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1 Global Minimum

You want to find the global minimum of f using gradient descent, where f = 3x4− 4x3− 12x2 + 4

a) The extrema of f can be found by differentiating:

f ′ = 12(x3 − x2 − 2x) = 12x(x− 2)(x+ 1)

Therefore the extrema are at x = −1, 0, 2. The function values at these points are −1, 4,−28,
and the coefficient of x4 is positive, so the global minimum is at x = 2. With an appropriate
learning rate, gradient descent will converge to x = 2 for all x0 > 0, since x = 0 is the
nearest maximum and there are no maxima in the other direction. See Figure 1 below.

Figure 1: Convergence of gradient descent for different starting values with f = 3x4−4x3−12x2+4.

b) We know that the global minimum is x = 2 and the gradient at x = 3 is

f ′ = 12x(x− 2)(x+ 1) = 144

So to reach the global minimum directly in a single step we must have

2 = 3− 144α

=⇒ α =
1

144

c) The learning rate for Newton’s method is 1 over the second derivative, which is

f ′′(x) = 12(3x2 − 2x− 2)

=⇒ f ′′(3) = 12(19) = 228

This does not give the optimal learning rate. This is not surprising, because the Newton
method is a second order method (based on the second order Taylor expansion), so optimality
is only guaranteed for second order functions.



d) On the other hand f = ax2 + bx + c is a second order function, so the Newton method
will give the optimal learning rate and the global minimum will be found in a single step,
whatever the starting point. If you are not convinced, try it out ;)

f = ax2 + bx+ c

f ′ = 2ax+ b

f ′′ = 2a

So the minimum is at

2ax+ b = 0 =⇒ x =
−b
2a

And starting at x0, after one step we are at

x1 = x0 −
1

f ′′(x0)
(f ′(x0))

= x0 −
1

2a
(2ax0 + b) =

−b
2a

2 Logistic Regression & XOR

We want to learn the “XOR” function with logistic regression. Our input space is X = {0, 1}2
and our output space is Y = {0, 1} and we want to learn the mapping

(x1, x2) 7→ x1 ⊕ x2

a) Logistic regression can only learn linear decision boundaries, but the classes of “XOR” can
not be separated by a single line/hyperplane.

b) Logistic regression can learn “XOR” by manually adding features. You can for example add
x1x2 as a feature. Consider the function

f̂ = ψ(wTx) = ψ(−1 + 2x1 + 2x2 − 4x1x2)

where ψ is the logistic function, x = {1, x1, x2, x1x2}T , and w = {−1, 2, 2,−4}T . Then we

have the following values for f̂ in Table 1

x1 x2 x1x2 wTx f̂ y

1 1 1 -1 0.27 0
1 0 0 1 0.73 1
0 1 0 1 0.73 1
0 0 0 -1 0.27 0

Table 1: Logistic Regression for “XOR” with additional feature x1x2

c) How about “AND”, “OR”, “NOT AND”? Can logistic regression learn these?

Yes, we show the separating hyperplanes in Figure 2 below.

Figure 2: Logistic regression decision boundaries for binary logic
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d) Show that “hierarchical” logistic regression with 2 layers can learn “XOR”. What does this
remind you of?

We combine the “AND”, “OR”, “NOT AND” gates from the previous question. A possible
solution with weights along the edges is shown in Figure 3 below. This is similar to a very
simple neural network.
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Figure 3: Hierarchical Logistic Regression for “XOR”

e) A decision tree can learn “XOR”; see example decision boundaries in Figure 4 below. How-
ever, depending on the loss function and the stopping criterion, we might not make the first
split. This split still leaves perfectly balanced subsets and might not even improve the total
loss (depending on the chosen loss function).

Figure 4: Example decision tree boundary for “XOR”

3 Gini Impurity

a) Construct an optimal decision tree (requiring the minimum number of splits). Note that
decision trees only make axis-parallel splits, so a single split along the diagonal is not possible.

Figure 5: Example dataset separated with minimum number of splits.
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b) It is fairly clear what the best splits for “Gini” are, but we show some calculations to develop
familiarity with this splitting criterion.

As a first split only 2 options really come into question: (i = 1, 1.5) and (i = 2, 1.5)

L(1, 1.5) =
4

6

(
1− (p10)2 − (p11)2

)
+

2

6

(
1− (p20)2 − (p21)2

)
=

4

6

(
1− 1

2

2

− 1

2

2)
+

2

6
(1− 1− 0)

=
2

3

(
1

2

)
=

1

3

L(2, 1.5) =
3

6

(
1− 1

3

2

− 2

3

2)
+

3

6
(0)

=
2

9
<

1

3

where p10 denotes the proportion of negative samples on one side of the split with respect
to the total samples on that side, whereas p20 denotes the proportion of negative samples on
the other side.

Therefore the first split is (i = 2, 1.5). But the next split is clearly (i = 1, 1.5).

c) See Figure 6 below for an example, where CART with Gini does not find an optimal decision
tree, in terms of minimizing the number of splits.

Figure 6: Example dataset, where CART with Gini does not find an optimal decision tree.

The problem here is that Gini prefers to split the points along x1 = 1.5, rather than along
x1 = 0.5. Following this split, 3 more splits are required to perfectly separate the positive
and negative instances. But using the split x1 = 0.5, only 2 more splits are needed. The
relevant calculations are shown below.

Substituting into the CART formula with the Gini loss, we can calculate the following losses
for splits (i = 1, 0.5) and (i = 1, 1.5):

L(1, 0.5) =
2

5

(
1− 1

2

2

− 1

2

2)
+

3

5

(
1− 2

3

2

− 1

3

2)
=

2

5

(
1

2

)
+

3

5

(
4

9

)
=

42

90

L(1, 1.5) =
4

5

(
1− 1

2

2

− 1

2

2)
+

1

5
(0)

=
2

5
<

42

90

By continuing the splitting, we get the decision boundaries shown in Figure 7 below.
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Figure 7: Example dataset, where CART with Gini does not find an optimal decision tree. Gini
(left) uses 4 splits rather than the optimum (right) of 3
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