Computer Systems

Exercise Session Week 10

Exercise Session Week 10

e Last Exercise

* Recap

e Chapter 19 — Consistency & Logical Time
* Chapter 20 —Time, Clocks & GPS

 Next Sheet
* Quiz

Last Exercise

1.2 Synchronous Consensus in a Grid - Crash Failures

Consider the same network as in Question 1.1. Assume that some of the nodes crashed at the
beginning of the algorithm such that any two correct processes are still connected through at

least one path of correct processes.
Let [be the length of the longest shortest path between any pair of nodes in the grid; i.e., [
i1s the number of edges between those two nodes which are “farthest away” from each other. If

there are no failures, [is the distance between two corners, i.e. [= w + h.

a) Modify the algorithm from 1.1b) to solve consensus in [4+ 1 rounds with this special type
of crash failures. Show that your algorithm works correctly; i.e., a node does not terminate
before it learned the initial value of all nodes.

Solution: Show correctness and termination for algorithm used in 1.1b)

Last Exercise

1.2 Synchronous Consensus in a Grid - Crash Failures

Consider the same network as in Question 1.1. Assume that some of the nodes crashed at the
beginning of the algorithm such that any two correct processes are still connected through at
least one path of correct processes.

Let [be the length of the longest shortest path between any pair of nodes in the grid; i.e., [
1s the number of edges between those two nodes which are “farthest away” from each other. If
there are no failures, [is the distance between two corners, i.e. [= w + h.

b) As an adversary you are allowed to crash up to w + A many nodes at the beginning of the
algorithm. Let w = 7, h = 6. What is the largest [you can achieve?

S

90 0 0 0 0 0 0
9000060 090
t

oo 06 06 0 06 00

=32

6, 13 crashed nodes, path length

w=7, h

t

009000 0 °

applicable in a generalw X h-grid: [= 2 X (w + h)

Last Exercise

1.2 Synchronous Consensus in a Grid - Crash Failures

Consider the same network as in Question 1.1. Assume that some of the nodes crashed at the
beginning of the algorithm such that any two correct processes are still connected through at
least one path of correct processes.

Let [be the length of the longest shortest path between any pair of nodes in the grid; i.e., [
1s the number of edges between those two nodes which are “farthest away” from each other. If
there are no failures, [is the distance between two corners, i.e. [= w + h.

c) Assume that you run the algorithm with any type of crash failures; i.e, nodes can crash at
any time during the execution. Show that with such failures the algorithm does not always
work correctly anymore, by giving an execution and a failure pattern in which some nodes

terminate too early!

Round 1:

u-, U, X X
A o
N7 SN~—7

1.3 Consensus in a Grid. .. again!

In exercise 1 a) you had to develop a deterministic algorithm which reached consensus if there
are no failures. In this exercise we want to show a tight bound on the runtime for this problem.

Definition 1 (upper bound). We call t;; an upper bound on the runtime, if we can show that
the problem can be solved in time t;;.

The easiest way to show an upper bound is to design an algorithm which solves the problem
in time t;.

Definition 2 (lower bound). We call t, a lower bound on the runtime, if we can show, that no
algorithm exists which solves the problem in less than t; time.

This is usually more difficult to show than an upper bound, since it requires an argument
why no such algorithm can exist.

Definition 3 (tight bound). We call a bound t tight, if we have an upper bound ty; = t, and a
lower bound tp, = t; 1.e., the bounds match. In that case, we know exactly how much time solving
a problem requires.

Your task is to show that t = (w+h)/2 is a tight bound on the runtime for consensus if there
are no failures! For simplicity, assume that both w and h are even numbers, and that every node
knows w and h and its “coordinates” in the grid.

Assume the that one round consists of “send, receive, compute” in this order. L.e., if u sends
a message to v in round 1, v receives this message already in round 1.

a) Show an upper bound for the problem by providing an algorithm which runs in (w + h)/2
many rounds! (If your solution of 1 a) terminates in (w + h)/2 rounds you're done!)

Idea: node in the center of the grid is always the leader

Last Exercise

b) Show a lower bound of (w + h)/2.

Hint: Choose some distributions of initial values and show that no algorithm can solve
consensus for all these distributions in less than (w + h)/2, without violating at least one
of the requirements of consensus at least for one distribution.

Hint: We used a similar approach in the proof of Theorem 8.21.

reachable by [l

reachable by ur

"middle diagonal”

[l

ur

All Zero only 0 values
All One only 1 values
Half-Half || only 0 values

only 0 values
only 1 values
only 1 values

Cl010102010102010
0101010101 0102010
OOI010L 010102010

Last Exercise

2.2 Computing the Average Synchronously

In the lecture, we have focused on a class of algorithms which satisfy termination and agreement.
In the following, we drop the termination condition and relax the agreement assumption:

Agreement The interval size of the input values of all correct nodes converges to 0.

a) Suggest a simple synchronous algorithm satisfying the agreement property defined above.
Use the strategy from Question 2.1d).

Algorithm 2 Simple Synchronous Approximate Agreement

1: Lest x, be the input value of node u

2: repeat:

3: Broadcast x,,

4: I := all received values x, without the largest and the smallest f values
5. Set x,, := mean([])

[-4,-4,-3,-2,-1,0,1, 2, 3] [-4,-3,-2,-1,0,1, 2, 3, -4] [-3,-2,-1,0,1, 2,3,4,4]

{-1;-1/-110/ 1;111}

[_4/ _4/ -11 -11 -11 OI 1; 1/ 1] [_41 _11 _11 -11 OI 1/ 1/ 1; _4] [_11 _11 _11 OI 1/ 1/ 1; 4/ 4]

{-2/5, -2/5, -2/5, 0, 2/5, 2/5, 2/5}

[-4, -4,-2/5,-2/5,-2/5,0, 2/5, 2/5, 2/5] [-4, -2/5, -2/5, -2/5, 0O, 2/5, 2/5, 2/5, -4] [-2/5, -2/5,-2/5, 0, 2/5, 2/5, 2/5, 4, 4]

{-4/25,-4/25, -4/25, 0, 4/25, 4/25, 4/25}

Last Exercise

2.3 Computing the Average Asynchronously

Consider the algorithm you derived in Question 2.2 in an asynchronous system. Assume that
each node broadcasts the current round together with the current input value.

a) Sketch your algorithm in the asynchronous setting.

Algorithm 3 Simple Asynchronous Approximate Agreement

Lest z, be the input value of node

Let r := 1 denote the round

repeat:

Broadcast (x,,T)

Wait until received n — f messages of the form (z,,7)

I .= all received values z, in round r without the largest and the smallest f values
Set z,, := mean(l) and r :=1r +1

Last Exercise

2.3 Computing the Average Asynchronously

Consider the algorithm you derived in Question 2.2 in an asynchronous system. Assume that
each node broadcasts the current round together with the current input value.

a) Sketch your algorithm in the asynchronous setting.

b) Show that byzantine nodes can prevent this algorithm from converging if we apply it to
the input sequence from Question 2.1.

[_41 _41 _3; _2; _11 O; 1] [_3; _2; _1; o/ 1/ 21 3] [_1; O; 1/ 2/ 31 4; 4]
{_21_21_210121212}
[_41 _41 _21 _21 _21 Or 2] [_31 _21 _21 OI 2/ 2/ 2] [_21 OI 21 2/ 21 4/ 4]

{_21_21_210121212}

Consistency Models

* Linearizability
* Sequential Consistency
* Quiescent Consistency

Linearizability

* “one global order”

* Linearizability -> put points on a “line”
— Linearization points

writex= 1 Writi i =3 read x = 2

read x= 1 writey = 1
write x = 2 ready = 1
+
@, O [X O @ O

write x= 1<readx=1<writex=3<writey=1<writex=2<read x=2<read=1

Linearizability

* “one global order”

* Linearizability -> put points on a “line”
— Linearization points

writex= 1 write x = 3 read x= 2
readx=1 writey = 1
_
write x = 2 ready = 1
]

Y W

writex= 1<writex=2<readx=1

Sequential Consistency

 similar as linearizability, but can ”shift” and “squeeze” threads
compared to each other

* sequential consistency -> build “sequences”

writex =1 read x = 2 ready= 2

write x = 2 writey =1

writey = 2 ready = 2

Sequential Consistency

 similar as linearizability, but can ”shift” and “squeeze” threads
compared to each other

* sequential consistency -> build “sequences”

writex =1 read x = 2 ready= 2
write x = 2 writey = 1
* ﬁ
writey = 2 ready = 2
o—
o 00 O O o0

writex=1<writex=2<writey=3<readx=2<ready=2<ready =2<writey=1

Quiescent Consistency

* synchronizes all threads whenever there is a time when there is no
possible execution

e quiescent -> “Quietschente”
read x =1 ready=1

write x = 1 “ writey = 1

write x = 2 ready=1

writex=2<write x=1 ~# <writey=1<readyy=1<readx=1<ready=1

Consistency Models

Linearizability

Sequential Quiescent
Consistency Consistency

Composable (applies to consistency models)

 Definition: If you only look at all operations concerning all objects
individually and the execution is consistent, then also the whole
execution is consistent

e sequential consistency is not composable
* linearizability is composable
* quiescent consistency is composable

write x= 1 write x = 3 read x = 2

read x= 1 writey = 1

write x = 2 ready=1
O I

Logical Clocks

* happened before relation ,,->“ holds:
* If f <gonthesame node, thenf->g
* Send happens before receive
e Iff->gand g->hthenf->h (Transitivity)

* c(a) means timestamp of event a
* logical clock: if a -> b, then c(a) < c(b)
* strong logical clock: if c(a) < c(b), then a -> b (in addition)

Lamport Clock

+1 max(1,2) + 1

* Is a logical clock (so if
a -> b then c(a) < c(b))

* but the reverse does
not hold, so not a
strong logical clock

fime

Vector Clock

now vector of clocks)
increase own clock for event

—

(1,0,0) (2,0, O) (3,1, 0) (4,1 0) (5,1,2)(6,1.,2) (7,12
P E o
0 ;V
send current t%‘
Pl
' (o. 1,0) (22 0) k (6.3.2)

increase own by one and
take max of received and own
P are for every other one
S
1(0,0,1) m (002)

Vector Clock

* what does c(a) < c(b) mean now?
* if all the entries are in a <= b and at least one entry wherea<b

* is a logical clock (so if a -> b then c(a) < c(b))

e is also a strong logical clock (if c(a) < c(b) -> a -> b)

* intuition: because in order to achieve c(a) < c(b), all entries have to be at
least as big, so a message from a must have reached b (not necessarily
directly) so that b has the right a value

Consistent Snapshot

e Cut
 prefix of a distributed execution

* Consistent Snapshot

 a cut for which holds that for every operation g in that cut, if f->g, then also f
is there

* all “connected” preceding operations are included

* with number of consistent snapshots, one can make conclusions
about degrees of concurrency in system

Distributed Snapshot Algorithm

1>

P1

|
v

v

P2

P3

Algorithm 19.32 Distributed Snapshot Algorithm
1: Imitiator: Save local state, send a snap message to all other nodes and collect
Process P1 initiates a snapshot right after event B has happened incoming states and messages of all other nodes.

2: All other nodes:

3: Upon receiving a snap message for the first time: send own state (before
message) to the initiator and propagate snap by adding snap tag to future
messages.

4: If afterwards receiving a message m without snap tag: Forward m to the
initiator.

Terminology

- Wall-Clock Time t”: the true time (a perfectly accurate clock
would show)

« Clock: a device which tracks and indicates time
* Clock’s time is a function of the wall-clock: £ = f(t%)
« Clock Error or Skew: difference between two clocks. t - t'

t
| EREEE

Drift é - Predictable Jitter & - Unpredictable

Clock error modelled as: t = (1 + &)t + &(t7)

NTP: Network Time Protocol

Iy

%

response

V(+5)

u
H:
1~

L

T,

} first propagation delay

} processing time at node v

}

second propagation delay

Clock skew:

T, should be: T,, + propagation delay
T,,' should be: T,," + propagation delay

so skew is:

(Tv ~ Tu)_(Tu' - Tv') -

(1, = (1, + prop. detay]] = (1.’ - (7.’ + propeetay)) _

2
(Tv - Tu)+(Tv’ - Tu')

2

2

NTP: Network Time Protocol

0T,

25 T,/

%

response

V(+5)

u
R:
1~

T,” 20

propagation delay = 10

processing time = 5

propagation delay = 10

skew = (15-0) +(20-25)/2 = 5

GPS — General idea

one of them close to earth, one far away

circle in 3d space

Satelﬁt? Satellite 2
)) ~ here \

sphere

Transmits location of satelly
and timestamp when sent

GPS - Problem

* Problem: we do not have the same time as the satellite, so calculating
the distance might not be accurate

e Solution: take measurement from fourth satellite!

GPS - Refined

Quiz

1.1 Clock Synchronization

a) Assume you run NTP to synchronize speakers in a soccer stadium. Each speaker has a
radio downlink to receive digital audio data. However, there is no uplink! You decide to
use an acoustic signal transmit by the speaker. To synchronize its clock, a speaker first
plays back an acoustic signal. This signal is picked up by the NTP server which responds
via radio. The speaker measures the exact time that passes between audio playback and
radio downlink response. What is likely the largest source of error?

b) What are strategies to reduce the effect of this error source?

c) Prove or disprove the following statement: If the average local skew is smaller than x, then
so is the average global skew.

d) Prove or disprove the following statement: If the average global skew is smaller than z,
then so is the average local skew.

Quiz

2.1 Different Consistencies
Prove or disprove the following statements:
a) Neither sequential consistency nor quiescent consistency imply linearizability.

b) If a system has sequential consistency and quiescent consistency, it is linearizable.

