
Chapter 17

Byzantine Agreement

In order to make flying safer, researchers studied possible failures of various
sensors and machines used in airplanes. While trying to model the failures,
they were confronted with the following problem: Failing machines did not
just crash, instead they sometimes showed an unusual behavior before stopping
completely. With these insights researchers proposed a more general failure
model.

Definition 17.1 (Byzantine). A node which can have arbitrary behavior is
called byzantine. This includes “anything imaginable”, e.g., not sending any
messages at all, or sending different and wrong messages to different neighbors,
or lying about the input value.

Remarks:

• Byzantine behavior also includes collusion, i.e., all byzantine nodes
are being controlled by the same adversary.

• We assume that any two nodes communicate directly, and that no
node can forge an incorrect sender address. This is a requirement, such
that a single byzantine node cannot simply impersonate all nodes!

• We call non-byzantine nodes correct nodes.

Definition 17.2 (Byzantine Agreement). Finding consensus as in Definition
16.1 in a system with byzantine nodes is called byzantine agreement. An
algorithm is f -resilient if it still works correctly with f byzantine nodes.

Remarks:

• As for consensus (Definition 16.1) we also need agreement, termination
and validity. Agreement and termination are straight-forward, but
what about validity?
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17.1 Validity

Definition 17.3 (Any-Input Validity). The decision value must be the input
value of any node.

Remarks:

• This is the validity definition we used for consensus, in Definition 16.1.

• Does this definition still make sense in the presence of byzantine
nodes? What if byzantine nodes lie about their inputs?

• We would wish for a validity definition that differentiates between
byzantine and correct inputs.

Definition 17.4 (Correct-Input Validity). The decision value must be the input
value of a correct node.

Remarks:

• Unfortunately, implementing correct-input validity does not seem to
be easy, as a byzantine node following the protocol but lying about
its input value is indistinguishable from a correct node. Here is an
alternative.

Definition 17.5 (All-Same Validity). If all correct nodes start with the same
input v, the decision value must be v.

Remarks:

• If the decision values are binary, then correct-input validity is induced
by all-same validity.

• If the input values are not binary, but for example from sensors that
deliever values in R, all-same validity is in most scenarios not really
useful.

Definition 17.6 (Median Validity). If the input values are orderable, e.g.
v ∈ R, byzantine outliers can be prevented by agreeing on a value close to the
median of the correct input values – how close depends on the number of byzan-
tine nodes f .

Remarks:

• Is byzantine agreement possible? If yes, with what validity condition?

• Let us try to find an algorithm which tolerates 1 single byzantine node,
first restricting to the so-called synchronous model.

Model 17.7 (synchronous). In the synchronous model, nodes operate in
synchronous rounds. In each round, each node may send a message to the
other nodes, receive the messages sent by the other nodes, and do some local
computation.

Definition 17.8 (synchronous runtime). For algorithms in the synchronous
model, the runtime is simply the number of rounds from the start of the ex-
ecution to its completion in the worst case (every legal input, every execution
scenario).
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17.2 How Many Byzantine Nodes?

Algorithm 17.9 Byzantine Agreement with f = 1.

1: Code for node u, with input value x:

Round 1

2: Send tuple(u, x) to all other nodes
3: Receive tuple(v, y) from all other nodes v
4: Store all received tuple(v, y) in a set Su

Round 2

5: Send set Su to all other nodes
6: Receive sets Sv from all nodes v
7: T = set of tuple(v, y) seen in at least two sets Sv, including own Su

8: Let tuple(v, y) ∈ T be the tuple with the smallest value y
9: Decide on value y

Remarks:

• Byzantine nodes may not follow the protocol and send syntactically
incorrect messages. Such messages can easily be detected and dis-
carded. It is worse if byzantine nodes send syntactically correct mes-
sages, but with bogus content, e.g., they send different messages to
different nodes.

• Some of these mistakes cannot easily be detected: For example, if a
byzantine node sends different values to different nodes in the first
round; such values will be put into Su. However, some mistakes can
and must be detected: Observe that all nodes only relay information
in Round 2, and do not repeat their own value. So, if a byzantine
node sends a set Sv which contains a tuple(v, y), this tuple must be
removed by u from Sv upon receiving it (Line 6).

• Recall that we assumed that nodes cannot forge their source address;
thus, if a node receives tuple(v, y) in Round 1, it is guaranteed that
this message was sent by v.

Lemma 17.10. If n ≥ 4, all correct nodes have the same set T .

Proof. With f = 1 and n ≥ 4 we have at least 3 correct nodes. A correct node
will see every correct value at least twice, once directly from another correct
node, and once through the third correct node. So all correct values are in T .
If the byzantine node sends the same value to at least 2 other (correct) nodes,
all correct nodes will see the value twice, so all add it to set T . If the byzantine
node sends all different values to the correct nodes, none of these values will
end up in any set T .

Theorem 17.11. Algorithm 17.9 reaches byzantine agreement if n ≥ 4.

Proof. We need to show agreement, any-input validity and termination. With
Lemma 17.10 we know that all correct nodes have the same set T , and therefore
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agree on the same minimum value. The nodes agree on a value proposed by any
node, so any-input validity holds. Moreover, the algorithm terminates after two
rounds.

Remarks:

• If n > 4 the byzantine node can put multiple values into T .

• Algorithm 17.9 only provides any-input agreement, which is question-
able in the byzantine context: Assume a byzantine node sends different
values to different nodes, what is its input value in that case?

• Algorithm 17.9 can be slightly modified to achieve all-same validity
by choosing the smallest value that occurs at least twice.

• The idea of this algorithm can be generalized for any f and n >
3f . In the generalization, every node sends in every of f + 1 rounds
all information it learned so far to all other nodes. In other words,
message size increases exponentially with f .

• Does Algorithm 17.9 also work with n = 3?

Theorem 17.12. Three nodes cannot reach byzantine agreement with all-same
validity if one node among them is byzantine.

Proof. We will assume that the three nodes satisfy all-same validity and show
that they will violate the agreement condition under this assumption.

In order to achieve all-same validity, nodes have to deterministically decide
for a value x if it is the input value of every correct node. Recall that a Byzantine
node which follows the protocol is indistinguishable from a correct node. Assume
a correct node sees that n−f nodes including itself have an input value x. Then,
by all-same validity, this correct node must deterministically decide for x.

In the case of three nodes (n − f = 2), a node has to decide on its own
input value if another node has the same input value. Let us call the three
nodes u, v and w. If correct node u has input 0 and correct node v has input
1, the byzantine node w can fool them by telling u that its value is 0 and
simultaneously telling v that its value is 1. By all-same validity, this leads to u
and v deciding on two different values, which violates the agreement condition.
Even if u talks to v, and they figure out that they have different assumptions
about w’s value, u cannot distinguish whether w or v is byzantine.

Theorem 17.13. A network with n nodes cannot reach byzantine agreement
with f ≥ n/3 byzantine nodes.

Proof. Assume (for the sake of contradiction) that there exists an algorithm
A that reaches byzantine agreement for n nodes with f ≥ dn/3e byzantine
nodes. We will show that A cannot satisfy all-same validity and agreement
simultaneously.

Let us divide the n nodes into three groups of size n/3 (either bn/3c or
dn/3e, if n is not divisible by 3). Assume that one group of size dn/3e ≥ n/3
contains only Byzantine and the other two groups only correct nodes. Let
one group of correct nodes start with input value 0 and the other with input
value 1. As in Lemma 17.12, the group of Byzantine nodes supports the input
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value of each node, so each correct node observes at least n − f nodes who
support its own input value. Because of all-same validity, every correct node
has to deterministically decide on its own input value. Since the two groups
of correct nodes had different input values, the nodes will decide on different
values respectively, thus violating the agreement property.

17.3 The King Algorithm

Algorithm 17.14 King Algorithm (for f < n/3)

1: x = my input value
2: for phase = 1 to f + 1 do

Vote

3: Broadcast value(x)

Propose

4: if some value(y) received at least n− f times then
5: Broadcast propose(y)
6: end if
7: if some propose(z) received more than f times then
8: x = z
9: end if

King

10: Let node vi be the predefined king of this phase i
11: The king vi broadcasts its current value w
12: if received strictly less than n− f propose(y) then
13: x = w
14: end if
15: end for

Lemma 17.15. Algorithm 17.14 fulfills the all-same validity.

Proof. If all correct nodes start with the same value, all correct nodes propose it
in Line 5. All correct nodes will receive at least n− f proposals, i.e., all correct
nodes will stick with this value, and never change it to the king’s value. This
holds for all phases.

Lemma 17.16. If a correct node proposes x, no other correct node proposes y,
with y 6= x, if n > 3f .

Proof. Assume (for the sake of contradiction) that a correct node proposes value
x and another correct node proposes value y. Since a good node only proposes
a value if it heard at least n−f value messages, we know that both nodes must
have received their value from at least n− 2f distinct correct nodes (as at most
f nodes can behave byzantine and send x to one node and y to the other one).
Hence, there must be a total of at least 2(n − 2f) + f = 2n − 3f nodes in the
system. Using 3f < n, we have 2n− 3f > n nodes, a contradiction.
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Lemma 17.17. There is at least one phase with a correct king.

Proof. There are f + 1 phases, each with a different king. As there are only f
byzantine nodes, one king must be correct.

Lemma 17.18. After a phase with a correct king, the correct nodes will not
change their values v anymore, if n > 3f .

Proof. If all correct nodes change their values to the king’s value, all correct
nodes have the same value. If some correct node does not change its value to
the king’s value, it received a proposal at least n − f times, therefore at least
n−2f correct nodes broadcasted this proposal. Thus, all correct nodes received
it at least n − 2f > f times (using n > 3f), therefore all correct nodes set
their value to the proposed value, including the correct king. Note that only
one value can be proposed more than f times, which follows from Lemma 17.16.
With Lemma 17.15, no node will change its value after this phase.

Theorem 17.19. Algorithm 17.14 solves byzantine agreement.

Proof. The king algorithm reaches agreement as either all correct nodes start
with the same value, or they agree on the same value latest after the phase
where a correct node was king according to Lemmas 17.17 and 17.18. Because
of Lemma 17.15 we know that they will stick with this value. Termination is
guaranteed after 3(f + 1) rounds, and all-same validity is proved in Lemma
17.15.

Remarks:

• Algorithm 17.14 requires f + 1 predefined kings. We assume that the
kings (and their order) are given. Finding the kings indeed would be
a byzantine agreement task by itself, so this must be done before the
execution of the King algorithm.

• Do algorithms exist which do not need predefined kings? Yes, see
Section 17.5.

• Can we solve byzantine agreement (or at least consensus) in less than
f + 1 rounds?

17.4 Lower Bound on Number of Rounds

Theorem 17.20. A synchronous algorithm solving consensus in the presence
of f crashing nodes needs at least f +1 rounds, if nodes decide for the minimum
seen value.

Proof. Let us assume (for the sake of contradiction) that some algorithm A
solves consensus in f rounds. Some node u1 has the smallest input value x, but
in the first round u1 can send its information (including information about its
value x) to only some other node u2 before u1 crashes. Unfortunately, in the
second round, the only witness u2 of x also sends x to exactly one other node u3

before u2 crashes. This will be repeated, so in round f only node uf+1 knows
about the smallest value x. As the algorithm terminates in round f , node uf+1

will decide on value x, all other surviving (correct) nodes will decide on values
larger than x.
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Remarks:

• A general proof without the restriction to decide for the minimum
value exists as well.

• Since byzantine nodes can also just crash, this lower bound also holds
for byzantine agreement, so Algorithm 17.14 has an asymptotically
optimal runtime.

• So far all our byzantine agreement algorithms assume the synchronous
model. Can byzantine agreement be solved in the asynchronous model?

17.5 Asynchronous Byzantine Agreement

Algorithm 17.21 Asynchronous Byzantine Agreement (Ben-Or, for f < n/10)

1: xu ∈ {0, 1} / input bit
2: round = 1 / round
3: while true do
4: Broadcast propose(xu,round)
5: Wait until n− f propose messages of current round arrived
6: if at least n/2 + 3f + 1 propose messages contain same value x then
7: Broadcast propose(x,round + 1)
8: Decide for x and terminate
9: else if at least n/2+f +1 propose messages contain same value x then

10: xu = x
11: else
12: choose xu randomly, with Pr[xu = 0] = Pr[xu = 1] = 1/2
13: end if
14: round = round + 1
15: end while

Lemma 17.22. Let a correct node choose value x in Line 10, then no other
correct node chooses value y 6= x in Line 10.

Proof. For the sake of contradiction, assume that both 0 and 1 are chosen
in Line 10. This means that both 0 and 1 had been proposed by at least
n/2 + 1 out of n− f correct nodes. In other words, we have a total of at least
2 · n/2 + 2 = n + 2 > n− f correct nodes. Contradiction!

Theorem 17.23. Algorithm 17.21 solves binary byzantine agreement as in Def-
inition 17.2 for up to f < n/10 byzantine nodes.

Proof. First note that it is not a problem to wait for n− f propose messages in
Line 5, since at most f nodes are byzantine. If all correct nodes have the same
input value x, then all (except the f byzantine nodes) will propose the same
value x. Thus, every node receives at least n− 2f propose messages containing
x. Observe that for f < n/10, we get n − 2f > n/2 + 3f and the nodes will
decide on x in the first round already. We have established all-same validity!
If the correct nodes have different (binary) input values, the validity condition
becomes trivial as any result is fine.
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What about agreement? Let u be the first node to decide on value x (in
Line 8). Due to asynchrony, another node v received messages from a different
subset of the nodes, however, at most f senders may be different. Taking
into account that byzantine nodes may lie (send different propose messages to
different nodes), f additional propose messages received by v may differ from
those received by u. Since node u had at least n/2 + 3f + 1 propose messages
with value x, node v has at least n/2 + f + 1 propose messages with value x.
Hence every correct node will propose x in the next round and then decide on
x.

So we only need to worry about termination: We have already seen that
as soon as one correct node terminates (Line 8) everybody terminates in the
next round. So what are the chances that some node u terminates in Line 8?
Well, we can hope that all correct nodes randomly propose the same value (in
Line 12). Maybe there are some nodes not choosing randomly (entering Line 10
instead of 12), but according to Lemma 17.22 they will all propose the same.

Thus, at worst all n−f correct nodes need to randomly choose the same bit,
which happens with probability 2−(n−f)+1. If so, all correct nodes will send the
same propose message, and the algorithm terminates. So the expected running
time is exponential in the number of nodes n in the worst case.

Remarks:

• This Algorithm is a proof of concept that asynchronous byzantine
agreement can be achieved. Unfortunately this algorithm is not useful
in practice, because of its runtime.

• Note that for f ∈ O(
√
n), the probability for some node to terminate

in Line 8 is greater than some positive constant. Thus, Algorithm
17.21 terminates within expected constant number of rounds for small
values of f .

• Local coinflips are responsible for the slow runtime of Algorithm 17.21
and 16.14. Is there a simple way to replace the local coinflips by
randomness that does not cause exponential runtime?

17.6 Random Oracle and Bitstring

Definition 17.24 (Random Oracle). A random oracle is a trusted (non-byzantine)
random source which can generate random values.

Algorithm 17.25 Algorithm 17.21 with a Magic Random Oracle

1: Replace Line 12 in Algorithm 17.21 by
2: return ci, where ci is ith random bit by oracle
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Remarks:

• Algorithm 17.25, as well as the following Algorithms 17.28 and 18.24,
will be called in Line 12 of Algorithm 17.21. So instead of every node
throwing a local coin (and hoping that they all show the same), the
nodes will base their random decision on the proposed algorithm.

Theorem 17.26. Algorithm 17.25 plugged into Algorithm 17.21 solves asyn-
chronous byzantine agreement in expected constant number of rounds.

Proof. If there is a large majority for one of the input values in the system, all
nodes will decide within two rounds since Algorithm 17.21 satisfies all-same-
validity; the coin is not even used.

If there is no significant majority for any of the input values at the beginning
of algorithm 17.21, all correct nodes will run Algorithm 17.25. Therefore, they
will set their new value to the bit given by the random oracle and terminate in
the following round.

If neither of the above cases holds, some of the nodes see an n/2 + f + 1
majority for one of the input values, while other nodes rely on the oracle. With
probability 1/2, the value of the oracle will coincide with the deterministic ma-
jority value of the other nodes. Therefore, with probability 1/2, the nodes will
terminate in the following round. The expected number of rounds for termina-
tion in this case is 3.

Remarks:

• Unfortunately, random oracles are a bit like pink fluffy unicorns: they
do not really exist in the real world. Can we fix that?

Definition 17.27 (Random Bitstring). A random bitstring is a string of
random binary values, known to all participating nodes when starting a protocol.

Algorithm 17.28 Algorithm 17.21 with Random Bitstring

1: Replace Line 12 in Algorithm 17.21 by
2: return bi, where bi is ith bit in common random bitstring

Remarks:

• But is such a precomputed bitstring really random enough? We should
be worried because of Theorem 16.13.

Theorem 17.29. If the scheduling is worst-case, Algorithm 17.28 plugged into
Algorithm 17.21 does not terminate.

Proof. We start Algorithm 17.28 with the following input: n/2 + f + 1 nodes
have input value 1, and n/2− f − 1 nodes have input value 0. Assume w.l.o.g.
that the first bit of the random bitstring is 0.

If the second random bit in the bitstring is also 0, then a worst-case scheduler
will let n/2 + f + 1 nodes see all n/2 + f + 1 values 1, these will therefore
deterministically choose the value 1 as their new value. Because of scheduling
(or byzantine nodes), the remaining n/2− f − 1 nodes receive strictly less than
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n/2 + f + 1 values 1 and therefore have to rely on the value of the shared coin,
which is 0. The nodes will not come to a decision in this round. Moreover, we
have created the very same distribution of values for the next round (which has
also random bit 0).

If the second random bit in the bitstring is 1, then a worst-case scheduler can
let n/2−f −1 nodes see all n/2+f +1 values 1, and therefore deterministically
choose the value 1 as their new value. Because of scheduling (or byzantine
nodes), the remaining n/2 + f + 1 nodes receive strictly less than n/2 + f + 1
values 1 and therefore have to rely on the value of the shared coin, which is 0.
The nodes will not decide in this round. And we have created the symmetric
situation for input value 1 that is coming in the next round.

So if the current and the next random bit are known, worst-case scheduling
will keep the system in one of two symmetric states that never decide.

Remarks:

• Theorem 17.29 shows that a worst-case scheduler cannot be allowed
to know the random bits of the future.

• Note that in the proof of Theorem 17.29 we did not even use any
byzantine nodes. Just bad scheduling was enough to prevent termi-
nation.

Chapter Notes

The project which started the study of byzantine failures was called SIFT and
was founded by NASA [WLG+78], and the research regarding byzantine agree-
ment started to get significant attention with the results by Pease, Shostak, and
Lamport [PSL80, LSP82]. In [PSL80] they presented the generalized version
of Algorithm 17.9 and also showed that byzantine agreement is unsolvable for
n ≤ 3f . The algorithm presented in that paper is nowadays called Exponential
Information Gathering (EIG), due to the exponential size of the messages.

There are many algorithms for the byzantine agreement problem. For ex-
ample the Queen Algorithm [BG89] which has a better runtime than the King
algorithm [BGP89], but tolerates less failures. That byzantine agreement re-
quires at least f + 1 many rounds was shown by Dolev and Strong [DS83],
based on a more complicated proof from Fischer and Lynch [FL82].

While many algorithms for the synchronous model have been around for a
long time, the asynchronous model is a lot harder. The only results were by
Ben-Or and Bracha. Ben-Or [Ben83] was able to tolerate f < n/5. Bracha
[BT85] improved this tolerance to f < n/3.

Nearly all developed algorithms only satisfy all-same validity. There are a
few exceptions, e.g., correct-input validity [FG03], available if the initial values
are from a finite domain, median validity [SW15, MW18, DGM+11] if the input
values are orderable, or values inside the convex hull of all correct input values
[VG13, MH13, MHVG15] if the input is multidimensional.

Before the term byzantine was coined, the terms Albanian Generals or Chi-
nese Generals were used in order to describe malicious behavior. When the
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involved researchers met people from these countries they moved – for obvious
reasons – to the historic term byzantine [LSP82].

Hat tip to Peter Robinson for noting how to improve Algorithm 17.9 to all-
same validity. This chapter was written in collaboration with Barbara Keller.
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