
Chapter 1

Algorithms

The term “computer” used to be a job description for a person doing the same
tedious computations over and over, hopefully without error. When electrical
computers became available, these human computers often transitioned to be-
come computer programmers. Instead of doing the computations themselves,
they told the computer what to do.

Definition 1.1 (Algorithm). An algorithm is a sequence of computational
instructions that solves a class of problems. Often the algorithm computes an
output for a given input, i.e., a mathematical function.

Remarks:

• While the number of algorithms is theoretically unlimited, surprisingly
many problems can be solved with just a few algorithmic paradigms
that we will review in this chapter. A simple yet powerful algorithmic
concept is recursion. Let us start with an example.

1.1 Recursion

You have won an all-you-can-carry run through an electronics store. The rules
are simple: Whatever you manage to carry, you can have for free. Being well-
prepared you bring a high-capacity backpack to the event. Which items should
you put into your backpack such that you can carry the maximum possible value
out of the store?

Problem 1.2 (Knapsack). An item is an object that has a name, a weight and → notebook

a value. Given a list of items and a knapsack with a weight capacity, what
is the maximal value that can be packed into the knapsack?

Remarks:

• An algorithm solving Knapsack computes a function; the inputs of
this function are the set of possible items and the capacity limit of
the knapsack, the output is the maximal possible value.

• A simple way to solve Knapsack is to check for every item whether it
should be packed into the knapsack or not, expressed as the following
recursion:

0

1.1. RECURSION 1

→ notebook
1 def knapsack(items, capacity):

2 if len(items) == 0:

3 return 0

4 first, *rest = items

5 take = 0

6 if first.weight <= capacity:

7 take = knapsack(rest, capacity-first.weight) + first.value

8 skip = knapsack(rest, capacity)

9 return max(take, skip)

Algorithm 1.3: A recursive solution to Knapsack.

Remarks:

• Algorithm 1.3 may look like pseudo-code, but really is correct Python.

• In Lines 7 and 8, the algorithm calls itself. This is called a recursion.

Definition 1.4 (Recursion). An algorithm that splits up a problem into sub-
problems and invokes itself on the sub-problem is called a recursive algorithm.
A recursion ends when reaching a simple base case that can be solved directly.
Also, see Definition 1.4.

Remarks:

• In mathematics, we find a similar structure in some prominent induc-
tive functions such as the Fibonacci function.

• Recursive algorithms are often easy to comprehend, but not necessar-
ily fast.

• How can we measure “fast”?

Definition 1.5 (Time Complexity). The time complexity of an algorithm is
the number of basic arithmetic operations (+, −, ×, ÷, etc.) performed by the
algorithm with respect to the size n of the given input.

Remarks:

• Each variable assignment, if statement, iteration of a for loop, com-
parison (==, <, >, etc.) or return statement also counts as one
basic arithmetic operation, and so do function calls (len(), max(),
knapsack()).

• Unfortunately, there is no agreement on how the size of the input
should be measured. Often the input size n is the number of input
items. If input items get large themselves (e.g., the input may be a
single but huge number), n refers to the number of bits needed to
represent the input.

2 CHAPTER 1. ALGORITHMS

• We are usually satisfied if we know an approximate and asymptotic
time complexity. The time complexity should be a simple function
of n, just expressing the biggest term as n goes to infinity, ignor-
ing constant factors. Such an asymptotic time complexity can be
expressed by the “big O” notation.

Definition 1.6 (O-notation). The O-notation is used to denote a set of func-
tions with similar asymptotic growth. More precisely,

O(f(n)) =

{
g(n)

∣∣∣∣ lim
n→∞

g(n)

f(n)
< ∞

}
.

Remarks:

• In other words, O(f(n)) is the set of functions g(n) that asymptoti-
cally do not grow much faster than f(n).

• For example, O(1) includes all constants and O(n) means “linear in
the input size n”.

• In other words, the O-notation is quite crude, but nevertheless useful,
both in theory and practice.

• Other useful asymptotic notations are Ω() for lower bounds, but also
o(), ω(), Θ(), etc.

Lemma 1.7. The time complexity of Algorithm 1.3 is O(2n).

Proof. Each call of the knapsack()-procedure performs constantly many ba-
sic arithmetic operations itself and makes (at most) two additional calls to
the knapsack()-procedure. Hence, it suffices to count the total number of
knapsack()-invocations. We get 1 invocation on the first item, at most 2 on
the second, 4 on the third, . . . , and 2n−1 on the last. Hence, there are less than
2n invocations of the knapsack()-function.

Remarks:

• The time complexity of Algorithm 1.3 is exponential in the num-
ber of items. Even if there were only n = 100 items to be evalu-
ated, the currently fastest supercomputer in the world would take
2100 ops/(148 · 1015 ops/s) ≈ 271 000 years to compute our knapsack
function. So for many realistic inputs, Algorithm 1.3 is not usable.
We need a better approach!

1.2 Greedy

What about sorting all the items by their value-to-weight ratio, and then
simply greedily packing them!?

→ notebook

1.3. BACKTRACKING 3

1 def knapsack(items, capacity):

2 items.sort(key=lambda item : -item.value/item.weight)

3 value = 0

4 for item in items:

5 if item.weight <= capacity:

6 capacity -= item.weight

7 value += item.value

8 return value

Algorithm 1.8: A naive greedy algorithm for Knapsack.

Remarks:

• Algorithm 1.8 is fast, with a time complexity of O(n log n), just for
calling the sorting function in Line 2. So a large input is no problem.

• Also, the output of Algorithm 1.8 often seems reasonable. However,
Algorithm 1.8 does not solve Knapsack optimally. For example, as-
sume a capacity 6 knapsack, two items each with value 3 and weight
3, and one higher-ratio item with value 5 and weight 4.

• Can we gain a speed-up from first sorting the elements?

1.3 Backtracking

Definition 1.9 (Backtracking). A backtracking algorithm solves a computa-
tional problem by constructing a candidate solution incrementally, until either a
solution or a contradiction is reached. In case of a contradiction, the algorithm
“backtracks” (i.e. reverts) its last steps to a state where another solution is still
viable. Efficient backtracking algorithms have two main ingredients:

• Look-ahead: We order the search space such that the most relevant so-
lutions come up first.

• Pruning: We identify sub-optimal paths early, allowing to discard parts
of the search space without explicitly checking.

Remarks:

• Algorithm 1.3 was an inefficient backtracking algorithm.

• Our look-ahead idea is to sort the items by value-to-weight ratio as
in Algorithm 1.8.

• The algorithm prunes the solution space if it cannot possibly achieve
the best solution so far.

→ notebook

4 CHAPTER 1. ALGORITHMS

1 def knapsack(items, capacity):

2 items.sort(key=lambda item: -item.value/item.weight)

3 return bt(items, capacity, 0)

4

5 def bt(items, capacity, missing):

6 if len(items) == 0:

7 return 0

8 first, *rest = items

9 if first.value / first.weight * capacity < missing:

10 return 0 # branch is worse than the best previous solution

11 take = 0

12 if first.weight <= capacity:

13 take = bt(rest, capacity-first.weight, missing-first.value)

14 take += first.value

15 skip = bt(rest, capacity, max(take, missing))

16 return max(take, skip)

Algorithm 1.10: An efficient backtracking solution to Knapsack.

Remarks:

• The missing parameter is the additional value that is required to
surpass the previously best solution.

• The time complexity of Algorithm 1.10 is still O(2n) in the worst case.
Can we do better?

1.4 Dynamic Programming

Definition 1.11 (Dynamic Programming). Dynamic programming (DP) is
a technique to reduce the time complexity of an algorithm by utilizing extra mem-
ory. To that end, a problem is divided into sub-problems that can be optimized
independently. Intermediate results are stored to avoid duplicate computations.

Remarks:

• Knapsack can be solved with dynamic programming. To that end, we
store a value matrix V where V[i][c] is the maximum value that can
be achieved with capacity c using only the first i items.

→ notebook
1 def knapsack(items, capacity):

2 n = len(items)

3 V = zero matrix of size (n+1)×(capacity+1)
4 for item i in items:

1.4. DYNAMIC PROGRAMMING 5

5 for c in range(capacity+1):

6 V[i+1][c] = max(V[i][c-item.weight] + item.value, V[i][c])

7 return V[n][capacity]

Algorithm 1.12: A dynamic programming solution to Knapsack.

Remarks:

• Note that Algorithm 1.12 is not correct Python. Line 3 is just pseudo-
code, far from actual Python notation. Line 4 could be Python, but
unfortunately needs an extra enumerate() function.

• Line 6 is incorrect: If item.weight > c, c-item.weight becomes
negative. The programmer of Algorithm 1.12 assumed that accessing
a negative index of an array returns 0; however, most programming
languages return an error. We can fix Line 6 by adding the condi-
tional expression if c >= item.weight else 0 to the first term of
the max() function.

• The time complexity of Algorithm 1.12 is O(n · capacity). In Defini-
tion 1.5 we postulated that the time complexity should be a function of
n. So the DP approach only makes sense when capacity is a natural
number with capacity < 2n/n. .

Definition 1.13 (Space Complexity). The space complexity of an algorithm
is the amount of memory required by the algorithm, with respect to the size n of
the given input.

Remarks:

• As for Definition 1.5, we are usually satisfied if we know the approxi-
mate (asymptotic) space complexity.

• Also, the amount of memory can be measured in bits or memory cells.

• The space complexity of Algorithm 1.12 is O(n · capacity).
• For reasonably small capacity, Algorithm 1.12 is faster than Algo-
rithms 1.3–1.10, but is it correct?

Lemma 1.14. Assuming that all items have integer weights, Algorithm 1.12
solves Knapsack correctly.

Proof. We show the correctness of each entry in the matrix V by induction. As
a base case, we have V[0] = [0, ..., 0] since without item, no value larger
than 0 can be achieved. For the induction step, assume that V[i] correctly
contains the maximum values that can be achieved using only the first i items.
When we set a value V[i+1][c], we can either include the item i+1 or select
the optimal solution for Knapsack with capacity using only the first i items.
Algorithm 1.12 stores the max() of these two values in V[i+1][c] (for all c ∈
{0, . . . , capacity}), which is optimal.

Hence, the value V[n][capacity] contains the maximum value that can be
achieved with the weight capacity, using any combination of the n items.

6 CHAPTER 1. ALGORITHMS

Remarks:

• Line 6 of Algorithm 1.12 is typical for dynamic programming algo-
rithms: either the previous best solution can be improved, or it re-
mains unchanged. This is called Bellman’s principle of optimality.

• The computation order of Algorithm 1.12 is important. For example,
we can only compute the entry V[i+1][c] once we have computed
both V[i][c-item.weight] and V[i][c].

• The sub-problem dependencies can be visualized as a dependency
graph. In order to apply dynamic programming, this graph must
be a directed acyclic graph (DAG).

• Algorithm 1.12 is a so-called bottom-up dynamic programming algo-
rithm as it begins computing the entries of matrix V starting with the
simple cases.

• But do we really need to compute the entire matrix V?

Definition 1.15 (Memoization). Memoization generally refers to a technique
that avoids duplicate computations by storing intermediate results.

→ notebook
1 def knapsack(items, capacity, memo={}):

2 index = (len(items), capacity)

3 if index in memo:

4 return memo[index]

5 if len(items) == 0:

6 return 0

7 first, *rest = items

8 take = 0

9 if first.weight <= capacity:

10 take = knapsack(rest, capacity-first.weight, memo)

11 take += first.value

12 skip = knapsack(rest, capacity, memo)

13 memo[index] = max(take, skip)

14 return memo[index]

Algorithm 1.16: A top-down DP solution to Knapsack.

Remarks:

• Memoization can be used to implement top-down DP algorithms.

• This is not so different from our initial Algorithm 1.3!

• We only changed Line 1 and added Line 2 to set up memoization,
which is then used in Lines 3–4 and 13–14.

1.5. LINEAR PROGRAMMING 7

• Top-down DP is inheriting the best of recursion and bottom-up DP.
Consequentially, the time complexity of Algorithm 1.16 is

O(min(2n, n · capacity)) .

• So far we have learned a family of related algorithmic techniques: re-
cursion, backtracking, dynamic programming, and memoization. To-
gether, this family can help solving many demanding algorithmic prob-
lems.

• However, there are powerful algorithmic paradigms beyond this family
of techniques, for instance linear programming.

1.5 Linear Programming

So far, we were only considering unsplittable items. However, for liquid goods,
Knapsack can be solved quickly using a greedy method (Algorithm 1.8). What
if we had more than one constraint?

Problem 1.17 (Liquid Knapsack). A beverage has a name, a value per liter → notebook

and a preparation time per liter. Given t hours to prepare for a party and a
fridge with a storage capacity, what is the maximal value that can be prepared
and stored in the fridge?

Remarks:

• With more than one constraint, the greedy method does not work.

• However, this problem has a nice property: the objective and the con-
straints are linear functions of the quantity of each prepared beverage.
We call such problems linear programs.

Definition 1.18 (Linear Program or LP). A linear program (LP) is an → notebook

optimization problem with n variables and m linear inequalities

a11x1 + a12x2 + . . . + a1nxn ≤ b1

a21x1 + a22x2 + . . . + a2nxn ≤ b2

...
...

...
...

am1x1 + am2x2 + . . . + amnxn ≤ bm

We are interested in finding a point x = (x1, . . . , xn)
T with xi ≥ 0, respecting

all these constraints, and maximizing a linear function

f(x) = c1x1 + c2x2 + · · ·+ cnxn

where aij, bi and ci are given real-valued parameters. We call the point x an
optimum of the LP.

8 CHAPTER 1. ALGORITHMS

Remarks:

• There is also a short hand notation using linear algebra

max{cTx | Ax ≤ b,x ≥ 0},

where A is the matrix with entries aij and b and c the vectors given
by the bi and ci, respectively.

• In general, if you have the problem of maximizing or minimizing a
linear function under constraints that are linear (in)equalities, there
is a way to formulate it in above canonical form. For instance, a
constraint aTx = b can be rewritten as a combination of aTx ≤ b
and aTx ≥ b which itself can be rewritten as −aTx ≤ −b. Also,
minimizing a linear function with coefficients c1, . . . , cn is the same as
maximizing a linear function with coefficients −c1, . . . ,−cn.

• It is possible to model some functions which do not look linear at first
sight. For example, minimizing an objective function f(x) = |x| can
be expressed as min{t|x ≤ t,−x ≤ t}.

Definition 1.19 (Feasible Point). Given an LP, a point is feasible if it is a
solution of the set of constraints.

Remarks:

• Geometrically, the set of feasible points of an LP corresponds to an n-
dimensional convex polytope. The hyperplanes bounding the polytope
are given by the restricting inequalities.

• Polytopes are a generalization of 2D polygons to an arbitrary number
of dimensions. Convexity, however, deserves a more formal definition.

Definition 1.20 (Convex Set). A set of points in Rn is convex if for any two
points of the set, the line segment joining them is also entirely included in the
set.

Lemma 1.21. The set of feasible points of an LP is convex.

Proof. Given two feasible points x1 and x2, any point in the line segment joining
them can be written as x1+λ(x2−x1) for λ ∈ [0, 1]. For any constraint aTx ≤ b,
we compute

aT [x1 + λ(x2 − x1)] = (1− λ)aTx1 + λaTx2 ≤ (1− λ)b+ λb = b.

Definition 1.22. Given an LP, we call polytope the set of feasible points. → notebook

A constraint aTx ≤ b is tight at x if aTx = b. For an LP with n variables,
feasible points activating n (resp. n − 1) linearly independent constraints are
called the nodes (resp. edges) of the polytope. Each edge links two nodes
x1,x2 with n − 1 common activating constraints; we say that the two nodes
x1,x2 are neighbors.

1.5. LINEAR PROGRAMMING 9

Remarks:

• A polytope can be unbounded, i.e. infinitely large. If the convex poly-
tope is unbounded, it is often rather called a convex polyhedron. In
some cases, it is even possible to have an infinitely large solution, e.g.,
max{x|x ≥ 0}. Following our definition, the LP does not admit an
optimum in this case.

• In order to solve an LP, one has to find a point in the polytope that
maximizes our objective function f(x).

Theorem 1.23. If the polytope of an LP is bounded, then at least one node → notebook

of the polytope is an optimum of the LP.

Proof. For any value y that the objective function can take, the set of points
reaching this value is given by the hyperplane cTx = y. We can find an optimum
of the LP by sliding this hyperplane until the boundary of the polytope is
reached, which happens at some node of the polytope.

Remarks:

• One popular method exploiting Theorem 1.23 for solving LPs is the
simplex algorithm. The idea is simple: starting from a node of the
LP polytope, greedily jump to a neighboring node having a better
objective until you cannot improve the solution anymore.

→ notebook
1 def simplex(polytope, f, x):

2 for y in neighbors(x, polytope):

3 if f(y) > f(x):

4 return simplex(polytope, f, y)

5 return x

Algorithm 1.24: Simplex Algorithm.

Remarks:

• While the simplex algorithm performs well in practice, there are in-
stances where its time complexity is exponential in the size of the
input. Other LP algorithms known as interior point methods are
provably fast.

• In practice, we do not build and store the whole polytope of the LP,
as the polytope could have an exponential number of nodes! Instead,
we represent a node as a set of tight constraints. To find its neighbors,
we remove a constraint of the set, add another constraint and check
if the point is feasible.

• The node returned by the simplex algorithm is better than any neigh-
boring node by construction, but how can we convince ourselves that
no other point anywhere in the feasible polytope is better?

10 CHAPTER 1. ALGORITHMS

Definition 1.25 (Local Optimum). A feasible node x is a local optimum if
f(x) ≥ f(y) for any neighboring node y.

Remarks:

• In contrast to a local optimum, an optimum from Definition 1.18 is
called global optimum.

• While it is easy to find a local optimum, finding a global optimum is
often difficult. However, it turns out that every local optimum of an
LP is also a global optimum!

Theorem 1.26. The node x∗ returned by the simplex algorithm is an optimum.

Proof. Let us consider the hyperplane cTx = f∗, where f∗ = cTx∗. We know
that all the neighbors of node x∗ are on the side cTx ≤ f∗. Since the polytope is
convex, we know that the whole polytope must be on this side of the hyperplane.
Hence no node x′ in the polytope can be on the side cTx > f∗, and hence the
node x∗ is a global optimum.

x′

x∗

x1 x2

aT
1 x ≤ b1 aT

2 x ≤ b2

cTx ≥ fs

Figure 1.27: Illustration of Theorem 1.26. The neighbors of x∗ are x1 and x2.

Remarks:

• So we have seen that every local optimum of an LP is also a global
optimum. This important property in optimization is true for convex
functions in general!

Definition 1.28 (Convexity). A function f : D → R is convex if for any
x,y ∈ D and any λ ∈ [0, 1]: Any point z = λx + (1 − λ)y is in D as well. In
addition f(z) ≤ λf(x) + (1− λ)f(y).

If f is differentiable twice, then f is convex if and only if its hessian ∇2f is
positive semidefinite, i.e., the hessian has non-negative eigenvalues.

Example 1.29. The following functions are convex:

• f(x) = x2

• f(x) = ||x||2 (Euclidean norm)

• f(p1, . . . , pk) =
∑

pi
pi log pi (reverse entropy)

• f(A) = − log det(A) for a positive semidefinite matrix A

1.5. LINEAR PROGRAMMING 11

Remarks:

• We call Algorithm 1.24 with x being any node of the polytope. But
wait, how do we find such a start node?! It turns out that we can
construct an auxiliary LP:

Definition 1.30 (Phase 1 LP). Given an LP

max{cTx | Ax ≤ b,x ≥ 0},
we build the so-called phase 1 LP by replacing every constraint aT

i x ≤ bi
with aT

i x− yi ≤ bi, introducing a new artificial variable yi. If we minimize all
artificial variables yi, we get:

max{−1Ty | Ax− Iy ≤ b,x ≥ 0,y ≥ 0}.
Lemma 1.31. Setting each xi = 0 and each yi = max(0,−bi) yields a feasible
node of the phase 1 LP.

Proof. With each original variable xi = 0, each constraint is reduced to−yi ≤ bi,
which is satisfied when yi = max(0,−bi).

Also, this point is a node of the polytope: Algebraically, a point is a node if
at least n linearly independent constraints are tight at this point. The constraint
xi ≥ 0 is tight for each original variable xi and either aix − yi ≤ bi or yi ≥ 0
is tight for each artificial variable yi, depending on the sign of bi. Thus, the
number of tight constraints is at least equal to the number of variables, and this
point is a node of the polytope.

Lemma 1.32. If the original LP is feasible, then the phase 1 LP will find a
feasible node.

Proof. If the original LP is feasible, then its polytope is not empty, i.e., there
exists a feasible node x in the original LP. Together with y = 0, node x is also
feasible in the phase 1 LP. Since max{−1Ty} = min{sum(y)} is optimal for
y = 0, node x is optimal in the phase 1 LP. With Theorem 1.26, we know that
the phase 1 LP will find such a node x.

Remarks:

• Algorithm 1.33 is the complete procedure to solve an LP. This process
is often called the two-phase simplex algorithm.

• In Python, one can solve an LP using the function linprog from the → notebook

module scipy.optimize.

→ notebook1 def solveLP(A, b, c):

2 x,y = simplex(polytope([A -I], b), −1, (0, max(0,−b)))

3 if sum(y) == 0:

4 return simplex(polytope(A, b), c, x)

5 else:

6 return 'no solution'

Algorithm 1.33: Two-phase simplex algorithm to solve LPs.

12 CHAPTER 1. ALGORITHMS

1.6 Linear Relaxation

Linear programming is covering a broad class of problems, but we are often
confronted with discrete tasks, for which we need an integer solution.

Definition 1.34 (Integer Linear Programming or ILP). An integer linear
program (ILP) is an LP in which all variables are restricted to integers.

Remarks:

• In a lot of combinatorial problems, variables are restricted to just two
values {0, 1}. Such variables are called indicator (“to be or not to
be”) variables. We call such programs binary ILPs.

• Apart from LP and ILP, there exist many other optimization tech-
niques: Mixed Integer Linear Programming (MILP) with both integer
and continuous variables, Quadratic Programming (QP), Semidefinite
Programming (SDP), . . .

Problem 1.35 (ILP Knapsack). We can model Knapsack (Problem 1.2) with
capacity c and n items of value vi and weight wi as a binary ILP, using indicator
variables xi:

maximize
∑

vi xi

subject to:
∑

wi xi ≤ c

xi ∈ {0, 1}.

Remarks:

• Unlike LPs, no efficient algorithm solving ILPs is known.

• It is tempting to relax the constraints xi ∈ {0, 1} to 0 ≤ xi ≤ 1, apply
the simplex algorithm, and round the possible solution to the nearest
feasible point.

Definition 1.36 (Linear Relaxation). Given a binary ILP, we construct the
linear relaxation of the LP by replacing the constraint x ∈ {0, 1}n with the
constraint 0 ≤ xi ≤ 1.

Remarks:

• However, in general, there is no guarantee that a linear relaxation
finds the optimum.

• In the case of Knapsack, the solution of the linear relaxation is similar
to Algorithm 1.8. All items i with a high value-to-weight ratio will
get an indicator variable xi = 1, all items with a low value-to-weight
ratio will get an indicator variable xi = 0. The critical item(s) in the
middle will get a non-integer indicator variable which we must round
down to 0 to get a valid solution. This solution can be arbitrarily bad,
as the best (highest value-to-weight ratio) item might already be too
heavy; we might end up without any object in the knapsack.

1.7. FLOWS 13

• However, a linear relaxation sometimes has the same optimum as its
ILP. In particular, this is true for some class of constraint matrices,
the so-called totally unimodular matrices.

• A matrix is totally unimodular if every square submatrix has deter-
minant −1, 0 or +1.

Problem 1.37 (Assignment Problem). Given a list of customers and a list → notebook

of cabs, how to match customers to cabs in order to minimize the total waiting
time?

Algorithm 1.38. This problem can be modeled as an ILP. We denote the → notebook

waiting time of customer i for cab j by wi,j. Also, we introduce a set of indicator
variables xi,j describing the assignment: xi,j = 1 if and only if customer i is
assigned to cab j. We get:

minimize
∑

i,j xi,jwi,j

subject to:
∑

j xi,j = 1 for each customer i∑
i xi,j ≤ 1 for each cab j

xi,j ∈ {0, 1}

This ILP can be solved optimally with linear relaxation: the constraint matrix
is totally unimodular.

1.7 Flows

Graphs and flows are useful algorithmic concepts, related to LPs and linear
relaxations.

Definition 1.39 (Graph). A graph G is a pair (V,E), where V is a set of
nodes and E ⊆ V × V is a set of edges between the nodes. The number of
nodes is denoted by n and the number of edges by m.

Remarks:

• A directed graph G = (V,E) is a graph, where each edge has a direc-
tion, i.e., we distinguish between edges (u, v) and (v, u). If all edges
of a graph are undirected, then the graph is called undirected.

• In a directed graph, we note in(u) (resp. out(u)) the set of edges
entering (resp. leaving) node u.

• A weighted graph G = (V,E, ω) is a graph, where ω : E → R assigns
a weight ω(e) for each edge e ∈ E.

• Weights can for instance be used for delay d(e) or capacity c(e) of an
edge.

• In the rest of this chapter, we consider capacitated directed graphs.

• Consider a company that wants to optimize the flow of goods in a
transportation network from their factory to a customer.

14 CHAPTER 1. ALGORITHMS

Definition 1.40 (Flow). Formally, an s-t-flow from a source node s to a target
node t is given as a function f : E → R such that

f(u, v) ≤ c(u, v) for all (u, v) ∈ E (capacity constraints)∑
e∈in(u) f(e) =

∑
e∈out(u) f(e) for all u ∈ V \ {s, t} (flow conservation)

We call the total flow reaching t the value of f , i.e. |f | = ∑
(u,t)∈E f(u, t).

Problem 1.41 (Max-Flow). What is the maximum flow that can be established
between a source and a target node in a network?

Remarks:

• Max-Flow can be written as an LP maximizing the value of the flow.

• Flows are also useful to model discrete data. Imagine traffic flow for
example: every road as some capacity and at each intersection, every
car getting in is expected to eventually get out!

• Fortunately, we can use the linear relaxation of the ILP and be guar-
anteed to have the optimal solution!

Theorem 1.42 (Integral Flow Theorem). If the capacity of each edge is an
integer, then there exists a maximum flow such that every edge has an integral
flow.

Proof. Assume you have an optimal but non-integral flow. If there is a path
from s to t with every edge being non-integral, we can increase the flow on that
path, so our original flow was not optimal. Hence, there cannot be a non-integral
path from s to t.

Let u be a node adjacent to an edge e with non-integral flow. Then u needs
at least another edge e′ with non-integral flow because of flow conservation at
node u. We can follow these non-integral edges. Since they cannot include both
s and t, we must find a cycle C of non-integral edges. All edges in C can both
change their flow by ±ε, without changing the flow from s to t. We change the
flow of all edges in C until a first edge in C has integral flow. Now we have one
edge less with non-integral flow. If there is still an edge with non-integral flow,
we repeat this procedure, until all edges have integral flow.

Remarks:

• Thanks to Theorem 1.42, we can solve a discrete maximum flow prob-
lem with the linear relaxation of the ILP formulation and the simplex
algorithm!

• There are also more efficient algorithms, known as augmenting paths
algorithms.

Definition 1.43 (Augmenting Path). We define an augmenting path as a
path from s to t such that the flow of each edge does not reach its capacity.

1.7. FLOWS 15

Remarks:

• We can find an augmenting path in linear time, using a recursive
algorithm!

→ notebook
1 def find_augmenting_path(u, t, G, flow, visited):

2 visited.insert(u)

3 for v in G.neighbors(u):

4 if v is not in visited and flow[u, v] < G.capacity[u, v]:

5 path = find_augmenting_path(v, t, G, flow, visited)

6 if len(path) > 0 or v == t:

7 path.append((u, v))

8 return path

9 return []

Algorithm 1.44: Find augmenting path

Remarks:

• If the network has an augmenting path, then none of the edges of this
path is at full capacity and we can add some flow on this path. This
gives us a greedy algorithm: Find an augmenting path, push as much
flow as possible on this path, then try again. This is known as the
Ford-Fulkerson algorithm.

→ notebook
1 def max_flow(s, t, G):

2 while there is an augmenting path:

3 visited = set()

4 path = find_augmenting_path(s, t, G, visited):

5 flow = update(G, flow, path)

6 return flow # no augmenting path anymore

Algorithm 1.45: Ford-Fulkerson algorithm

Chapter Notes

The word algorithm is derived from the name of Muhammad ibn Musa al-
Khwarizmi, a Persian mathematician who lived around AD 780–850. Some
algorithms are as old as civilizations. A division algorithm was already used by
the Babylonians around 2500 BCE [2]. Analyzing the time efficiency of recursive
algorithms can be a difficult task. An easy but powerful approach is given by
the master theorem [1]. Linear programming is an old concept whose origins lie
in solving logistic problems during World War 2. Back in the days, the term

16 BIBLIOGRAPHY

programming meant optimization, and not coding. This chapter was written in
collaboration with Henri Devillez and Roland Schmid.

Bibliography

[1] Jon Louis Bentley, Dorothea Haken, and James B. Saxe. A general method
for solving divide-and-conquer recurrences. SIGACT News, 12(3):36–44,
September 1980.

[2] Jean-Luc Chabert, editor. A History of Algorithms. Springer Berlin Heidel-
berg, 1999.

