
Distributed
 Computing

Autumn Term 2020 Prof. T. Roscoe, Prof. R. Wattenhofer

Computer Systems
— Solution to Assignment 11 —

1 Game Theory

Quiz

1.1 Selling a Franc

We assume that there are two bidders, b1 and b2. If b1 bids 5 rappen, his gain is 95 rappen. Now
b2 is inclined to bid 10 rappen and gains 90 rappen. This can continue until b1 bids 95 rappen.
Bidder b2 now has the choice of losing 90 rappen (her last bid) or coming out even. Since she is
a rational player, she will bid 1 franc. Bidder b1 now faces a similar choice. Either he loses 95
rappen or he bids and has a chance of only losing 5 rappen. Since he is a rational player, he will
bid 1.05 franc. This bidding war will continue indefinitely (or until one bidder runs out of money).

There are a few ways the bidders could have avoided this situation. Apart from the obvious,
simply do not play, they could have also colluded. One bidder bids 5 rappen for the franc and
the bidders will simply split the money they made. This requires that the bidders can trust each
other. As you can guess, there are games that anticipate collaboration.
There exists however a strategy, which is profitable even for a non-colluding bidder. If the first
bidder bids 95 rappen, she will win 5 rappen, because nobody else will also bid. Why will nobody
else bid? If another bidder bids more, he will certainly not bid more than 1 franc, because this
will yield a negative payoff. Instead, he could bid 1 franc. But then, the first bidder will bid 1.05
francs to minimize her loss. And then the game continues as outlined at the beginning and both
bidders will incur a loss. Therefore, no rational player will bid 1 franc in this scenario.

Basic

1.2 Selfish Caching

To be sure that we find every Nash Equilibrium, we explicitly write down every best response.

i. The best response strategies are

u: cache only if nobody else does. (B1)

v: cache if neither u nor x cache. (B2)

w: cache unless u caches. (B3)

x: cache if neither u nor v cache. (B4)

Nash equilibrium. If we assume that u plays Yu = 1 (u caches) the system can only be in
a NE if Yv = Yw = Yx = 0 due to (B1). Since for all v, w, and x it is the best response not
to cache if u does, x = (1000) is an Nash equilibrium. If Yu = 0 then (B3) implies Yw = 1.
If furthermore, Yv = 1 it must hold that Yx = 0 due to (B2). This does not conflict with
(B4), and (0110) constitutes another NE. Last, if Yv = 0 then (B2) implies Yx = 1, which is
also okay with (B4). Hence (0011) is also a NE.

NE = {(1000), (0110), (0011)}

Price of anarchy. The social optimum is achieved in strategy profile (1000), namely
OPT = cost(1000) = 1 + 1

2 + 3
8 + 3

4 = 21
8 . Since (1000) is also a Nash equilibrium we

immediately get that OPoA = 1. The worst-case price of anarchy is

PoA =
cost(0110)

OPT
=

1
2 + 1 + 1 + 7

8
21
8

=
9

7
≈ 1.286.

ii. The best response strategies are

u: cache only if nobody else does. (B1)

v: cache unless u caches. (B2)

w: cache unless x caches. (B3)

x: cache if neither u nor w cache. (B4)

Nash equilibrium. If we assume that u plays Yu = 1 (u caches) the system can only be
in a NE if Yv = Yw = Yx = 0 due to (B1). However, Yx = 0 implies that Yw = 1 due to
(B3), and hence there can be no NE with Yu = 1. In any NE it must hold that Yu = 0.
Consequently, it must hold that Yv = 1 from (B2). Now if Yw = 1 (B3) implies that x does
not cache. This does not infringe rule (B4), and thus x = (0110) is a Nash equilibrium. If
Yw = 0 then (B4) implies that x caches. As thus, rule (B3) is not violated x = (0101) is also
a Nash equilibrium.

Price of anarchy. The social optimum is achieved in strategy profile (0110), namely
OPT = cost(0110) = 1

3 · 0.2 + 1 + 1 + 1
2 · 0.2 = 2.16. Since (0110) is also a Nash equilibrium

we get that the optimistic price of anarchy is 1. The worst-case price of anarchy is

PoA =
cost(0101)

OPT
=

1/3 · 0.2 + 1 + 0.2 + 1

2.16
=

68

65
≈ 1.046

1.3 Selfish Caching with variable caching cost

We define Di to be the set of nodes that cover node i. A node j covers node i if and only if
dici←j < αi, i.e., node i prefers accessing the object at node j than caching it. Convince yourself
that a strategy profile is a Nash Equilibrium if and only if for each node i it holds that

� if Yi = 1 then Yj = 0 for all j ∈ Di, and

� if Yi = 0 then ∃j ∈ Di with Yj = 1.

i. Du = ∅, Dv = {u,w}, Dw = {u}. Du being empty implies Yu = 1 (i.e. caches the file).
Hence Yv = 0, and Yw = 1. NE = {(101)}. PoA = 1 since (101) is also the social optimum
strategy.

ii. Du = {v}, Dv = {u}, Dw = {u, v}. If Yu = 1, then Yv = 0 and Yw = 0. If Yu = 0, then
Yv = 1. Hence Yw = 0. The equilibria are NE = {(100), (010)}.

PoA =
cost(100)

cost(010)
=

3 + 1 + 8/3

3/2 + 3/2 + 5/3
=

40

28
≈ 1.43

2

Dominant strategies. Every dominant strategy profile is also a Nash equilibrium. Hence we
only have to check the computed NEs whether they consist of dominant strategies only.

Let us consider game i. Since every dominant strategy profile is also a Nash Equilibrium,
it suffices to consider the NE. The game has no dominant strategy profile. Profile (101) is no
dominant strategy profile in game i. since, although Yu = 1 is the dominant strategy for u,
Yv = 0, and Yw = 1 are not dominant strategies for v and w. If Yv = 1, then it would be the best
response of w to set Yw = 0. Game ii: Since the decision of node u whether to cache depends
on the decision of node v, this is not a dominant strategy. Therefore, this game has no dominant
strategy profile.

Advanced

1.4 Matching Pennies

The bi-matrix of the game with Tobias as row player, and Stephan as column player looks as
follows:

H T

H 1 , -1 -1 , 1

T -1 , 1 1 , -1

This zero-sum game has no pure Nash equilibrium. For the mixed NEs, Tobias plays heads
(H) with probability p, tails (T) with probability 1− p. Stephan plays H with probability q, and
T with probability 1− q. We get the expected utility functions Γ:

ΓT (p, q) = p(q − (1− q)) + (1− p)(−q + (1− q)) = (4q − 2) · p+ 1− 2q

ΓS(p, q) = q(−p+ (1− p)) + (1− q)(p− (1− p)) = (2− 4p) · q + 2p− 1

If Stephan plays q = 1/2 the term 4q − 2 equals 0, and any choice of p will yield the same payoff
for Tobias. If Tobias plays p = 1/2 then any choice of q is a best response for Stephan. Thus
(p, q) = (1/2, 1/2) is a mixed NE. Note that for any choice of p > 1/2, Stephan’s best response is
to choose q = 0. For a p < 1/2 Stephan would choose q = 1. However, Tobias’ best response to
q > 1/2 is p = 1, and p = 0 if q < 1/2. Hence (p, q) = (1/2, 1/2) is the only pair of mutual best
responses.

1.5 PoA Classes

Let In be an instance of An[a,b] that maximizes the price of anarchy, i.e. PoA(An[a,b]) = PoA(In).

Let x, y ∈ X be two strategy profiles in In such that PoA(In) = cost(y)/cost(x). We show the
claim by constructing an instance În ∈ Wn

[1
b ,

1
a]

out of In for which it holds that PoA(În) ≥
a
bPoA(In) = a

bPoA(An[a,b]). We construct În by setting di = 1/αi, α̂i = 1 where αi are the

placement costs (for local caching) of player i in In. All edges remain as in In. This game has the
same Nash equilibria as In since the cover sets Di (nodes for which we do not cache if these cache
already) for each peer stay the same. A peer j is in Di iff ci←j < αi, or ci←j/αi < 1 respectively.
We get the bound by comparing the performance of the two strategies x, y that produce the PoA
in In in În. Note that x is not necessarily a social optimum in În, but y is a Nash equilibrium

3

also in În, because the cover sets are the same.

PoA(În) ≥
ˆcost(y)

ˆcost(x)
=

∑n
i=1

(
yi + (1− yi) ci(y)αi

)
∑n
i=1

(
xi + (1− xi) ci(x)αi

) (1)

=
b · a

∑n
i=1

(
yi + (1− yi) ci(y)αi

)
b · a

∑n
i=1

(
xi + (1− xi) ci(x)αi

) (2)

≥
a
∑n
i=1 (yiαi + (1− yi)ci(y))

b
∑n
i=1 (xiαi + (1− xi)ci(x))

(3)

=
a · cost(y)

b · cost(x)
=
a

b
PoA(In) (4)

ˆcost(x) denotes the cost function in În. xi, and yi are either 1 or 0. xi equals 1 if player i caches
in strategy profile x, and 0 if she does not. With ci(y) we denote the cost of node i if it access the
file remotely in strategy y. For step (3) we exploit the fact that b ≥ αi and a ≤ αi for all i.

2 Distributed Storage

Quiz

2.1 Hypercubic Networks

The hypergraphs are drawn as follows. The 4-dimensional hypercube (M(2, 4)) can also be drawn
as two cubes side-by-side with connected corners.

0 1 2

00 10 20

01 11 21

02 12 22

M(3,1)

M(3,2)

1000

1100 1110

0000
0010

01100100

1010

0001 0011

01110101

1011
1001

1101 1111

M(2,4)

SE(2)

00 11

01

10

Basic

2.2 Iterative vs. Recursive Lookup

a) In the recursive lookup there is no difference between a request originating at the node
and a request being forwarded. Only once the lookup is finished do we need to care about

4

forwarding the result to the previous node or returning it to the caller. This allows the
same lookup logic to be reused for both. Furthermore, if the response is returned through
the same path as the request was sent through, then the intermediate nodes can cache the
result, potentially speeding up future lookups and distributing the load of a popular item.

b) Recursive lookups can easily be misused to mount Denial-of-Service attacks, since a sin-
gle request message from an originating node is forwarded over multiple hops. Each hop
multiplies the impact this message has on the network. Thus the attacker’s bandwidth is
potentially multiplied by the number of hops the request is routed through. Furthermore, if
the result is returned over the same path as the request, then the attacker is hidden behind
a number of hops and the victim only sees traffic originating from the last hop.

2.3 Building a set of Hash functions

The salted hashing function derivation allows random access to any of the derived hashing functions
without having to recompute the intermediate functions, as is the case in the iterative hashing
function derivation scheme.

Advanced

2.4 Multiple Skiplists

a) 1 shows the structure of a multi-skiplist with 8 nodes and 3 levels. Notice that each of the
lists would wrap around at the ends.

b) Unlike in the single skiplist each node now has a constant degree of 2 · (l + 1), i.e., on each
level it has a right and a left neighbor, including the simple list at l = 0.

c) The number of hops is still O(log(n)), just like the simple skiplist.

000 001 010 011 100 101 110 111

Figure 1: A multi-skiplist with 3 levels and 8 nodes

5

