
Computer Systems
Exercise Session

1

Last Exercise
Assignment 9

2

Location p

Distance to A: || pA – p ||

Distance to B: || pB – p ||

Time difference 3.3 µs => distance = 3.3 µs · 3 · 108 m/s ≈ 1km

Residual r = || pB − p || − || pA − p || − 1 km

Last Exercise

3

Residual at (2,6): abs(||(2,1)-(2,6)||-||(6,6)-(2,6)||-1) = abs(5 – 4 – 1) = 0

Residual at (4,4): abs(||(2,1)-(4,4)||-||(6,6)-(4,4)||-1) = abs(3.6 – 2.8 – 1) = 0.2

Last Exercise

4

Distance from (2,6) to (2,1) is: 5 km

Divide by speed of light:
5𝑘𝑚

3∗108𝑚/𝑠
= 16.7 𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑐𝑜𝑛𝑑𝑠

Time message is received: t + 16.7 microseconds

Last Exercise

5

Last Exercise

6

Last Exercise 1.3

7

Last Exercise

8

i n

j m

Measure of concurrency:
𝑀𝑢−𝑀𝑠

𝑀𝑐−𝑀𝑠

𝑀𝑠 = Nr. sequential snapshots = 𝑛 +𝑚 + 1

𝑀𝑐 = Nr. concurrent snapshots = (𝑚 + 1)(𝑛 + 1)

𝑀𝑢 = Nr. snapshots in our system =

𝑖 ∗ 𝑚 + 1 + (𝑛 + 1 − 𝑖 𝑚 + 1 − 𝑗)

Last Exercise 2.2

9

i n

j m

𝑀𝑢 = Nr. snapshots in our system =

𝑖 ∗ 𝑚 + 1 + (𝑛 + 1 − 𝑖 𝑚 + 1 − 𝑗)

Measure of concurrency:
𝑀𝑢−𝑀𝑠

𝑀𝑐−𝑀𝑠

𝑀𝑠 = Nr. sequential snapshots = 𝑛 +𝑚 + 1

𝑀𝑐 = Nr. concurrent snapshots =(𝑛 + 1)(𝑚 + 1)

Last Exercise 2.2

10

Chapter 21
Quorum Systems

11

• Quorum
• Subset of nodes

• Quorum System
• Set of quorums such that every two quorums intersect

• Majority quorum: every quorum has
𝑛

2
+ 1 nodes

• Idea:
• When accessing a lock from all members of one quorum there will not be

possible for another node to do the same for any quorum

Quorum Systems

12

Singleton and Majority

13

• Load ~ probability
• Load of access strategy on node: Probability it gets accessed
• Load on quorum system induced by access strategy: load of node with

maximal load
• Load of quorum system: load induced by access strategy with best access

strategy

• Work ~ count
• Work of quorum: number of nodes
• Work induced by access strategy: expected number of nodes accessed
• Work of quorum system: work induced by access strategy with best access

strategy

Load and work

14

Quorum Systems - Example

v1

v2

v3

v4

v5

Access Strategy Z:
PZ(Q1) = 1/2

PZ(Q2) = PZ(Q3) = PZ(Q4) = 1/6

Load induced by Z on quorum system S:

LZ(S) = max
𝑣𝑖∈𝑆

𝐿𝑍(𝑣𝑖) = 5/6

Work induced by Z on quorum system S:

𝑊𝑍 𝑆 = ෍

𝑄∈𝑆

𝑃𝑍 𝑄 ∗𝑊(𝑄) =
1

2
∗ 2 +

1

6
∗ 3 +

1

6
∗ 3 +

1

6
∗ 3 =

15

6

LZ(v1) = 4/6

LZ(v2) = 1/2 + 1/6 + 1/6 = 5/6

LZ(v3) = 2/6

LZ(v4) = 2/6

LZ(v5) = 2/6

15

• f-resilient
• any f nodes can fail and at least one quorum still exists

• resilience: largest such f

Fault Tolerance

16

Load, work and resilience

17

Problem:

• 2 quorums intersect

in two nodes -> deadlock

Grid Quorum System – Basic Grid

18

Solution:

Try to get all locks in order (by id), if

one is locked release all and start

over.

-> at least one quorum will always

make progress (the one with highest

identifier locked currently)

Grid Quorum System – Another Grid

20

• Mini columns: one mini column in every band

• One band with at least one element per

mini-column

• r = rows in a band, h = number of bands,

d = count columns

• size of each quorum: h*r + d -1

• Has ideal properties:

• work: 𝜃(𝑛)

• load: 𝜃(
1

𝑛
)

• asymptotic failure probability: 0

B-Grid Quorum System

21

• f-disseminating
1) if the intersection of two quorums always contains f+1 nodes

2) for any set of f byzantine nodes, there always is a quorum without
byzantine nodes
• good model if data is self-authenticating, if not we need a stronger one

• f-masking
1) if the intersection of two quorums always contains 2f+1 nodes

2) for any set of f byzantine nodes, there always is a quorum without
byzantine nodes
• correct nodes will always be in majority

Byzantine Quorum System

22

• 𝑓 + 1 rows and 𝑓 + 1 columns in each Quorum

• 2 ∗ 𝑓 + 1* 𝑓 + 1 = 2f + 2 intersections

• -> f-masking quorum systems

• Example: f = 3

Byzantine Quorum System – M Grid

23

Chapter 22
Eventual Consistency & Bitcoin

24

• Consistency:
• All nodes agree on the current state of the system

• Availability:
• The system is operational and instantly processing incoming requests

• Partition tolerance:
• Still works correctly if a network partition happens

• Good news:
• achieving any two is very easy

• Bad news:
• achieving three is impossible (CAP theorem)

• => Eventual Consistency:
• Guarantees that the state is eventually agreed upon, but the nodes may disagree

temporarily

Consistency, Availability,
and Partition Tolerance

25

• decentralized network consisting of nodes

• users generate private/public key pair
• address is generated from public key

• it is difficult to get users “real” identity from public key

Inputs 5

signature

a

3

signatur

e b

Outputs

6

signature a

4

signature

b

Transaction

Bitcoin

26

• Conditions:
• Sum of inputs must always be at least the sum of outputs

• unused part is used as transaction fee, gets paid to miner of block

• An input must always be some whole output, no splitting allowed!

• Money that a user “has” is defined as sum of unspent outputs

Bitcoin Transactions

27

Bitcoin Transactions

(A, 100)

(B, 100) (A, 10)

(B, 90)

(C, 105)

(A, 5)

Set of unspent transaction outputs (UTXOs):

- This set is the shared state of Bitcoin

- The red outputs

28

• Multiple transactions attempt to spend the same output

• Ex: In a transaction, an attacker pretends to transfer an output to a
victim, only to doublespend the same amount in another
transaction back to itself.

Doublespend Attack

(A, 100)(B, 100)

(B, 100)(B, 100)

Broadcast

Broadcast

29

• Right now we have infinitely growing memory pool and we can’t be
sure that other nodes have the same pool

• Solution: Propagate memory pool through network and make sure
everybody else will have same state

• Problem: How to avoid that everybody wants to propagate its own
memory pool?

• Solution: Proof-of-Work
• proof that you put a certain amount of work into propagating your memory

pool

Proof-of-Work

30

• Data structure holding transactions reference to previous blocks and a nonce.

• Miner creates blocks with transactions from the memory pool

Block

Hash(previous)

T1

T2

…

Tn

nonce

Hash(this)

Hash(previous)

T1

T2

…

Tn

nonce

Hash(this)

Hash(previous)

T1

T2

…

Tn

nonce

Hash(this)

Finding this Nonce

is expensive

31

• Mining Blocks requires to proof that a certain amount of
computational resources has been utilized

𝐹𝑑 𝑐, 𝑥 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}

- d: difficulty (is adapted all 24h)

- c: challenge (the transactions and the hash of the previous block)

- x: nonce (has to be found)

- For fixed parameters d and c, finding x such that the function

Proof-of-Work

Bitcoin PoW:

Bitcoin chooses

the difficulty

such that a

block is created

all ~10 min

32

• Why should someone mine blocks?
• You get a reward for each block you mine

• You get the fee in the transactions

Mining

Bitcoin:

• Reward started at 50B and it is being halved every 210,000 blocks or 4 years in expectation

• This bounds the total number of Bitcoins to 21 million

• What will happen after that?

• Fee is the positive difference of input-output

• Problem: Miner go for transactions which have a high fee.

• Problem: More miners -> more blocks are mined -> higher difficulty -> more Power needed

33

How does this prevent
double spending?
• An intruder needs to have 50% of computation power to be faster

in mining than all other together

A -> B:

10

A -> A:

10

doublespend

The goal of Alice is now to make

the branch where she spends the

money to herself growing faster.

34

Blockchain

• Starts with the genesis blog and is the longest path from this genesis block to a leaf.

• Consistent transaction history on which all nodes eventually agree

A -> B:

10

A -> A:

10
Blockchain

Genesis …

Note: To ensure that you’ll get the money you should wait 5-10 further blocks

35

• Contract between two or more parties, encoded in such a way that
correct execution is guaranteed by blockchain
• Timelock: transaction will only get added to memory pool after some time

has expired
• Micropayment channel:

• Idea: Two parties want to do multiple small transactions but want to avoid fees. So they
only submit first and last transaction to blockchain and privately do everything inbetween

Smart Contracts

36

A B

3: creates shared “account”, does not sign it

4: creates timelocked transaction that unrolls

shared account, signs it

5: sends them to B

cannot do anything with this,

since no transaction has

all required signatures

6: signs both transactions
can’t do anything with this, since unroll

transaction is not valid without create

transaction
7: signs create transaction and

broadcasts it to network

Micropayment Channel
Setup Transaction

37

set up shared account and unrolling

create settlement transaction

while sender still has money and timelock not expired

exchange goods and adapt money

update settlement transactions with new values

S signs transaction and sends it to R

Why does s sign it?

• like this, R always holds all fully signed transactions and can choose the last one (where he gets the most money)

• S cannot submit any transaction, so S cannot get the goods and later submit a transaction where S did not pay

the money for it

R signs last transaction and broadcasts it

before timelock expires

Micropayment Channel

38

a) Does a quorum system exist, which can tolerate that all nodes of a specific
quorum fail? Give an example or prove its nonexistence.
• No such quorum system exists.

b) Consider the nearly all quorum system, which is made up of n different
quorums, each containing n − 1 servers. What is the resilience of this
quorum system?
• Just 1 - as soon as 2 servers fail, no quorum survives.

c) Can you think of a quorum system that contains as many quorums as
possible? Note: the quorum system does not have to be minimal.
• 2n−1 quorums. All quorums overlap exactly in one single node. Each element of the

powerset of the remaining n − 1 nodes joined with this special node is a quorum.

Quiz - Quorums

39

