
Chapter 5

Machine Learning

So far, we told the computer exactly what to do: every problem was solved by
a specific algorithm. However, in the real world, we might have to deal with
messy data in order to understand its underlying function. In other words, it
may be difficult to separate function from noise. Maybe a computer can do part
of the job, and learn some of the parameters of a function? Welcome to machine
learning!

5.1 Linear Regression

Definition 5.1 (Dataset, Input, Output). A dataset D is a set of n tu-
ples (x, y) sampled from an unknown function

f : x �→ y

We call x ∈ X an input and y ∈ Y the corresponding output of f .

Remarks:

• We want to learn a function f̂ such that f̂(x) ≈ f(x).

• Since we learn f̂ from the dataset D, we may write f̂D.

• For example, if the dataset consists of points on a line, we choose
f̂(x) = w1x+ w0 and determine the parameters wi ∈ R.

• If the points in D do not line up perfectly, a linear approximation → notebook

function f̂ will have some error. Even if f is truly linear, there can still
be some random noise that introduces error, e.g., some measurement
error.

Definition 5.2 (Approximation Error). The approximation error Err(x)

denotes the deviation of f̂ from the unknown function f at some input x:

Err(x) = f(x)− f̂(x).

102

5.1. LINEAR REGRESSION 103

Remarks:

• For our linear function this amounts to Err(x) = y − (w1x+ w0).

• We want to minimize this error over the entire dataset D. Hence, we
choose f̂ according to an objective function as follows.

Definition 5.3 (Squared Error Loss). The loss function is used to determine
the real-valued parameters w = (w0, w1, ...)

T according to the dataset D. There
are several options, the most common being the squared error loss function:

L(f̂ , D) =
∑

(x,y)∈D

Err(x)2.

Remarks:

• By squaring the error, we ensure each term is positive. Squaring also
weighs large errors more highly.

• Another natural choice for a loss function is the absolute error: → notebook

Labs(f̂ , D) =
∑

(x,y)∈D

|Err(x)|.

• However, the squared error loss is often preferred as it has both a
closed-form solution and is everywhere differentiable. How do we find
such a solution for our linear function?

Lemma 5.4. Let x̄ = 1
n

∑
D x and ȳ = 1

n

∑
D y be the average input and output

of the dataset D. For a linear function f̂(x) = w1x+w0, the squared error loss
is minimal for

w∗
1 =

∑
(x,y)∈D(x− x̄)(y − ȳ)∑

(x,y)∈D(x− x̄)2
, w∗

0 = ȳ − w∗
1 x̄.

We call these weights the ordinary least-square (OLS) estimates, as they
minimize the squared error loss.

Proof. For our linear function, the squared error loss amounts to

L(f̂ , D) =
∑

(x,y)∈D

(y − (w1x+ w0))
2
.

We find the minimum loss by differentiating L(f̂ , D) with respect to w:

∂L

∂w0
=

∑
(x,y)∈D

−2 (y − (w1x+ w0))
!
= 0

⇐⇒
∑

(x,y)∈D

(y − w1x− w0) = 0

⇐⇒
∑

(x,y)∈D

(y − w1x) = nw0

⇐⇒ w0 =
1

n

∑
(x,y)∈D

y − w1
1

n

∑
(x,y)∈D

x

⇐⇒ w0 = ȳ − w1x̄

104 CHAPTER 5. MACHINE LEARNING

∂L

∂w1
=

∑
(x,y)∈D

−2x (y − (w1x+ w0))
!
= 0

⇐⇒
∑

(x,y)∈D

x(y − w1x− ȳ + w1x̄) = 0

⇐⇒
∑

(x,y)∈D

x(y − ȳ) = w1

∑
(x,y)∈D

x(x− x̄).

Note that
∑

D y = nȳ =
∑

D ȳ, so
∑

D x̄(y − ȳ) = 0 and similarly we get∑
D x̄(x− x̄) = 0. After subtracting “0” from both sides, we obtain

∑
(x,y)∈D

(x− x̄)(y − ȳ) = w1

∑
(x,y)∈D

(x− x̄)(x− x̄)

⇐⇒ w1 =

∑
(x− x̄)(y − ȳ)∑

(x− x̄)2
.

Remarks:

• This also works if the input is not a single scalar x but a whole vec-
tor x. This is known as linear regression.

Definition 5.5 (Linear Regression, Features, Weights). With linear regres-

sion, we search for a function f̂ of the form

f̂(x) =
d−1∑
i=1

wixi + w0,

where the xi ∈ R are the features of the input. The parameters wi ∈ R are
called the weights and need to be determined. We can write this in vector form
as

f̂(x) = wTx,

where x = (1, x1, x2, ..., xd−1)
T with an additional 1 to incorporate the weight

w0.

Remarks:

• Let us find the weights w. In order to describe the closed-form so-
lution concisely we use matrix notation, where X is a matrix of the
input features (the so-called design matrix). X has n rows, each row
represents a feature vector x = (1, x1, x2, ..., xd−1). The outputs are
given as a vector y of length n, where each value has a corresponding
row in X.

Theorem 5.6. The ordinary least-square (OLS) estimates for the weight pa-
rameters w of a linear regression model are given by

w∗ =
(
XTX

)−1
XTy.

5.2. FEATURE MODELING 105

Proof. The squared error loss is L(f̂ , D) =
∑

(x,y)∈D

(
y −wTx

)2
which can be

rewritten in matrix form as

L(f̂ , D) = (y −Xw)T (y −Xw).

Again, we can differentiate with respect to w to find the optimal weights:

∂L

∂w
=− (

XT (y −Xw)
)T − (y −Xw)TX

!
= 0T

⇐⇒ −XT (y −Xw)−XT (y −Xw) = 0

⇐⇒ XT (y −Xw) = 0

⇐⇒ XTy =
(
XTX

)
w

⇐⇒ w = (XTX)−1XTy.

Remarks:

• We must be careful when differentiating in matrix form, as we are
differentiating sums.

• We assume in this proof that XTX is invertible. This is for example
the case when X has full column rank, but might not be the case in
general.

• We could have derived the result in Lemma 5.4 in matrix form as
well. To see that the results are the same, just expand (XTX)−1XTy.
Alternatively, if you consider the training data to be normalized (x̄ =

ȳ = 0), then w0 = 0 and w1 =
∑

xy∑
x2 = (

∑
xx)−1

∑
xy.

• What if the relation between x and y is not just linear?

5.2 Feature Modeling

Definition 5.7 (Feature). A feature of the input can be any real-valued term
depending on the input variables.

Remarks:

• Note that we previously used the feature vector x = (1, x1, x2, ..., xd−1)
T .

However, a feature can be more complex. For example, if we know in
advance that the quantity sinx1

√
x2 is a good term to approximate

f(x), then we can include this term as a feature in our linear regres-
sion model. Also splines, radial basis functions or wavelets work out
of the box.

• When modeling a problem, we often start with an “educated guess”
about which family of functions F is well-suited to model the unknown
function f . We then restrict ourselves to find the best f̂ ∈ F .

Definition 5.8 (Model). We call the family of functions F chosen to approxi-

mate f a model. The function f̂ ∈ F is found by fitting the parameters of the
model to best represent the dataset D.

106 CHAPTER 5. MACHINE LEARNING

Remarks:

• For instance, we might want to restrict f̂ ∈ F to polynomials (of → notebook

degree m), yielding

f̂(x) = w0 + w1x+ w2x
2 + w3x

3 + ...+ wmxm.

• This is called polynomial regression, even though it is just a special
case of linear regression (and is solved the same way).

• Note that the linear regression method can handle any model F , as
long as the (unknown) parameters wi are linear coefficients.

• For multi-dimensional input we can add all combinations of the vari-
ables up to the mth power. For polynomial regression with degree m

and input dimension d, this gives
((

d
m

))
=

(
d+m−1

m

)
features! E.g. for

m = 2, d = 3, we have the 6 features {1, x1, x2, x
2
1, x

2
2, x1x2}.

• What if some input variables are not continuous? For example, we
might have a categorical input variable, such as a city name. Should
we encode the city as a single variable taking values 1, 2 and 3? This
would establish an inherent ordering and scaling between the cities,
which would be unreasonable in many cases. One way to deal with
such inputs is to use so-called one-hot encoding.

Definition 5.9 (One-Hot Encoding). A one-hot encoding of a categorical
input variable taking k values is a vector representation of length k consisting
of 0’s and a single 1 indicating the corresponding category.

Remarks:

• Note that using a one-hot encoding may increase the dimension of the
model significantly as each category gets its own coefficient wj .

• See Figure 5.10 for an example.

xi

London
Budapest
Zurich
n/a

London

−→

xi1 xi2 xi3

0 1 0
1 0 0
0 0 1
0 0 0
0 1 0

Figure 5.10: One-hot encoding of a categorical variable that can take 3 values
(as well as n/a).

5.3 Generalization & Overfitting

What if we include more and more features? For instance, we can add more
input features, higher degree terms and other engineered features. Eventually
we might have more features than data points, and a linear model will be able
to fit the training data perfectly.

5.3. GENERALIZATION & OVERFITTING 107

Lemma 5.11. Given X ∈ Rn×d with d ≥ n, there is at least one solution w to
Xw = y for all y ∈ Rn, if and only if X has rank n.

Proof. This is a standard result from Linear Algebra. The proof goes along the
lines of: X has rank n ⇐⇒ there are n linearly independent columns of X,
but n linearly independent columns in Rn×d form a basis of Rn×n so (setting w
for all other columns to 0) Xw = y has a unique solution for all y ∈ Rn.

Remarks:

• For example powers of a feature, {1, xi, x
2
i , x

3
i , ...} are linearly indepen-

dent, so polynomial regression with high enough degree will always be
able to fit training data perfectly. This is called polynomial interpola-
tion.

• What is the problem with adding too many features? Overfitting.
The fitted model will not generalize well to unseen data. Ultimately,
our goal is to minimize the expected error over all possible data.

Definition 5.12 (Expected Loss). We assume all our data (including any un-
seen data) comes from some unknown distribution (x, y) ∼ P (X,Y), where X
denotes the entire input space and Y the output space. Then the expected loss
is defined as

L(f̂) = Ex,y

[
L(f̂ ,x)

]
=

∫
L(f̂ ,x) dP (x, y),

where L(f̂ ,x) is the loss incurred by f̂ at data point (x, y).

Remarks:

• Expected loss is also referred to as risk.

• Unfortunately, we cannot calculate the expected loss as we do not
know the probability distribution P . Thus we also cannot directly
minimize it.

• So far, we have instead minimized the loss on our dataset D. This is
called the empirical loss (or empirical risk).

Definition 5.13 (Empirical Loss). We estimate the expected loss by the empir-
ical loss on a dataset D, given by

L̂D(f̂) =
1

n

∑
(x,y)∈D

L(f̂ ,x).

Remarks:

• The empirical squared error loss is exactly the (normalized) total loss
from Definition 5.3.

• By the law of large numbers L̂D(f̂) → L(f̂) for any fixed f̂ almost
surely as n → ∞. Therefore the more data we have, the closer the
empirical loss will be to the expected loss and so, the closer f̂ can be
to the true function f by minimizing the empirical loss.

108 CHAPTER 5. MACHINE LEARNING

• But how do we know how well our f̂ performs on the rest of the domain
X?

• We could take the empirical loss as our estimate. Unfortunately, since
we fit our model to this data, it will inherently underestimate the
expected loss.

• We could find new data for evaluation, but we usually just have one
dataset to work with. However, we can sample a subset Dt from our
dataset D and only train our model with this subset, while reserving
the rest for evaluation.

Definition 5.14 (Train-Evaluation Split). Partitioning a dataset D into two
disjoint subsets Dt and De (typically 80% to 20%) is called a train-evaluation
split.

Remarks:

• This is also called a train-test split. For ease of notation we will stick
with evaluation.

Definition 5.15 (Training Loss, Evaluation Loss). We define the training
loss as

L̂t(f̂) =
1

|Dt|
∑

(x,y)∈Dt

L(f̂ ,x).

Similarly, we define the evaluation loss as

L̂e(f̂) =
1

|De|
∑

(x,y)∈De

L(f̂ ,x).

Remarks:

• Note that f̂ depends on the training data, so f̂ = f̂Dt
.

• We can use the evaluation dataset De to estimate how well the func-
tion f̂Dt

generalizes to new data.

Definition 5.16 (Overfitting, Underfitting). A model is overfitting when it fits → notebook

the training dataset Dt too well, learning random patterns/noise that will not be
present in new unseen data De. The model will not generalize well. Conversely,
a model is underfitting when it is not expressive enough to approximate f . A
more complex model F ′ should be tried.

Remarks:

• L̂e(w) � L̂t(w) is a clear indication of overfitting.

• See Figure 5.17 for examples of overfitting and underfitting.

5.4. BIAS-VARIANCE TRADEOFF 109

Figure 5.17: Examples of underfitting and overfitting

Remarks:

• There are several ways we can counter overfitting. We could try a
simpler model, gather more training data, or introduce regularization.

• High training and evaluation errors could be a sign of underfitting.
However, high errors could also indicate that the data is inherently
noisy/random and cannot be fitted well.

• By repeating the train-evaluation split process multiple times we can
get a more accurate evaluation of how well our model generalizes, and
whether or not it is overfitting or underfitting. This is known as cross
validation.

Definition 5.18 (Cross Validation). In k-fold cross validation, we randomly
partition D into k equal sized subsets. We train a model on the union of k − 1
of these subsets. Then we evaluate our model on the last, withheld subset. This
is repeated k times, with each subset used k−1 times as part of the training data
and once as evaluation data. This gives k evaluation scores, which are averaged
to produce a single evaluation metric.

Remarks:

• There are other types of cross validation. For example in Monte Carlo
cross validation, De is randomly sampled from D each time.

• Cross validation can also be used for model selection: We first do a
train-evaluation split and then use cross validation on the training set
Dt to select our model F . The best model is then evaluated on the as
yet unseen evaluation data.

• The mean and variance of the error across splits can tell us more about
the sources of error in our model.

5.4 Bias-Variance Tradeoff

Definition 5.19 (Bias, Variance). Bias is the expected error of a model, that
is, how much the model F deviates from the target value on average. Formally,

Bias2[F] = Ex

[
ED,w

[
y − f̂(x)

]2]
,

110 CHAPTER 5. MACHINE LEARNING

where the expectation is taken over x and D. The variance of a model is the
variance in its predictions when training on different random datasets. For-

mally, with f̄(x) = ED,w

[
f̂(x)

]
:

Var[F] = Ex,D,w

[(
f̂(x)− f̄(x)

)2
]
.

Remarks:

• If the bias is large, we know that our model F cannot approximate
f well and we should consider a more expressive model, i.e., a more
general family of functions F . If on the other hand f ∈ F , then the
bias will be zero.

• Note that random noise will not contribute to the bias. On average
(taking the expectation over D), the effects due to noise will cancel
out. The bias really only covers systematic errors because our model
is not able to match f exactly (even with the best weights). See Figure
5.20 (left).

• The variance tells us how sensitive our model is to the specific D. If
the model is very sensitive, then w and ultimately the predictions will
vary greatly depending on the dataset, in other words it will overfit.
More noise will increase the variance. See Figure 5.20 (right).

• The simplest possible model is a constant, f̂ = c. This always has
zero variance. Its predictions never change.

Figure 5.20: Fitting polynomials of increasing degree to the cosine function
within the range [−5, 5]. The first order model (left) is too simple and has
a high bias. On the other hand the 11th order model (right) is too complex
and has a high variance. The 6th order model (middle) has low bias and low
variance. In each iteration f(x) = 8 cos(x), 25 inputs were sampled uniformly
from [−7, 7] and y was calculated with additional Gaussian noise. Predictions
were then plotted on the interval [−5, 5].

Theorem 5.21 (Bias-Variance Decomposition). We can decompose the mean
squared error (MSE) of a model into its squared bias and its variance:

MSE(F) = Bias2[F] + Var[F]

5.5. REGULARIZATION 111

where the mean squared error (or expected squared error) equals:

MSE(F) = Ex,D,w

[(
y − f̂(x)

)2
]

Remarks:

• In general our dataset will not cover the whole input space and the
data will contain some noise. This means bias or variance or both will
generally be greater than zero.

• However, there is an inherent tradeoff between bias and variance. A
more complex model will be able to approximate f better, giving
lower bias. But this also allows it to fit noise better leading to higher
variance, since the noise it fits is random. On the other hand a simpler
model will generally have higher bias and lower variance.

Figure 5.22: Fitting polynomials of increasing degree to the cosine function
within the range [−5, 5]. On the left we see that as the degree (complexity) of
the model increases, the bias decreases and the variance increases. The plot on
the right shows the bias variance tradeoff frontier.

• If we have high variance, regularization is one way of reducing the
total error. Regularization focuses on decreasing the variance at the
potential expense of increasing the bias.

5.5 Regularization

How about including all the features we may possibly want, but charging a cost
for each non-zero weight wi? This should help us reduce overfitting to noise,
but still allows us to fit f well. This is what Lasso does.

Definition 5.23 (Lasso Regression). Lasso regression minimizes

min
w

⎧⎨
⎩

1

n

∑
(x,y)∈D

(y −wTx)2 + λ
d−1∑
i=0

|wi|
⎫⎬
⎭

112 CHAPTER 5. MACHINE LEARNING

Remarks:

• The regularization parameter λ weighs the parameter cost versus the
MSE loss. It is a so-called hyperparameter that can be tuned.

Definition 5.24 (Hyperparameter). A hyperparameter is a parameter that
controls the training process and whose value has to be chosen in advance.

Remarks:

• The degree m in polynomial regression was also a hyperparameter.

• Cross validation can be used for hyperparameter tuning.

• For each hyperparameter you can define a set of values. Exhaustively
iterating through all combinations of these values is called grid search.

Remarks:

• Lasso introduces bias into the regression solution by guiding the weights
to be close to zero. This can reduce variance considerably relative to
the OLS solution, see Figure 5.25.

Figure 5.25: Fitting a polynomial of high degree to a cubic function with and
without regularization. We see that variance and total error drops when regu-
larization is added.

Remarks:

• When using regularization, features should be normalized (subtract
mean, divide by standard deviation). This ensures that the coefficient
of a feature is not influenced by its magnitude.

• The target vector y should also be centered around 0, so that the
intercept w0 does not count towards the total cost.

• Ridge has the same objective, but Ridge uses the L2 norm for the cost
of the weights, whereas Lasso uses the L1 norm. In other words, we
replace |wi| with w2

i .

• Ridge has a closed form solution, just like OLS. However Lasso does
not, so we have to solve it differently, for example by gradient descent.

5.6. GRADIENT DESCENT 113

5.6 Gradient Descent

The OLS method had a closed form solution (Lemma 5.4 and Theorem 5.6),
but often we do not have a closed form solution to our optimization problem.
An alternative is to minimize the loss function using gradient based methods.
If we can calculate the gradient of the loss function with respect to the weights,
then we can perturb the weights in the right direction to decrease the loss. We
can repeat this process until reaching a minimum.

Definition 5.26 (Gradient Descent). Given a loss function L(f̂(w), D), re-
peatedly perform the update

wj := wj − α
∂

∂wj
L(f̂ , D)

simultaneously for j = 0, 1, ..., d, where hyperparameter α is the learning rate.

Remarks:

• The partial derivative tells us which weights to decrease or increase. If
∂

∂wj
L(f̂ , D) is positive, then the loss is increasing in wj , so we decrease

wj to lower the loss.

• The gradient, i.e., the vector of partial derivatives,∇L(f̂(w), D) points
in the direction of steepest ascent, with the negation pointing in the
direction of steepest descent.

• A (loss) function can have multiple minima, and gradient descent may
converge to a local minimum rather than finding the global minimum.
The minimum reached depends on the initial starting point and the
learning rate α. See Figure 5.27.

Figure 5.27: Gradient descent with different initialization points. On the (left)
the initialization is favorable and we reach the global minimum of the polynomial
loss function. However on the (right) gradient descent gets stuck in a local
minimum.

Remarks:

• The learning rate α is a hyperparameter that controls the size of each → notebook

update step. If the learning rate is too high, the algorithm might jump
beyond the optimum w; if it is too low the algorithm will be very slow
to converge. See Figure 5.28 for examples. Often a decaying learning
rate is used for efficiency at the beginning and accuracy towards the
end of training.

114 CHAPTER 5. MACHINE LEARNING

Figure 5.28: Gradient descent with different learning rates for finding the mini-
mum of a quadratic loss function. On the (left) the learning rate is very low so
convergence is slow and on the (right) the learning rate is too high so gradient
descent diverges.

Remarks:

• Gradient descent is very similar to Newton’s method for optimization,
but in Newton’s method the learning rate is not a hyperparameter,

but 1 over the second derivative of the loss function, ∂2

∂w2
j
L(f̂ , D).

Newton’s method often converges in fewer steps, but unfortunately
the second derivative is usually hard to calculate.

• Any differentiable loss function can be optimized with gradient de-
scent. If the loss function is convex (see Definition 1.28), then the
global minimum will eventually be reached (with a suitable learning
rate).

• When the training dataset is large, it is often too costly to calculate
∂

∂wj
L(f̂ , D) over the whole dataset D just to make a single update

step. In practice the training data is often shuffled and split into
minibatches Di (subsets of equal size) and

∂
∂wj

L(f̂ , Di) is used in the

update step. This is called stochastic gradient descent (SGD).

• Even though we have a closed form solution for minimizing the loss
in linear regression, let’s derive the corresponding update rule to see
how this works.

Theorem 5.29 (LMS Rule). The Least Mean Squares (LMS) update rule
for linear regression is given by

wj := wj + α
(
y −wTx

)
xj

And the batch update rule is given by

wj := wj + α
∑

(x,y)∈D

(
y −wTx

)
xj

Proof. We derive the batch update rule. Recall the squared error loss function

L(f̂ , D) = (y −Xw)T (y −Xw).

And recall from Theorem 5.6 that the derivative with respect to w is given by

∂L

∂w
= −2XT (y −Xw)

5.7. LOGISTIC REGRESSION 115

Substituting into the gradient descent formula, we get the update rule

wj := wj + 2α
(
XT (y −Xw)

)
j

= wj + 2α
∑

(x,y)∈D

(
y −wTx

)
xj

If we scale the learning rate by a half we get the LMS batch update rule. And
taking a single training sample for D we get the single update rule.

5.7 Logistic Regression

So far we have discussed how to learn a function f : x �→ y. when y ∈ R. In
this section we introduce a method for binary classification, where y is either
0 or 1, i.e., y ∈ {0, 1}. Similar to linear regression, we learn a linear function
wTx, but now we classify all samples with wTx > 0 as 1, all samples with
wTx < 0 as 0. In other words we find a hyperplane to separate the classes.
There are different approaches to do so, we present a statistically motivated
approach called logistic regression. The key idea is simple: We take the output
of the linear function and squash it into the range [0, 1]. We treat this squashed
output as a probability. The more sample x is in the direction of vector w, the
higher the probability that sample x belongs to class 1.

Definition 5.30 (Binary Logistic Regression). We want to find an approxi- → notebook

mation f̂(x) ≈ f(x) = y ∈ {0, 1}. We choose the following form for f̂ :

f̂(x) = ψ(wTx) =
1

1 + exp(−wTx)

where ψ is called the logistic or sigmoid function.

Remarks:

• The logistic function ψ squashes inputs from [−∞,∞] into the range
[0, 1]. Other functions, such as the probit link function, could be used
instead.

• f̂(x) can be seen as an estimate of the probability that y = 1. There-

fore, we usually classify x as positive (1) if f̂(x) > 0.5 and as negative

(0) if f̂(x) < 0.5.

• This defines a decision boundary ψ(wTx) = 0.5, or wTx = 0, where
everything on one side of the boundary is classified as positive and
everything on the other side as negative. Samples on the boundary can
be classified arbitrarily as positive or negative. The decision boundary
is linear in the features.

• As in linear regression, we again can add higher order features, e.g.,
x2 or sin(x), to learn non-linear decision boundaries.

• How do we find the optimal values for w? We could minimize the
linear regression squared error loss (Definition 5.3). However, this
would give predictions beyond [0, 1].

116 CHAPTER 5. MACHINE LEARNING

• Instead we apply the logistic function, interpret the output as a prob-
ability and choose the model that maximizes the likelihood of gener-
ating exactly the labels in our training data.

Definition 5.31 (Bernoulli Likelihood function).

L(w) =
∏

(x,y)∈D

P (y | x,w) =
∏

(x,1)∈D

ψ(wTx)
∏

(x,0)∈D

(1− ψ(wTx))

Remarks:

• L(w) is the probability of observing the vector of outputs y given
input data X and parameters w. Intuitively, we want to choose w
such that we maximize this probability, i.e., we want to choose the
parameter values that make our observations the most likely to occur.
This is called Maximum Likelihood Estimation (MLE).

Lemma 5.32 (Logistic Regression Loss Function or Log Loss). Assuming the
y’s in y are independent and identically distributed Bernoulli with parameters
p = f̂(x) = ψ(wTx), maximizing L(w) is equivalent to minimizing the following
loss function:

L(f̂ , D) = − 1

n

∑
(x,y)∈D

[
y log(f̂(x)) + (1− y) log(1− f̂(x))

]

Proof.

L(w) =
∏

(x,1)∈D

ψ(wTx)
∏

(x,0)∈D

(1− ψ(wTx))

=
∏

(x,y)∈D

(ψ(wTx))y(1− ψ(wTx))1−y

=
∏

(x,y)∈D

f̂(x)y(1− f̂(x))1−y

In practice we maximize the logarithm of the likelihood function because the
product simplifies to a sum, which prevents numerical problems and makes
differentiation simpler. Taking the logarithm does not change the optimal w:

logL(w) =
∑

(x,y)∈D

[
y log(f̂(x)) + (1− y) log(1− f̂(x))

]

= −n · L(f̂ , D)

Therefore argmaxw L(w) = argminw L(f̂ , D).

5.7. LOGISTIC REGRESSION 117

Remarks:

• The scaling factor n does not change the optimum w, but it aver-
ages the value of the loss across samples, hence allowing for better
comparison across models.

• If y = 1 and f̂ = 1, then L = − log(f̂) = − log(1) = 0, i.e, our classifier
is correct with perfect “confidence”, and hence the loss is zero. If on
the other hand y = 1 and f̂ = 0, then L = − log(f̂) = − log(0) ≈ ∞,
i.e., our classifier is wrong with perfect “confidence”, which incurs very
high cost. Similarly if y = 0 and f̂ = 0, then L = 0, and if y = 0 and
f̂ = 1, then L = ∞.

• Unfortunately, there is in general no closed form solution for logistic
regression. However, we can use gradient descent (Definition 5.26) to

minimize L(f̂ , D). But first we need to calculate the gradient.

Lemma 5.33 (Gradient of the Log Loss). The gradient of L(f̂ , D) from Lemma 5.32
with respect to wj is given by

∂L

∂wj
=

1

n

∑
(x,y)∈D

[
f̂(x)− y

]
· xj

Proof. First we calculate the derivative of the logistic function:

d

dz
ψ(z) =

d

dz

[
1

1 + e−z

]

=
e−z

(1 + e−z)2

=
1

1 + e−z
· e−z

1 + e−z

= ψ(z) · (1− ψ(z))

Using this we can calculate the derivative of the loss for a single training sample,
L(f̂ ,x), with respect to wj :

∂

∂wj
L(f̂ ,x) = − ∂

∂wj

[
y log(f̂(x)) + (1− y) log(1− f̂(x))

]

= − ∂

∂wj

[
y log(ψ(wTx)) + (1− y) log(1− ψ(wTx))

]

= −
[

y

ψ(wTx)
− 1− y

1− ψ(wTx)

]
· ∂

∂wj
ψ(wTx) chain rule

= −
[

y

ψ(wTx)
− 1− y

1− ψ(wTx)

]
· xj · ψ(wTx)(1− ψ(wTx)) chain rule

= −
[

y − ψ(wTx)

ψ(wTx)(1− ψ(wTx))

]
· xj · ψ(wTx)(1− ψ(wTx))

= − [
y − ψ(wTx)

] · xj

=
[
f̂(x)− y

]
· xj

118 CHAPTER 5. MACHINE LEARNING

And since differentiation and finite summation are interchangeable, i.e.,

d

dx

∑
g(x) =

∑ d

dx
g(x)

we get the gradient for the total loss, L(f̂ , D), as:

∂L(f̂ , D)

∂wj
=

1

n

∑
(x,y)∈D

[
f̂(x)− y

]
· xj

Remarks:

• We can then use gradient descent (Def. 5.26) to update the model
parameters.

• We can also add lasso or ridge regularization to prevent our model
from overfitting (Def. 5.23).

• What if y can take on more than two values? A straightforward way to
extend binary logistic regression to k > 2 classes is to train k separate
logistic regression models, one for each class. We then choose the
class with the highest probability score. This is a general method for
extending binary classifiers to multinomial problems, and is referred
to as One versus Rest (OvR).

• There are other ways to extend logistic regression to the multinomial
case. For example, we can use the softmax function instead of the
sigmoid function.

Definition 5.34 (Softmax Regression). Softmax regression with k ≥ 2

classes chooses the following functional form for f̂ :

f̂(x)i = σ(wT
(1)x,w

T
(2)x, ..., ,w

T
(k)x)i =

exp(wT
(i)x)∑k

j=1 exp(w
T
(j)x)

for i = 1, . . . , k

where σ is called the softmax function.

Remarks:

• f̂(x) is a vector of length k, with elements summing up to 1. It can

be seen as a vector of probabilities, with f̂(x)i ≈ P(f(x) = i).

• A different set of linear weights, w(i), is learned for each class i. Since
the probabilities sum up to 1, one set of weights is “redundant”.

• For k = 2, softmax regression reduces exactly to binary logistic re-
gression with w = w(2) −w(1).

• We also get the same form for the loss function:

5.8. TREE-BASED METHODS 119

Lemma 5.35 (Softmax Regression Loss Function). Assuming the y’s in Y
are independent and identically distributed categorical random variables with
parameters pi = σ(wT

(i)x) for i = 1, . . . , k, then maximizing the likelihood L(w)
is equivalent to minimizing the following loss function:

L(f̂ , D) = − 1

n

∑
(x,y)∈D

k∑
i=1

[
1{y = i} log(f̂(x)i)

]

where w is the set of all weights {w(i)}i=1,...k and 1{·} is the indicator function.

Remarks:

• Note that for k = 2 this loss is identical to the loss for logistic regres-
sion in Lemma 5.32, only the notation has been changed to use the
indicator function.

• In order to learn non-linear decision boundaries with logistic regres-
sion, we need to do feature engineering. This can be challenging and
time consuming, and it also makes the resulting model more difficult
to interpret. In the following we introduce a different type of model
that addresses these issues: Decision Trees.

5.8 Tree-Based Methods

So far we have considered regression models based on the form wTx where the
output is essentially a weighted sum of the input features, potentially squashed
by a sigmoid function. Binary decision trees introduce hierarchy: We keep
partitioning the input space into smaller regions. In order to make a prediction
f̂(x), we simply start at the root of the decision tree and apply the decision
rules until we reach a leaf, which then determines the output value.

1 def predict(self, x): # self is current node, initially root

2 if self.is_leaf():

3 return self.value

4 if x[self.feature] ≤ self.threshold:

5 self.left.predict(x)

6 else:

7 self.right.predict(x)

Algorithm 5.36: Decision tree algorithm.

Remarks:

• For classification, in Line 3 we return the majority class of the leaf.
For regression, we return the average value of the leaf.

• Decision trees can learn non-linear decision boundaries and are easy → notebook

to interpret and visualize.

120 CHAPTER 5. MACHINE LEARNING

• Decision trees are binary trees that contain nodes V , where each in-
ternal (non-leaf) node has an associated splitting rule. Every node v
corresponds to a subset Dv ⊆ D.

• How are splitting rules defined?

Definition 5.37 (Decision Tree Splitting Rule). A splitting rule of an internal
node v is given by a tuple (i, t), where i is the index of a feature and t is a
threshold value. A split defines left and right subsets

Dv,l = {x | xi ≤ t}, Dv,r = {x | xi > t}

Remarks:

• Unlike everything so far, a splitting rule here is based on a single
feature value and not a linear combination of features. As such all
splits are axis-aligned.

• Now we know how to use a decision tree to make predictions, but how
do we build a decision tree in the first place? We do so by finding
good splitting rules. And we find good splitting rules by minimizing
a loss function of course!

Definition 5.38 (Regression Tree Loss: MSE). For node v with samples Dv

the mean squared error (MSE) loss is defined as:

L(Dv) =
1

|Dv|
∑
y∈Dv

(y − ȳ)2

where the prediction ȳ of a node is the average of the target values of all samples
in Dv.

Remarks:

• The MSE is the variance of the target value. The aim is to create
splits that lower the total variance in the leaves.

• For classification the loss function is a measure of purity. We call a
node with all samples belonging to the same class perfectly pure. We
aim to find splits that successively increase the purity of the nodes.
The most common measures of purity are entropy and Gini impurity.

• We now have a measure of loss for each node, but we need to combine
the loss of the left and right subsets to decide what the next split
should be. One could consider many things here: minimizing the
total loss, minimizing the maximum loss, making balanced splits, etc.
One natural choice is to minimize the weighted average loss.

Definition 5.39 (CART loss function). To find the best split (i∗, t∗) at node v,
CART minimizes the following loss function:

L(i, t) =
|Dv,l|
|Dv| L(Dv,l) +

|Dv,r|
|Dv| L(Dv,r)

where the loss L(·) measures the impurity or error of the resulting left and right
subsets.

5.8. TREE-BASED METHODS 121

Remarks:

• The weights ensure that all training samples have equal contribution.
For example, for regression trees the weighted MSE loss reduces to
the mean squared error over Dv. This is not the same as L(Dv), since
we use the two new mean values ȳl and ȳr to calculate the errors.

• CART trees are built recursively using binary splits, with every split
minimizing above loss function.

• One could keep splitting until all the leaves contain single samples,
like a binary search tree (Definition 4.2). This would give 100% accu-
racy on the training data, but would not generalize well to new data.
Stopping criteria can be used to halt splitting. Typical stopping crite-
ria are: maximum tree depth, minimum number of samples in a node,
minimum decrease in the value of the loss function.

• Instead of stopping criteria, it is generally better to grow a large tree
and then prune it back. This way we might add some useful additional
splits and have the chance to remove less useful splits. Even if all ad-
ditional splits are not helpful, we can still remove them when pruning.
In essence pruning allows us to see some steps into the future, before
finalizing our tree.

• CART is a greedy algorithm that finds good solutions, but is unlikely
to find the optimal solution. Finding the optimal tree (e.g. a minimum
depth decision tree) is NP-hard.

• One big advantage of decision trees is their simple interpretation.
They suffer from high variance and overfit easily. A common tech-
nique to improve decision trees is to use many trees in an ensemble.

Definition 5.40 (Bootstrap Sample). A bootstrap sample Db is obtained by
drawing n samples from dataset D uniformly with replacement.

Remarks:

• In expectation, every Db contains 1− 1/e = 63.2% samples from D.

• What happens if we draw many bootstrap samples and use each to
train a separate model?

Definition 5.41 (Bootstrap Aggregating or Bagging). Bagging is an ensemble
algorithm where q models are trained on q bootstrap samples Db. The models
are combined either by averaging the outputs (regression) or by majority vote
(classification).

Remarks:

• Bagging ensembles can be built with any base learners, including de-
cision trees. In general, an ensemble method can turn many low-bias
high-variance base learners into a single low-bias low-variance model.

122 CHAPTER 5. MACHINE LEARNING

• The use of bootstrap samples de-correlates the individual learners,
i.e., they will generally make different mistakes which can be averaged
out.

• If we use decision trees as our base learners we can do even better.
What if we add even more randomness to bagging by subsampling the
features that can be chosen for finding the best splits?

Definition 5.42 (Random Forest). A random forest is a bagging ensemble of

q decision trees. The learners f̂b are trained in such a way that at every node
only a random subset of the features can be used for finding the best split.

Remarks:

• The random subsampling of features for each split further de-correlates
the individual trees, making random forests powerful models that can
achieve both relatively low bias and low variance.

5.9 Evaluation

How can we know whether our models are performing well? For regression we
can simply measure the models MSE (or absolute error) on the evaluation set
(Definition 5.15). However, for classification, the value of the loss function is
not intuitive; it does not directly tell us how good our model is at classifying
samples. To get a sense of the performance of a classifier, the most important
tool is the confusion matrix.

Definition 5.43 (Confusion Matrix). A confusion matrix, also known as error
matrix, visualizes the performance of a classifier on a given dataset. Rows
represent the actual class labels, and columns contain the predictions of the
classifier.

T
ru

e
la
b
e
l

Predicted label

p n

p′
True

Positive
TP

False
Negative

FN

n′
False

Positive
FP

True
Negative

TN

Remarks:

• From the confusion matrix we can derive different metrics to summa-
rize the performance of a classifier:

5.9. EVALUATION 123

accuracy ACC = TP+TN
P+N

positive predictive value (precision) PPV = TP
TP+FP

true positive rate (recall) TPR = TP
TP+FN

false positive rate FPR = FP
FP+TN

F1 score F1 = 2 · PPV·TPR
PPV+TPR

Remarks:

• Confusion matrices and the derived metrics can be used with more
than two classes. However, the derived metrics can then be computed
in several different ways. The macro method first computes the met-
rics for each class and then averages these values. The micro method
aggregates the predictions from all samples and computes the metrics
directly.

• Another very common way of evaluating binary classifiers (k = 2) is
the Receiver Operator Characterstic (ROC) Curve and the derived
Area Under Curve (AUC) metric.

Definition 5.44 (Receiver Operator Characteristic (ROC) Curve). The ROC

Curve plots the TPR against the FPR. Given a binary classifier f̂ , one can
order the data points by f̂(x), and then plot the TPR and FPR for every possible
classification threshold τpr ∈ [0, 1]. The resulting graph is called the ROC Curve.

Remarks:

• τpr is the threshold for which if f̂(x) ≥ τpr we classify a sample as
positive, and otherwise as negative.

• Trade-off between TPR and FPR: If we want 100% TPR (recall), we
can simply classify every sample as positive. However, we would then
also (wrongly) classify every negative sample as positive, leading to a
high FPR. An increase in the TPR generally leads to an increase in
the FPR.

• A perfect classifier would achieve TPR = 1 at FPR = 0, i.e., the
curve would “hug” the top left corner.

• The ROC curve of a random classifier follows the diagonal, i.e., TPR =
FPR.

• The area under the ROC curve (AUC) is often used as a convenient
summary of a classifier’s performance

• Intuitively, the AUC metric tells us the following: Given a random
negative sample xN and a random positive sample xP , what is the
probability that p̂(xP) > p̂(xN), i.e, the classifier will assign higher
probability to the random positive sample than to the negative sample.

124 BIBLIOGRAPHY

Chapter Notes

Ordinary least squares (OLS) was one of the first statistical methods to be
developed, circa 1800 [5]. There is still controversy over who first applied it,
Gauss or Legendre. Subsequently, weighted least squares, minimization of other
norms (e.g., L1), multivariate minimization, regularization (e.g., Ridge, Lasso)
and many other tools were developed. The term “ordinary” was added to least
squares only after many alternative methods were suggested.

Gradient descent is generally attributed to Cauchy, who first suggested it
in 1847 [4]. Hadamard independently proposed a similar method in 1907 [3].
Its convergence properties for non-linear optimization problems were first stud-
ied by Haskell Curry in 1944 [2], with the method becoming increasingly well-
studied and used in the following decades, also often called steepest descent.

The logistic function was developed as a model of population growth and
named “logistic” by Pierre François Verhulst in the 1830s and 1840s [1]. The
logistic model was likely first used as an alternative to the probit model by Edwin
Bidwell Wilson and Jane Worcester in 1943 [6]. The probit model is similar
to logistic regression, but models the output as the cumulative distribution
of a normal distribution centered around wTx. The logit model was initially
dismissed as inferior to the probit model, but gradually achieved an equal footing
before surpassing it. Its popularity is credited to its computational simplicity,
mathematical properties, and generality, allowing its use in varied fields.

This chapter was written in collaboration with Gino Brunner and Béni
Egressy.

Bibliography

[1] J.S. Cramer. The origins of logistic regression. Tinbergen Institute, Tinber-
gen Institute Discussion Papers, 01 2002.

[2] Haskell B Curry. The method of steepest descent for non-linear minimization
problems. Quarterly of Applied Mathematics, 2(3):258–261, 1944.

[3] Jacques Hadamard. Mémoire sur le problème d’analyse relatif à l’équilibre
des plaques élastiques encastrées, volume 33. Imprimerie nationale, 1908.

[4] Claude Lemaréchal. Cauchy and the gradient method. Doc Math Extra,
251(254):10, 2012.

[5] Stephen M. Stigler. Gauss and the Invention of Least Squares. The Annals
of Statistics, 9(3):465 – 474, 1981.

[6] E. B. Wilson and J Worcester. The determination of l.d.50 and its sampling
error in bio-assay. Proceedings of the National Academy of Sciences of the
United States of America, 29 2:79–85, 1943.

