
Chapter 18

Broadcast & Shared Coins

In Chapter 17 we have developed a fast solution for synchronous byzantine
agreement (Algorithm 17.14), yet our asynchronous byzantine agreement solu-
tion (Algorithm 17.21) is still awfully slow. Some simple methods to speed up
the algorithms did not work, mostly due to unrealistic assumptions. Can we at
least solve asynchronous (assuming worst-case scheduling) consensus if we have
crash failures? Possibly based on some advanced communication methods?

18.1 Shared Coin on a Blackboard

Definition 18.1 (Shared Coin). A shared coin is a binary random variable
shared among all nodes. It is 0 for all nodes with constant probability and 1 for
all nodes with constant probability. The shared coin is allowed to fail (be 0 for
some nodes and 1 for other nodes) with constant probability.

Remarks:

• In Chapter 16, we have already seen a shared coin in Algorithm 16.22.
For that shared coin, we implicitly assumed that message scheduling
was random.

• Worst-case scheduling is an issue that we have only briefly considered
so far, in particular, to show that the random bitstring does not help
to speed up Algorithm 17.21.

• What if scheduling is worst-case in Algorithm 16.22?

Lemma 18.2. Algorithm 16.22 has exponential expected running time under
worst-case scheduling.

Proof. In Algorithm 16.22, worst-case scheduling may hide up to f rare zero
coinflips. In order to receive a zero as the outcome of the shared coin, the
nodes need to generate at least f + 1 zeros. The probability for this to happen
is (1/n)f+1, which is exponentially small for f ∈ Ω(n). In other words, with
worst-case scheduling, with probability 1− (1/n)f+1 the shared coin will be 1.
The worst-case scheduler must make sure that some nodes will always determin-
istically go for 0, and the algorithm needs nf+1 rounds until it terminates.
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Definition 18.3 (Blackboard Model). The blackboard is a trusted authority
which supports two operations. A node can write its message to the blackboard
and a node can read all the values that have been written to the blackboard so
far.

Remarks:

• We assume that the nodes cannot reconstruct the order in which the
messages are written to the blackboard since the system is asynchro-
nous.

Algorithm 18.4 Crash-Resilient Shared Coin with Blackboard (for node u)

1: while true do

2: Choose new local coin cu = +1 with probability 1/2, else cu = −1
3: Write cu to the blackboard
4: Set C = Read all coinflips on the blackboard
5: if |C| ≥ n2 then

6: return sign(sum(C))
7: end if

8: end while

Remarks:

• In Algorithm 18.4 the outcome of a coinflip is −1 or +1 instead of 0
or 1 because it simplifies the analysis, i.e., “−1 ≈ 0”.

• The sign function is used for the decision values. The sign function
returns +1 if the sum of all coinflips in C is positive, and −1 if it is
negative.

• The algorithm is unusual compared to other asynchronous algorithms
we have dealt with so far. So far we often waited for n − f mes-
sages from other nodes. In Algorithm 18.4, a single node can single-
handedly generate all n2 coinflips, without waiting.

• If a node does not need to wait for other nodes, we call the algorithm
wait-free.

• Many similar definitions beyond wait-free exist: lock-free, deadlock-
free, starvation-free, and generally non-blocking algorithms.

Theorem 18.5 (Central Limit Theorem). Let {X1, X2, . . . , XN} be a sequence
of independent random variables with Pr[Xi = −1] = Pr[Xi = 1] = 1/2 for all
i = 1, . . . , N . Then for every positive real number z,

lim
N→∞

Pr

[

N
∑

i=1

Xi ≥ z
√
N

]

= 1− Φ(z) >
1√
2π

z

z2 + 1
e−z2/2,

where Φ(z) is the cumulative distribution function of the standard normal dis-
tribution evaluated at z.
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Theorem 18.6. Algorithm 18.4 implements a polynomial shared coin.

Proof. Each node in the algorithm terminates once at least n2 coinflips are
written to the blackboard. Before terminating, nodes may write one additional
coinflip. Therefore, every node decides after reading at least n2 and at most
n2 + n − 1 coinflips. The power of the adversary lies in the fact that it can
prevent n − 1 nodes from writing their coinflips to the blackboard by delaying
their writes. Here, we will consider an even stronger adversary that can hide up
to n coinflips which were written on the blackboard.

We need to show that both outcomes for the shared coin (+1 or −1 in Line
6) will occur with constant probability, as in Definition 18.1. Let X be the sum
of all coinflips that are visible to every node. Since some of the nodes might read
n more values from the blackboard than others, the nodes cannot be prevented
from deciding if |X| > n. By applying Theorem 18.5 with N = n2 and z = 1,
we get:

Pr(X ≤ −n) = Pr(X ≥ n) = 1− Φ(1) > 0.15.

Lemma 18.7. Algorithm 18.4 uses n2 coinflips, which is optimal in this model.

Proof. The proof for showing quadratic lower bound makes use of configurations
that are indistinguishable to all nodes, similar to Theorem 16.14. It requires
involved stochastic methods and we therefore will only sketch the idea of where
the n2 comes from.

The basic idea follows from Theorem 18.5. The standard deviation of the
sum of n2 coinflips is n. The central limit theorem tells us that with constant
probability the sum of the coinflips will be only a constant factor away from
the standard deviation. As we showed in Theorem 18.6, this is large enough
to disarm a worst-case scheduler. However, with much less than n2 coinflips, a
worst-case scheduler is still too powerful. If it sees a positive sum forming on
the blackboard, it delays messages trying to write +1 in order to turn the sum
temporarily negative, so the nodes finishing first see a negative sum, and the
delayed nodes see a positive sum.

Remarks:

• Algorithm 18.4 cannot tolerate even one byzantine failure: assume
the byzantine node generates all the n2 coinflips in every round due
to worst-case scheduling. Then this byzantine node can make sure
that its coinflips always sum up to a value larger than n, thus making
the outcome −1 impossible.

• In Algorithm 18.4, we assume that the blackboard is a trusted central
authority. Like the random oracle of Definition 17.24, assuming a
blackboard does not seem practical. However, fortunately, we can use
advanced broadcast methods in order to implement something like a
blackboard with just messages.
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18.2 Broadcast Abstractions

Definition 18.8 (Accept). A message received by a node v is called accepted
if node v can consider this message for its computation.

Definition 18.9 (Best-Effort Broadcast). Best-effort broadcast ensures that
a message that is sent from a correct node u to another correct node v will
eventually be received and accepted by v.

Remarks:

• Note that best-effort broadcast is equivalent to the simple broadcast
primitive that we have used so far.

• Reliable broadcast is a stronger paradigm which implies that byzantine
nodes cannot send different values to different nodes. Such behavior
will be detected.

Definition 18.10 (Reliable Broadcast). Reliable broadcast ensures that the
nodes eventually agree on all accepted messages. That is, if a correct node v
considers message m as accepted, then every other node will eventually consider
message m as accepted.

Algorithm 18.11 Asynchronous Reliable Broadcast (code for node u)

1: Broadcast own message msg(u)
2: upon receiving msg(v) from v or echo(w,msg(v)) from n− 2f nodes w:
3: Broadcast echo(u,msg(v))
4: end upon

5: upon receiving echo(w,msg(v)) from n− f nodes w:
6: Accept msg(v)
7: end upon

Theorem 18.12. Algorithm 18.11 satisfies the following properties:

1. If a correct node broadcasts a message reliably, it will eventually be accepted
by every other correct node.

2. If a correct node has not broadcast a message, it will not be accepted by
any other correct node.

3. If a correct node accepts a message, it will be eventually accepted by every
correct node

This algorithm can tolerate f < n/3 byzantine nodes or f < n/2 crash failures.

Proof. We start with the first property. Assume a correct node broadcasts a
message msg(v), then every correct node will receive msg(v) eventually. In Line
3, every correct node (including the originator of the message) will echo the
message and, eventually, every correct node will receive at least n − f echoes,
thus accepting msg(v).

The second property holds for the case with crash failures, as all correct
nodes follow the algorithm. In the byzantine case, byzantine nodes are not able
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to forge an incorrect sender address, see Definition 17.1. Instead, they can echo
messages from correct nodes with a wrong input value. If all byzantine nodes
echo a message that has not been broadcast by a correct node, each correct
node will receive at most f < n − 2f echo messages and thus no correct node
will accept such a message.

For the third property, assume that some message originated from a byzan-
tine node b, or a node b that has crashed in the process of sending its message.
If a correct node accepted message msg(b), this node must have received at least
n − f echoes for this message in Line 5. If at most f nodes are faulty, at least
n−2f correct nodes must have broadcast an echo message for msg(b). Therefore,
every correct node will receive these n−2f echoes eventually and will broadcast
an echo. Finally, all n− f correct nodes will have broadcast an echo for msg(b)
and every correct node will accept msg(b).

Remarks:

• Algorithm 18.11 does not solve consensus according to Definition 16.1.
It only makes sure that all messages of correct nodes will be accepted
eventually. For correct nodes, this corresponds to sending and receiv-
ing messages in the asynchronous time model (Model 16.2).

• The algorithm has a linear message overhead since every node again
broadcasts every message.

• Note that byzantine nodes can issue arbitrarily many messages. This
may be a problem for protocols where each node is only allowed to
send one message (per round). Can we fix this, for instance with
sequence numbers?

Definition 18.13 (FIFO Reliable Broadcast). The FIFO (reliable) broad-
cast defines an order in which the messages are accepted in the system. If a
node u broadcasts message m1 before m2, then any node v will accept message
m1 before m2.

Algorithm 18.14 FIFO Reliable Broadcast (code for node u)

1: Broadcast own round r message msg(u, r)
2: upon receiving first message msg(v, r) from node v for round r or n − 2f

echo(w,msg(v, r)) messages:
3: Broadcast echo(u,msg(v, r))
4: end upon

5: upon receiving echo(w,msg(v, r)) from n− f nodes w:
6: if accepted msg(v, r − 1) then
7: Accept msg(v, r)
8: end if

9: end upon

Theorem 18.15. Algorithm 18.14 satisfies the properties of Theorem 18.12.
Additionally, Algorithm 18.14 makes sure that no two messages msg(v, r) and
msg’(v, r) are accepted from the same node. It can tolerate f < n/5 byzantine
nodes or f < n/2 crash failures.
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Proof. Just as reliable broadcast, Algorithm 18.14 satisfies the three properties
of Theorem 18.12 by simply following the flow of messages of a correct node.
It remains to show that at most one message will be accepted from some node
v in round r. In the crash failure case, this property holds because all nodes
follow the algorithm and therefore send at most one message in a round. For
the byzantine case, assume some correct node u has accepted msg(v, r) in Line
7. This node must have received n− f ECHO for this message, n− 2f of which
were sent from the correct nodes. At least n−2f−f = n−3f of those messages
are sent for the first time by correct nodes. Now, assume for contradiction that
another correct node accepts msg’(v, r). Similarly, n−3f of those messages are
sent for the first time by correct nodes. So, we have n − 3f + n − 3f > n − f
(for f < n/5) correct nodes sent ECHO for the first time. A contradiction.

Definition 18.16 (Atomic Broadcast). Atomic broadcast makes sure that
all messages are received in the same order by every node. That is, for any pair
of nodes u, v, and for any two messages m1 and m2, node u receives m1 before
m2 if and only if node v receives m1 before m2.

Remarks:

• Definition 18.16 is equivalent to Definition 15.8, i.e., atomic broadcast
= state replication.

• Now we have all the tools to finally solve asynchronous consensus.

18.3 Blackboard with Message Passing

Algorithm 18.17 Crash-Resilient Shared Coin (code for node u)

1: while true do

2: Choose local coin cu = +1 with probability 1/2, else cu = −1
3: FIFO-broadcast coin(cu, r) to all nodes
4: Save all received coins coin(cv, r) in a set Cu

5: Wait until accepted own coin(cu)
6: Request Cv from n− f nodes v, and add newly seen coins to Cu

7: if |Cu| ≥ n2 then

8: return sign(sum(Cu))
9: end if

10: end while

Theorem 18.18. Algorithm 18.17 solves asynchronous binary agreement for
f < n/2 crash failures.

Proof. The upper bound for the number of crash failures results from the upper
bound in 18.15. The idea of this algorithm is to simulate the read and write
operations from Algorithm 18.4.

Line 3 simulates a read operation: by accepting the own coinflip, a node
verifies that n−f correct nodes have received its most recent generated coinflip
coin(cu, r). At least n − 2f > 1 of these nodes will never crash and the value
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therefore can be considered as stored on the blackboard. While a value is
not accepted and therefore not stored, node u will not generate new coinflips.
Therefore, at any point of the algorithm, there is at most n additional generated
coinflips next to the accepted coins.

Line 6 of the algorithm corresponds to a read operation. A node reads a
value by requesting Cv from at least n− f nodes v. Assume that for a coinflip
coin(cu, r), f nodes that participated in the FIFO broadcast of this message
have crashed. When requesting n − f sets of coinflips, there will be at least
(n − 2f) + (n − f) − (n − f) = n − 2f > 1 sets among the requested ones
containing coin(cu, r). Therefore, a node will always read all values that were
accepted so far.

This shows that the read and write operations are equivalent to the same op-
erations in Algorithm 18.4. Assume now that some correct node has terminated
after reading n2 coinflips. Since each node reads the stored coinflips before gen-
erating a new one in the next round, there will be at most n additional coins
accepted by any other node before termination. This setting is equivalent to
Theorem 18.6 and the rest of the analysis is therefore analogous to the analysis
in that theorem.

Remarks:

• So finally we can deal with worst-case crash failures and worst-case
scheduling.

• But what about byzantine agreement? We need even more powerful
methods!

18.4 Using Cryptography

Definition 18.19 (Threshold Secret Sharing). Let t, n ∈ N with 1 ≤ t ≤ n.
An algorithm that distributes a secret among n participants such that t partici-
pants need to collaborate to recover the secret is called a (t, n)-threshold secret
sharing scheme.

Definition 18.20 (Signature). Every node can sign its messages in a way
that no other node can forge, thus nodes can reliably determine which node a
signed message originated from. We denote a message x signed by node u with
msg(x)u.
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Algorithm 18.21 (t, n)-Threshold Secret Sharing

1: Input: A secret s, represented as a real number.

Secret distribution by dealer d

2: Generate t− 1 random numbers a1, . . . , at−1 ∈ R

3: Obtain a polynomial p of degree t− 1 with p(x) = s+ a1x+ · · ·+ at−1x
t−1

4: Generate n distinct x1, . . . , xn ∈ R \ {0}
5: Distribute share msg(x1, p(x1))d to node v1, . . . , msg(xn, p(xn))d to node vn

Secret recovery

6: Collect t shares msg(xu, p(xu))d from at least t nodes
7: Use Lagrange’s interpolation formula to obtain p(0) = s

Remarks:

• Algorithm 18.21 relies on a trusted dealer, who broadcasts the secret
shares to the nodes.

• Note that the communication between the dealer and the nodes must
be private, i.e., a byzantine party cannot see the shares sent to the
correct nodes.

• Using an (f + 1, n)-threshold secret sharing scheme, we can encrypt
messages in such a way that byzantine nodes alone cannot decrypt
them.

Algorithm 18.22 Preprocessing Step for Algorithm 18.23 (code for dealer d)

1: According to Algorithm 18.21, choose polynomial p of degree f
2: for i = 1, . . . , n do

3: Choose coinflip ci, where ci = 0 with probability 1/2, else ci = 1
4: Using Algorithm 18.21, generate n shares (xi

1, p(x
i
1)), . . . , (x

i
n, p(x

i
n)) for

ci
5: end for

6: Send shares msg(x1
u, p(x

1
u))d, . . . , msg(x

n
u, p(x

n
u))d to node u

Algorithm 18.23 Shared Coin using Secret Sharing (ith iteration)

1: Replace Line 12 in Algorithm 17.21 by
2: Request shares from at least f + 1 nodes
3: Using Algorithm 18.21, let ci be the value reconstructed from the shares
4: return ci

Theorem 18.24. Algorithm 17.21 together with Algorithm 18.22 and Algo-
rithm 18.23 solves asynchronous byzantine agreement for f < n/3 in expected 3
number of rounds.

Proof. In Line 2 of Algorithm 18.23, the nodes collect shares from f + 1 nodes.
Since a byzantine node cannot forge the signature of the dealer, it is restricted
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to either send its own share or decide to not send it at all. Therefore, each
correct node will eventually be able to reconstruct secret ci of round i correctly
in Line 3 of the algorithm. The running time analysis follows then from the
analysis of Theorem 17.26.

Remarks:

•

• In Algorithm 18.22 we assume that the dealer generates the random
bitstring. This assumption is not necessary if the communication be-
tween any pair of nodes is private: In a setup phase of the algorithm,
each node can generate a local coinflip and broadcast the secret shares
of its coinflip to all other nodes. The corresponding secret will only
be revealed in a designated round of the algorithm, thus keeping the
outcome of the coinflip secret to a byzantine adversary.

• We showed that cryptographic assumptions can speed up asynchro-
nous byzantine agreement.

• Algorithm 17.21 can also be implemented in the synchronous setting.

• A randomized version of a synchronous byzantine agreement algorithm
can improve on the lower bound of t+ 1 rounds for the deterministic
algorithms.

Definition 18.25 (Cryptographic Hash Function). A hash function hash :
U → S is called cryptographic, if for a given z ∈ S it is computationally hard
to find an element x ∈ U with hash(x) = z.

Remarks:

• Popular hash functions used in cryptography include the Secure Hash
Algorithm (SHA) and the Message-Digest Algorithm (MD).

Algorithm 18.26 Simple Synchronous Byzantine Shared Coin (for node u)

1: Each node has a public key that is known to all nodes.
2: Let r be the current round of Algorithm 17.21
3: Broadcast msg(r)u, i.e., round number r signed by node u
4: Compute hv = hash(msg(r)v) for all received messages msg(r)v
5: Let hmin = minv hv

6: return least significant bit of hmin

Remarks:

• In Algorithm 18.26, Line 3 each node can verify the correctness of the
signed message using the public key.

• Just as in Algorithm 17.9, the decision value is the minimum of all
received values. While the minimum value is received by all nodes
after 2 rounds there, we can only guarantee to receive the minimum
with constant probability in this algorithm.
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• Hashing helps to restrict byzantine power, since a byzantine node
cannot compute the smallest hash.

Theorem 18.27. Algorithm 18.26 plugged into Algorithm 17.21 solves syn-
chronous byzantine agreement in expected 5 rounds for up to f < n/10 byzantine
failures.

Proof. With probability 1/3 the minimum hash value is generated by a byzan-
tine node. In such a case, we can assume that not all correct nodes will receive
the byzantine value and thus, different nodes might compute different values for
the shared coin.

With probability 2/3, the shared coin will be from a correct node, and with
probability 1/2 the value of the shared coin will correspond to the value which
was deterministically chosen by some of the correct nodes. Therefore, with
probability 1/3 the nodes will reach consensus in the next iteration of Algorithm
17.21. Thus the expected number of rounds is 4 (expected number of rounds to
be lucky in a round is 3 plus one more iteration to terminate).

Chapter Notes

Asynchronous byzantine agreement is usually considered in one out of two com-
munication models – shared memory or message passing. The first polynomial
algorithm for the shared memory model that uses a shared coin was proposed by
Aspnes and Herlihy [AH90] and required exchanging O(n4) messages in total.
Algorithm 18.4 is also an implementation of the shared coin in the shared mem-
ory model and it requires exchanging O(n3) messages. This variant is due to
Saks, Shavit and Woll [SSW91]. Bracha and Rachman [BR92] later reduced the
number of messages exchanged to O(n2 log n). The tight lower bound of Ω(n2)
on the number of coinflips was proposed by Attiya and Censor [AC08] and
improved the first non-trivial lower bound of Ω(n2/ log2 n) by Aspnes [Asp98].

In the message passing model, the shared coin is usually implemented us-
ing reliable broadcast. Reliable broadcast was first proposed by Srikanth and
Toueg [ST87] as a method to simulate authenticated broadcast. There is also
another implementation which was proposed by Bracha [Bra87]. Today, a lot of
variants of reliable broadcast exist, including FIFO broadcast [AAD05], which
was considered in this chapter. A good overview over the broadcast routines is
given by Cachin et al. [CGR14]. A possible way to reduce message complexity
is by simulating the read and write commands [ABND95] as in Theorem ??.
The message complexity of this method is O(n3). Alistarh et al. [AAKS14]
improved the number of exchanged messages to O(n2 log2 n) using a binary tree
that restricts the number of communicating nodes according to the depth of the
tree.

It remains an open question whether asynchronous byzantine agreement can
be solved in the message passing model without cryptographic assumptions.
If cryptographic assumptions are however used, byzantine agreement can be
solved in expected constant number of rounds. Algorithm 18.22 presents the
first implementation due to Rabin [Rab83] using threshold secret sharing. This
algorithm relies on the fact that the dealer provides the random bitstring. Chor
et al. [CGMA85] proposed the first algorithm where the nodes use verifiable
secret sharing in order to generate random bits. Later work focuses on improving
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resilience [CR93] and practicability [CKS00]. Algorithm 18.26 by Micali [Mic18]
shows that cryptographic assumptions can also help to improve the running time
in the synchronous model.

This chapter was written in collaboration with Darya Melnyk.
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