
Distributed
 Computing

HS 2021 Prof. R. Wattenhofer
Robin Fritsch

Computational Thinking

Solutions to Exercise 8 (Data and Storage)

1 Journal Article Database

a) Both {ID,TR-ID} and {ID,title,TR-ID} are superkeys, because they uniquely identify any
row within the table. As there are two rows with the same ID and two rows with the same
TR-ID, it is not sufficient to use only one of these two columns to identify a row. Hence,
{ID,TR-ID} is a candidate key. Thus, {ID,title,TR-ID} is not a candidate key, because
the title column can be omitted.

b) Query 3. results in:

ERROR: function sum(text) does not exist

PostgreSQL does not accept strings as input to the SUM function. STRING AGG would
work to concatenate strings.

Query 6. results in:

ERROR: aggregate functions are not allowed in WHERE

SQL’s WHERE clause does not work with aggregate functions like SUM, AVG, MAX,
COUNT and so on. Instead, the HAVING keyword was introduced to SQL in order to
quantitatively compare aggregated values. A correct query would look like this:

SELECT year, COUNT(*) FROM Articles GROUP BY year HAVING COUNT(*) > 10;

c) 3 rows

2 Database Design

The following Entity Relationship Diagram describes the animals database. Owners and animals
are in a 1-to-n relation. Each owner may own multiple animals, but every animal can have exactly
one registered owner in the database. Animals and animal types are in a n-to-1 relation. Any
animal cannot be both a cat and a dog, but the animal type table may very well contain multiple
cats or dogs. Animals and breeds are in a n-to-n relation. Any animal can be a mixed breed and
there may be multiple animals of the same breed in the database. Animals and allergies are in a
n-to-n relation. Any animal may have multiple allergies and any allergy may afflict more than one
animal in the database. For every animal allergy, we reserve a level field that denotes how strongly
allergic the animal is to the allergy in question. Notice that we underline primary key attributes
and we use an italic font to label unique attributes. The id field is chosen as the primary key for
the animal table because even though the chip id is a unique value, we would like to allow for the
possibility that the unique chip id is changed, for example, when the animal chip breaks or if it’s
updated due to a change in chip standard.

animal

id

chip id

name

ownerid

name

address

phone

email

allergy

id name

breed

id name

type

id name

has

1

n

has

n

n

has

1

n

has

level

n

n

3 Database Queries

a) SELECT id, title FROM movie LIMIT 5;

b) SELECT * FROM movie ORDER BY title DESC LIMIT 2;

c) SELECT COUNT(*) FROM movie WHERE year > 2000;

d) SELECT title, tomatometer FROM movie WHERE title = ’The Matrix’;

e)

SELECT COUNT(*) FROM movie

WHERE tomatometer > (

SELECT tomatometer FROM movie

WHERE title = 'The Matrix');

f)

SELECT year, AVG(tomatometer) AS avg FROM movie

GROUP BY year

ORDER BY avg DESC LIMIT 5;

g)

2

SELECT title FROM movie

WHERE title LIKE 'X%'

ORDER BY title DESC;

h)

SELECT COUNT(*) FROM movie

WHERE title LIKE '%fight%';

4 Advanced Database Queries

a)

SELECT person.name, cast_info.role_id, person.gender

FROM cast_info

JOIN person ON person.id = cast_info.person_id

JOIN movie ON movie.id = cast_info.movie_id

JOIN role_type ON role_type.id = cast_info.role_id

WHERE role_type.role = 'actress' AND movie.title = 'The Matrix';

b)

SELECT COUNT(DISTINCT person.id)

FROM cast_info

JOIN role_type ON role_type.id = cast_info.role_id

JOIN person ON person.id = cast_info.person_id

WHERE role_type.role = 'director' AND person.gender = 'f';

c)

SELECT DISTINCT person.name FROM cast_info

JOIN person ON person.id = cast_info.person_id

JOIN movie ON movie.id = cast_info.movie_id

WHERE (cast_info.role_id = 2 or cast_info.role_id = 1)

AND EXISTS (

SELECT DISTINCT ci.person_id FROM cast_info AS ci

WHERE ci.role_id = 8

AND cast_info.person_id = ci.person_id

GROUP BY ci.person_id

HAVING COUNT(ci.person_id) > 20

);

Alternative solution:

SELECT DISTINCT person.name FROM person

JOIN cast_info ON person.id = cast_info.person_id

JOIN role_type ON cast_info.role_id=role_type.id

WHERE role_type.role IN ('actor','actress')

AND 20 < (

SELECT COUNT(*) FROM cast_info AS ci

JOIN role_type AS rt ON ci.role_id=rt.id

WHERE ci.person_id = person.id

AND rt.role='director'

);

3

d)

SELECT movie.title, COUNT(*) AS cnt

FROM movie_keyword

JOIN movie ON movie_keyword.movie_id = movie.id

GROUP BY movie.id

ORDER BY cnt DESC

LIMIT 1;

e)

SELECT AVG(cnt), MAX(cnt), MIN(cnt) FROM (

SELECT movie.title, COUNT(*) AS cnt

FROM movie_keyword

JOIN movie ON movie_keyword.movie_id = movie.id

GROUP BY movie.id

) AS countaverages;

f)

SELECT

person.name,

AVG(movie.tomatometer) AS average,

COUNT(ci.person_id) AS cnt,

MAX(movie.year) AS maxyear

FROM cast_info AS ci

JOIN movie ON movie.id = ci.movie_id

JOIN person ON person.id = ci.person_id

WHERE ci.role_id = 1

GROUP BY person.id

HAVING AVG(movie.tomatometer) > 85 AND COUNT(ci.person_id) > 30

AND MAX(movie.year) > 2000

ORDER BY maxyear DESC, average DESC;

g)

SELECT person.name

FROM person

JOIN cast_info ON person.id = cast_info.person_id

JOIN movie ON cast_info.movie_id = movie.id

WHERE cast_info.role_id = 8 AND movie.tomatometer > 90

GROUP BY person.id

HAVING COUNT(*) > 10;

4

	Journal Article Database
	Database Design
	Database Queries
	Advanced Database Queries

