
Computer Systems
Exercise Session Week 9

Exercise Session Week 9

• Last Sheet: Advanced questions

• Recap
• Chapter 17 – Byzantine Agreement

• Chapter 18 – Broadcast & Shared Coins

• Next Sheet: Quiz questions

2

1.3 Improving Paxos

• Use different initial ticket numbers

• Servers reply to ask(𝑡) with nack(𝑇𝑚𝑎𝑥) if t < 𝑇𝑚𝑎𝑥 . (Instead of
ignoring the message)

• When receiving a nack(𝑇𝑚𝑎𝑥), clients will try ticket 𝑇𝑚𝑎𝑥 + 1 next.

➢ EduApp:

a) Does this improve runtime?

b) We now use a different approach: We add a wait time between 2
consecutive ask messages. How can you improve runtime like this?
Try to not slow down an individual client when it is alone.

3

2.3 Consensus with bandwidth limitations

• No node/edge crashes

• Messages transmitted reliably and arrive after 1 time unit

• Every node can send 1 message with 1 value to 1 neighbour per time
unit

➢ EduApp:

a) Develop consensus algorithm. What’s the runtime?

b) All nodes must learn input value of all nodes. Show that runtime is
at least 𝑛 − 1.

4

Exercise Session Week 9

• Last Sheet: Advanced questions

• Recap
• Chapter 17 – Byzantine Agreement

• Chapter 18 – Broadcast & Shared Coins

• Next Sheet: Quiz questions

5

Byzantine nodes

• Node which has (almost) arbitrary behavior

• It can:
• Decide not to send messages
• Sending different messages to different nodes
• Sending wrong messages
• Lie about input value

• It can’t:
• Forge an incorrect sender address
• Forge signatures or beat cryptographic assumptions

• If an algorithm works with 𝑓 byzantine nodes, it is 𝑓-resilient

Different Validities

• Any-input validity:
• The decision value must be input of any node
• That includes byzantine nodes, might not make sense

• Correct-input validity:
• The decision value must be input of a correct node
• Difficult because byzantine node could behave like normal one just with different value

• All-same validity:
• If all correct nodes start with the same value, the decision must be that value

• Median validity:
• If input values are orderable, byzantine outliers can be prevented by agreeing on a value

close to the median value of the correct nodes
• The median is the value separating the upper half from the lower half of a data sample.

Byzantine agreement in the synchronous
model
• Assumption: nodes operate in synchronous rounds. In each round,

each node may send a message to each other node, receive the
message by other nodes and do some computation.
• -> runtime is easy, since it is only the number of rounds

King Algorithm (synchronous byzantine
agreement)

Idea:
• Once all correct nodes have the same

value, we can easily make a decision.
➢ We receive at least 𝑛 − 𝑓 times

same value
• So let’s have one correct node decide

on the value and broadcast it. Then
all nodes choose it.

Problem:
• What if the “correct node” turns

byzantine.
➢ Have 𝑓 + 1 such “king nodes”!

King Algorithm (synchronous byzantine
agreement)

Idea:
• Once all correct nodes have the same

value, we can easily make a decision.
➢ We receive at least 𝑛 − 𝑓 times

same value
• So let’s have one correct node (king)

decide on the value and broadcast it.
Then all nodes choose it.

Problem:
• What if the king turns byzantine.

➢ Have 𝑓 + 1 kings!

Do until at least one correct king

Send out own value If we know that there’s a majority in
the correct nodes, propose that value.
We always know that there’s a
majority, if all correct nodes have
same value.

If at least one correct node knows of a
“correct majority”, join the majority.

King of this phase broadcasts
its value

If not all correct nodes already have
the same value, then choose the
king’s value

King Algorithm (synchronous byzantine
agreement)
• Does it solve byzantine agreement?

• Validity: All same validity!

• Agreement: They agree at least after

the first correct king.

• Termination: After (f+1)*3 rounds

Asynchronous Byzantine Agreement
Assumption: Messages do
not need to arrive at the
same time anymore. They
have variable delays.

➢ We can use the exact
same idea as when there
are only crashes.

“Default”: Flip coin and broadcast value

Wait for 𝑛 − 𝑓 messages: Is there a majority? Joint it!

Do all nodes know of the majority? Decide and terminate!

Asynchronous Byzantine Agreement
The two algorithms also have
the same problem:

• They’re slow! (Expected
exponential runtime)

Asynchronous Byzantine Agreement
The two algorithms also have
the same problem:

• They’re slow! (In expectation
exponential runtime)

But we can use the same trick
to improve on that:

• Shared coin / bitstring!

• But: If byzantine nodes know
next round’s bit, they can
exploit that and the
algorithm might never
terminate. (See Theorem
17.29)

If no popular value, look at bitstring

Exercise Session Week 9

• Last Sheet: Advanced questions

• Recap
• Chapter 17 – Byzantine Agreement

• Chapter 18 – Broadcast & Shared Coins

• Next Sheet: Quiz questions

20

Secret can only be unveiled with cooperation
of 𝑡 nodes

21

Generate a bit string

22

Byzantine nodes need at least one correct
node to unveil next round’s bit

23

Exercise Session Week 9

• Last Sheet: Advanced questions

• Recap
• Chapter 17 – Byzantine Agreement

• Chapter 18 – Broadcast & Shared Coins

• Next Sheet: Quiz questions

24

1.1 Synchronous consensus
on a grid
➢ EduApp:

a) Consensus when 𝑤 and ℎ are known

b) Consensus when 𝑤 and ℎ are unknown

d) What’s the smallest number of byzantine
failures such that consensus might become
impossible?

25

𝑤 ∙ ℎ ≫ 𝑤 + ℎ

2.1 What is the average?

7 nodes want to find the average of their inputs.

Inputs are: -3, -2, -1, 0, 1, 2, 3.

➢ EduApp:

a) What’s the smallest number of failures (crash/byzantine) such that
the task might become impossible?

b) If 2 nodes crash, in what range can the consensus value lie?

c) Additionally to the 7 correct ones, we have 2 byzantine nodes. In
what range can the consensus value lie?

26

