
Distributed
 Computing

HS 2021 Prof. R. Wattenhofer
Pál András Papp

Computational Thinking

Sample Solutions to Exercise 2

1 Egg dropping

If we only have one egg, the only possibility to definitely find the critical floor is to try all floors
from bottom to top. In the worst case, this will take us n throws of the egg.
With dlog ne eggs, we have enough eggs to do binary search, i.e. repeatedly choose the middle
floor of all remaining possible floors and toss the egg from there. This will take dlog ne throws in
the worst case.
For the general case of k eggs, we can use dynamic programming to solve the problem. Let dp[n][k]
be the minimum number of tosses required to find the critical floor in the worst case for n floors
and k eggs. Clearly, dp[0][k] = 0 for all k ≥ 0 and dp[n][0] =∞ for all n ≥ 1.
To calculate dp[n][k] we simply consider every possible floor i from which we can throw the next
egg and check which floor leads to the smallest number of remaining tosses. If we throw the egg
from a certain floor i, it can either break, meaning we need to search the i− 1 floors below with
k − 1 eggs, or not break, meaning we need to search the n − i floors above with k eggs. In the
worst case this requires max(dp[i−1][k−1], dp[n− i][k]) throws by the definition of dp. Therefore,

dp[n][k] = 1 + min
1≤i≤n

(
max

(
dp[i− 1][k − 1], dp[n− i][k]

))
.

In the notebook this solution is implemented using memoization and storing the values of dp in a
dictionary. Alternatively, one could simply construct the whole table of the values of dp up to the → notebook

input values of n and k.
Finally, it remains to find the optimal sequence of floors from which to toss the eggs. Analogously
to the computation of dp, the best floor to toss an egg from for n floors and k eggs is

floor[n][k] = arg min
1≤i≤n

(
max

(
dp[i− 1][k − 1], dp[n− i][k]

))
.

Alternatively to the implementation in the notebook, one could also build a table of the values of → notebook

floor at the same time as building the table for dp.

2 Pizza world record

We want to find the largest r among all radii r ∈ R and centers c ∈ R2 of the pizza such that the
pizza still fits in the polygon. In order to formulate this problem as a linear program, we need to

write the fact that the pizza fits in the polygon as a linear constraint A

(
c
r

)
≤ b for suitable A

and b. Since maximizing r is equivalent to minimizing −r, we then only need to solve the linear

https://colab.research.google.com/drive/1o_hIVH4s60Xju1hj2WbrEM3Lsga7bEKm#scrollTo=ABtXnGuZXpsi&line=23&uniqifier=1
https://colab.research.google.com/drive/1o_hIVH4s60Xju1hj2WbrEM3Lsga7bEKm#scrollTo=ABtXnGuZXpsi&line=23&uniqifier=1

program

min
(
0 0 −1

)(c
r

)
s.t. A

(
c
r

)
≤ b(

c
r

)
∈ R3.

It remains to find such A and b.
Every edge of the polygon gives us one constraint for the linear program: From the coordinates of
every two neighboring points of the of polygon we can calculate ai ∈ R2 and bi ∈ R of the equation
aTi x = bi of the line through those two points (see solution in notebook). Since the polygon is → notebook

convex, the whole pizza needs to lie on one side of the this line. In other words, aTi x ≤ bi must
hold for all points x ∈ R2 on the pizza. First, note that it suffices to check this condition for all
points on the border of the pizza, i.e. all x = c+ ry for some unit vector y ∈ R2. Furthermore, the
border comes closest to the line when this vector y is perpendicular to the line, i.e. y = ai/‖ai‖.
So we only need to make sure the point pi = c + r · ai/‖ai‖ satisfies aTi pi ≤ bi. This is equivalent
to

aTi

(
c + r

ai
‖ai‖

)
≤ bi ⇐⇒ aTi c + ‖ai‖r ≤ bi.

With this we can write the constraints of the linear program asaT1 ‖a1‖
...

...
aTn ‖an‖

(cr
)
≤

b1
...
bn

 .

2

https://colab.research.google.com/drive/1o_hIVH4s60Xju1hj2WbrEM3Lsga7bEKm#scrollTo=9Bj8Pj8u2dTz&line=2&uniqifier=1

	Egg dropping
	Pizza world record

