetitions, such
that we obtain the zero matrix as a result.

7.4 Post Correspondence Problem

Finally, we discuss some variants of the so-called Post Correspondence Problem.
This problem is an interesting conclusion to our whole lecture: it demonstrates
that seemingly similar problems can easily have a completely different complex-
ity.

Problem 7.34 (PCP). We have a set of dominoes, where each domino (v, 3)
has two words written on the domino: one word a on the top, and one word 3 on
the bottom. Can we make a sequence of these dominoes, possibly with repetitions,
such that the concatenation of words on top is the same as the concatenation of
words on the bottom?

Remarks:

e Given a finite alphabet of symbols X, a word is a finite string formed
from these letters, possibly with repetitions. A concatenation of words
v, @, ... is the word obtained by writing these words after each other
in this order.

Theorem 7.36. PCP is undecidable.

162 CHAPTER 7. COMPUTABILITY
caa b b da
c a a bbda

Figure 7.35: Example solution of a PCP: both the top and the bottom string is
caabbda. The sequence consists of 4 dominoes, using one of the dominoes twice.

Proof. The proof is quite technical, so we only outline the main idea. Similarly
to tiles, we can use dominoes to simulate the running of a TM. The concatenated
string will describe the history of the run of the TM as a list of subsequent
configurations. The bottom string is always “one step ahead” the top string
in this computation; thus by defining an appropriate domino for each possible
transition in the TM, we can ensure that the next configuration is always a valid
follow-up to the current configuration. If the TM reaches a terminal state, then
some extra dominoes ensure that the top string can catch up to the bottom
string; this way the two strings become identical, and thus we have a valid
sequence of dominoes that solves the PCP problem.

Since such a PCP solution exists if and only if the TM halts. Since the
halting problem is undecidable, the PCP problem is also undecidable. O

Remarks:

e However, there is a simple algorithm that terminates in finite time if
the answer is yes.

Theorem 7.37. PCP is semi-decidable.

Proof. We can enumerate all possible domino sequences based on their length
in increasing order. Then if there exists a solution with a domino sequence of
length k for some finite number k, then until reaching this sequence, we check
at most

n+n’+..+nf<k-nf

possible sequences. Since each such check takes at most O(k) time, we can find
the solution in finite time. [m]

Remarks:

e The PCP problem is often used in reductions when analyzing problems
related to formal languages.

e In terms of the number of dominoes used, the best known method to
simulate a TM requires 5 different dominoes. This shows that if we
have the correct 5 dominoes, then the problem is undecidable. How-
ever, what happens if we restrict the problem to less than 5 dominoes?

7.4. POST CORRESPONDENCE PROBLEM 163

Theorem 7.38. With only 1 domino, the PCP problem is decidable in polyno-
mial time.

Proof. In this case, any sequence consists of a specific number of repetitions of
our single domino. In this case, the top and bottom strings are only identical
if our single domino has the same word on the top and bottom side (and in
this case, a single instance of the domino already provides a solution). We can
easily check this in linear time: we only need to read the two words and compare
them.]

Theorem 7.39. With only 2 dominoes, the PCP problem is decidable.

Proof. The proof of this claim is quite involved, so we do not discuss it here. [

Remarks:

e With 3 or 4 dominoes, it is still an open question whether PCP is
undecidable or not.

e Another possible modification is to restrict the size of the alphabet.
More specifically we need an alphabet of at least |X| > 2 letters for un-
decidability. If ¥ only consists of a single character, then the problem
becomes decidable.

Theorem 7.40. PCP with || =1 is solvable in polynomial time.

Proof. In this case, we only need to make sure that the top and bottom words
have the same length, i.e. the same number of occurrences of our single char-
acter. This means that for each available domino, we only need to consider
the difference of length between the top and bottom words, which gives us a
(not necessarily positive) integer. The task then reduces to analyzing this set
of integers, and selecting a subset of them (with possible repetitions) that sums
up to 0.

Solving this is rather easy in polynomial time. If one of the integers is 0,
then this already forms a valid sequence on its own. If not, then we need to
check if there is at least one positive number z; > 0 and at least one negative
number x; < 0 among our integers: then a sequence consisting of a; copies of
the number 2; and |z;| copies of the number z; also sums up to 0. Otherwise,
all the numbers are positive (or negative); in this case, the sum of any sequence
is also positive (or negative, respectively).

Remarks:

e For another variant, we can also restrict the size of the allowed domino
sequence.

Problem 7.41 (Bounded PCP). In Bounded PCP, the input also contains an
integer k, and we only accept domino sequences that have length at most k.

Theorem 7.42. Bounded PCP is decidable but NP-hard.

Proof. With n dominoes, we only have n* possible domino sequences. By enu-
merating and checking all these possibilities, the problem is clearly decidable in
finite time.

The proof of NP-hardness can be shown through a reduction from the longest
common substring problem; we do not discuss it here. O

164 BIBLIOGRAPHY

Chapter Notes

The Turing Machine was developed by Alan Turing in 1936, long before the
invention of modern day computers [15]. Turing has specifically defined the
model in order to study the halting problem, and prove its incomputability.
The halting problem (and its different variants) has kept its central place in
the area; the majority of known incomputability results are shown through a
reduction that comes either directly or indirectly from this problem.

A very similar line of thought and proof technique to the halting problem’s
incomputability has also appeared in the work of Kurt Gédel, who was studying
incompleteness theorems and the axiomatization of natural numbers at about
the same time [13]. The general message of these two results has caused a large
surprise (even shock) in the scientific community, where the general belief (based
on Hilbert’s conjectures) was that, intuitively speaking, every well-defined ques-
tion can be answered. The results have shown that this is not the case, which
has far-reaching philosophical consequences.

The Turing Machine has also remained the fundamental model to study
computations ever since. The closely related concepts (e.g. Universal Turing
Machine, Turing-completeness, or different formulations of the Church-Turing
thesis) have been gradually developed and refined in the following decades. This
rapidly developing area was studied by some of the most important mathemati-
cians of the 20th century, including John von Neumann, Alonzo Church or
Stephen Kleene.

The tiling problem was first discussed by Wang in 1961 [16]. However, in
his first work, Wang conjectured that whenever a tiling exists, a periodic tiling
also exists. A few years later his student Berger showed that some tile sets
only allow an aperiodic tiling, and that the problem is undecidable due to its
connection to the halting problem [3].

Game of Life was devised by John Conway in 1970 [8], and has been analyzed
in numerous papers and books since then [2]. There are many simulators online
where you can create different patterns and follow their development through
the rounds [1].

As for Cellular Automata in general, there is an immense literature dis-
cussing different aspects of the topic. Different variants of automata have been
used in a very wide range of applications, e.g. generating pseudo-random num-
bers in computer science [14], modeling the crystallization of snowflakes [4],
modeling the geometric patterns on seashells [6] or modeling the flow of traffic
on the freeway [10].

The PCP problem was introduced by Emil Post in 1946 [12]. A long line of
works have followed that tried to reduce the number of dominoes required for
undecidability, going down to set of 7 dominoes in 1996 [9], and then finally 5
tiles in the work of Neary in 2015 [11]. The decidability for 2 dominoes was
proven by Ehrenfeucht, Karhuméki and Rozenberg [7], while the NP-hardness
of Bounded PCP was first discussed in [5].

This chapter was written in collaboration with P4l Andrds Papp.

Bibliography

[1] John Conway’s Game of Life Online. https://playgameoflife.com.

BIBLIOGRAPHY 165

[2] Andrew Adamatzky. Game of life cellular automata, volume 1. Springer,
2010.

[3] Robert Berger. The undecidability of the domino problem. Number 66.
American Mathematical Soc., 1966.

[4] Charles D Brummitt, Hannah Delventhal, and Michael Retzlaff. Packard
snowflakes on the von neumann neighborhood. Journal of Cellular Au-
tomata, 3(1), 2008.

[5] Robert L Constable, Harry B Hunt III, and Sartaj Sahni. On the com-
putational complexity of scheme equivalence. Technical report, Cornell
University, 1974.

[6] Stephen Coombes. The geometry and pigmentation of seashells. Not-
tingham: Department of Mathematical Sciences, University of Nottingham,
2009.

[7] Andrzej Ehrenfeucht, Juhani Karhumiki, and Grzegorz Rozenberg. The
(generalized) post correspondence problem with lists consisting of two
words is decidable. Theoretical Computer Science, 21(2):119-144, 1982.

[8] Martin Gardner. Mathematical games: The fantastic combinations of john
conway’s new solitaire game “life”. Scientific American, 223(4):120-123,
1970.

[9] Yuri Matiyasevich and Geraud Senizergues. Decision problems for semi-

thue systems with a few rules. In Proceedings 11th Annual IEEE Symposium
on Logic in Computer Science, pages 523-531. IEEE, 1996.

[10] Kai Nagel and Michael Schreckenberg. A cellular automaton model for
freeway traffic. Journal de physique I, 2(12):2221-2229, 1992.

¥

Turlough Neary. Undecidability in Binary Tag Systems and the Post Cor-
respondence Problem for Five Pairs of Words. In 32nd International Sym-
posium on Theoretical Aspects of Computer Science (STACS), volume 30
of LIPIcs, pages 649-661, Dagstuhl, Germany, 2015.

[12] Emil L Post. A variant of a recursively unsolvable problem. Bulletin of the
American Mathematical Society, 52(4):264-268, 1946.

[13] Panu Raatikainen. Gédel’s Incompleteness Theorems. In The Stanford En-
cyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,
winter 2020 edition, 2020.

[14] Marco Tomassini, Moshe Sipper, and Mathieu Perrenoud. On the genera-
tion of high-quality random numbers by two-dimensional cellular automata.
IEEE Transactions on computers, 49(10):1146-1151, 2000.

[15] Alan Mathison Turing. On computable numbers, with an application to
the entscheidungsproblem. Proceedings of the London mathematical society,
2(1):230-265, 1937.

[16] Hao Wang. Proving theorems by pattern recognition—ii. Bell system tech-
nical journal, 40(1):1-41, 1961.

