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Location p

Distance to A: || pA – p ||

Distance to B: || pB – p ||

Time difference 3.3 µs => distance = 3.3 µs · 3 · 108 m/s ≈ 1km

Residual r = || pB − p || − || pA − p || − 1 km

Last Exercise
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Residual at (2,6): abs(||(2,1)-(2,6)||-||(6,6)-(2,6)||-1) = abs(5 – 4 – 1) = 0

Residual at (4,4): abs(||(2,1)-(4,4)||-||(6,6)-(4,4)||-1) = abs(3.6 – 2.8 – 1) = 0.2

Last Exercise
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Distance from (2,6) to (2,1) is: 5 km

Divide by speed of light: 
5𝑘𝑚

3∗108𝑚/𝑠
= 16.7 𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑐𝑜𝑛𝑑𝑠

Time message is received: t + 16.7 microseconds

Last Exercise
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Last Exercise 1.3
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Last Exercise
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i n

j m

Measure of concurrency: 
𝑀𝑢−𝑀𝑠

𝑀𝑐−𝑀𝑠

𝑀𝑠 = Nr. sequential snapshots = 𝑛 +𝑚 + 1

𝑀𝑐 = Nr. concurrent snapshots = (𝑚 + 1)(𝑛 + 1)

𝑀𝑢 = Nr. snapshots in our system =

𝑖 ∗ 𝑚 + 1 + ( 𝑛 + 1 − 𝑖 𝑚 + 1 − 𝑗 )

Last Exercise 2.2
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i n

j m

𝑀𝑢 = Nr. snapshots in our system =

𝑖 ∗ 𝑚 + 1 + ( 𝑛 + 1 − 𝑖 𝑚 + 1 − 𝑗 )

Measure of concurrency: 
𝑀𝑢−𝑀𝑠

𝑀𝑐−𝑀𝑠

𝑀𝑠 = Nr. sequential snapshots = 𝑛 +𝑚 + 1

𝑀𝑐 = Nr. concurrent snapshots =(𝑛 + 1)(𝑚 + 1)

Last Exercise 2.2
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Chapter 21
Quorum Systems
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• Quorum
• Subset of nodes

• Quorum System
• Set of quorums such that every two quorums intersect

• Majority quorum: every quorum has 
𝑛

2
+ 1 nodes

• Idea:
• When accessing a lock from all members of one quorum there will not be 

possible for another node to do the same for any quorum

Quorum Systems
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Singleton and Majority
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• Load ~ probability
• Load of access strategy on node: Probability it gets accessed
• Load on quorum system induced by access strategy: load of node with 

maximal load
• Load of quorum system: load induced by access strategy with best access 

strategy

• Work ~ count
• Work of quorum: number of nodes
• Work induced by access strategy: expected number of nodes accessed
• Work of quorum system: work induced by access strategy with best access 

strategy

Load and work
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Quorum Systems - Example

v1

v2

v3

v4

v5

Access Strategy Z:
PZ(Q1) = 1/2

PZ(Q2) = PZ(Q3) = PZ(Q4) = 1/6

Load induced by Z on quorum system S:

LZ(S) = max
𝑣𝑖∈𝑆

𝐿𝑍(𝑣𝑖) = 5/6

Work induced by Z on quorum system S:

𝑊𝑍 𝑆 = ෍

𝑄∈𝑆

𝑃𝑍 𝑄 ∗𝑊(𝑄) =
1

2
∗ 2 +

1

6
∗ 3 +

1

6
∗ 3 +

1

6
∗ 3 =

15

6

LZ(v1) = 4/6

LZ(v2) = 1/2 + 1/6 + 1/6 = 5/6

LZ(v3) = 2/6

LZ(v4) = 2/6

LZ(v5) = 2/6
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• f-resilient
• any f nodes can fail and at least one quorum still exists

• resilience: largest such f

Fault Tolerance
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Load, work and resilience
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Problem: 

• 2 quorums intersect

in two nodes -> deadlock

Grid Quorum System – Basic Grid
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Solution:

Try to get all locks in order (by id), if

one is locked release all and start

over.

-> at least one quorum will always

make progress (the one with highest

identifier locked currently)

Grid Quorum System – Another Grid
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• Mini columns: one mini column in every band

• One band with at least one element per

mini-column

• r =  rows in a band, h = number of bands, 

d = count columns

• size of each quorum: h*r + d -1

• Has ideal properties:

• work: 𝜃( 𝑛)

• load: 𝜃(
1

𝑛
)

• asymptotic failure probability: 0

B-Grid Quorum System
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• f-disseminating
1) if the intersection of two quorums always contains f+1 nodes

2) for any set of f byzantine nodes, there always is a quorum without 
byzantine nodes
• good model if data is self-authenticating, if not we need a stronger one

• f-masking
1) if the intersection of two quorums always contains 2f+1 nodes

2) for any set of f byzantine nodes, there always is a quorum without 
byzantine nodes
• correct nodes will always be in majority

Byzantine Quorum System
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• 𝑓 + 1 rows and 𝑓 + 1 columns in each Quorum

• 2 ∗ 𝑓 + 1* 𝑓 + 1 = 2f + 2 intersections

• -> f-masking quorum systems

• Example: f = 3

Byzantine Quorum System – M Grid
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Chapter 22
Eventual Consistency & Bitcoin
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• Consistency: 
• All nodes agree on the current state of the system

• Availability:
• The system is operational and instantly processing incoming requests

• Partition tolerance:
• Still works correctly if a network partition happens

• Good news: 
• achieving any two is very easy

• Bad news: 
• achieving three is impossible (CAP theorem)

• => Eventual Consistency:
• Guarantees that the state is eventually agreed upon, but the nodes may disagree 

temporarily

Consistency, Availability, 
and Partition Tolerance
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• decentralized network consisting of nodes

• users generate private/public key pair
• address is generated from public key

• it is difficult to get users “real” identity from public key

Inputs 5

signature 

a

3

signatur

e b

Outputs

6

signature a

4

signature 

b

Transaction

Bitcoin
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• Conditions:
• Sum of inputs must always be at least the sum of outputs

• unused part is used as transaction fee, gets paid to miner of block

• An input must always be some whole output, no splitting allowed!

• Money that a user “has” is defined as sum of unspent outputs

Bitcoin Transactions
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Bitcoin Transactions

(A, 100)

(B, 100) (A, 10)

(B, 90)

(C, 105)

(A, 5)

Set of unspent transaction outputs (UTXOs):

- This set is the shared state of Bitcoin

- The red outputs
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• Multiple transactions attempt to spend the same output

• Ex: In a transaction, an attacker pretends to transfer an output to a 
victim, only to doublespend the same amount in another 
transaction back to itself.

Doublespend Attack

(A, 100)(B, 100)

(B, 100)(B, 100)

Broadcast

Broadcast
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• Right now we have infinitely growing memory pool and we can’t be 
sure that other nodes have the same pool

• Solution: Propagate memory pool through network and make sure 
everybody else will have same state

• Problem: How to avoid that everybody wants to propagate its own 
memory pool?

• Solution: Proof-of-Work
• proof that you put a certain amount of work into propagating your memory 

pool

Proof-of-Work
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• Data structure holding transactions reference to previous blocks and a nonce.

• Miner creates blocks with transactions from the memory pool

Block

Hash(previous)

T1

T2

…

Tn

nonce

Hash(this)

Hash(previous)

T1

T2

…

Tn

nonce

Hash(this)

Hash(previous)

T1

T2

…

Tn

nonce

Hash(this)

Finding this Nonce 

is expensive 
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• Mining Blocks requires to proof that a certain amount of 
computational resources has been utilized 

𝐹𝑑 𝑐, 𝑥 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}

- d: difficulty (is adapted all 24h)

- c: challenge (the transactions and the hash of the previous block)

- x: nonce (has to be found)

- For fixed parameters d and c, finding x such that the function

Proof-of-Work

Bitcoin PoW:

Bitcoin chooses 

the difficulty 

such that a 

block is created 

all ~10 min
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• Why  should someone mine blocks?
• You get a reward for each block you mine

• You get the fee in the transactions

Mining

Bitcoin: 

• Reward started at 50B and it is being halved every 210,000 blocks or 4 years in expectation

• This bounds the total number of Bitcoins to 21 million 

• What will happen after that?

• Fee is the positive difference of input-output

• Problem: Miner go for transactions which have a high fee.

• Problem: More miners -> more blocks are mined -> higher difficulty -> more Power needed
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How does this prevent 
double spending?
• An intruder needs to have 50% of computation power to be faster 

in mining than all other together

A -> B: 

10

A -> A:

10

doublespend

The goal of Alice is now to make 

the branch where she spends the 

money to herself growing faster. 
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Blockchain

• Starts with the genesis blog and is the longest path from this genesis block to a leaf.

• Consistent transaction history on which all nodes eventually agree

A -> B: 

10

A -> A:

10
Blockchain

Genesis …

Note: To ensure that you’ll get the money you should wait 5-10 further blocks
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• Contract between two or more parties, encoded in such a way that 
correct execution is guaranteed by blockchain
• Timelock: transaction will only get added to memory pool after some time 

has expired
• Micropayment channel:

• Idea: Two parties want to do multiple small transactions but want to avoid fees. So they 
only submit first and last transaction to blockchain and privately do everything inbetween

Smart Contracts
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A B

3: creates shared “account”, does not sign it

4: creates timelocked transaction that unrolls 

shared account, signs it

5: sends them to B

cannot do anything with this, 

since no transaction has 

all required signatures

6: signs both transactions
can’t do anything with this, since unroll 

transaction is not valid without create

transaction
7: signs create transaction and 

broadcasts it to network

Micropayment Channel
Setup Transaction
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set up shared account and unrolling

create settlement transaction

while sender still has money and timelock not expired

exchange goods and adapt money

update settlement transactions with new values

S signs transaction and sends it to R

Why does s sign it?

• like this, R always holds all fully signed transactions and can choose the last one (where he gets the most money)

• S cannot submit any transaction, so S cannot get the goods and later submit a transaction where S did not pay

the money for it 

R signs last transaction and broadcasts it 

before timelock expires

Micropayment Channel
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a) Does a quorum system exist, which can tolerate that all nodes of a specific 
quorum fail? Give an example or prove its nonexistence.
• No such quorum system exists.

b) Consider the nearly all quorum system, which is made up of n different 
quorums, each containing n − 1 servers. What is the resilience of this 
quorum system?
• Just 1 - as soon as 2 servers fail, no quorum survives.

c) Can you think of a quorum system that contains as many quorums as 
possible? Note: the quorum system does not have to be minimal. 
• 2n−1 quorums. All quorums overlap exactly in one single node. Each element of the 

powerset of the remaining n − 1 nodes joined with this special node is a quorum.

Quiz - Quorums
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