Computer Systems

Exercise Session Week 9

Exercise Session Week 9

 Last Sheet: Advanced questions

* Recap

* Chapter 17 — Byzantine Agreement
* Chapter 18 — Broadcast & Shared Coins

* Next Sheet: Quiz questions

1.3 Improving Paxos

e Use different initial ticket numbers

* Servers reply to ask(t) with nack(T,,,,) ift < T, - (Instead of
ignoring the message)

* When receiving a nack (T, 4y), clients will try ticket T,,,,, + 1 next.

» EduApp:
a) Does this improve runtime?

b) We now use a different approach: We add a wait time between 2
consecutive ask messages. How can you improve runtime like this?
Try to not slow down an individual client when it is alone.

2.3 Consensus with bandwidth limitations

* No node/edge crashes
* Messages transmitted reliably and arrive after 1 time unit

* Every node can send 1 message with 1 value to 1 neighbour per time
unit

» EduApp:
a) Develop consensus algorithm. What’s the runtime?

b) All nodes must learn input value of all nodes. Show that runtime is
at leastn — 1.

Exercise Session Week 9

 Last Sheet: Advanced questions

* Recap

* Chapter 17 — Byzantine Agreement
* Chapter 18 — Broadcast & Shared Coins

* Next Sheet: Quiz questions

Byzantine nodes

* Node which has (almost) arbitrary behavior

* |t can:
* Decide not to send messages
* Sending different messages to different nodes
* Sending wrong messages
 Lie about input value

* It can’t:
* Forge an incorrect sender address
* Forge signatures or beat cryptographic assumptions

* If an algorithm works with f byzantine nodes, it is f-resilient

Algorithm 15.13 Paxos

Client (Proposer) Server (Acceptor)
Initialization
c 4 command to erecute Tinax = 0 < largest issued ticket

t =0 < ticket number to try
C=1 4 stored command
Tiiore = 0 < ticket used to store C

1:t=t+1
2: Ask all servers for ticket ¢
if + > Thhax then
Tmax =t
Answer with ok(ZTore, C)
end if

PhSE 2 o e e

7. if a majority answers ok then
8: Pick (Tyore, C') with largest Tyiore

9: if Tiore > 0 then

10: c=C

11: end if

122 Send propese(t, ¢) to same

majority
13: end if
14: if t = Ty then
15 C=c¢
16: Tst{)re =t
17: Answer success
18: end if
T

19: if a majority answers success
then

20: Send execute(c) to every server

21: end if

Algorithm 16.15 Randomized Consensus (assuming f < n/2)

1: v; € {0,1} < input bit
2: round = 1
3: while true do

4:

10:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

Broadcast myValue(v;, round)
Propose

Wait until a majority of myValue messages of current round arrived
if all messages contain the same value v then
Broadcast propose(v, round)
else
Broadcast propose(L, round)
end if

Vote

Wait until a majority of propose messages of current round arrived
if all messages propose the same value v then

Broadcast myValue(v, round + 1)

Broadcast propose(v, round + 1)

Decide for v and terminate
else if there is at least one proposal for v then

V; = U
else

Choose v; randomly, with Pr[v; = 0] = Prlv; = 1] =1/2
end if
round = round + 1

22: end while

Different Validities

* Any-input validity:
* The decision value must be input of any node
* That includes byzantine nodes, might not make sense

* Correct-input validity:
* The decision value must be input of a correct node
 Difficult because byzantine node could behave like normal one just with different value

* All-same validity:
* |f all correct nodes start with the same value, the decision must be that value
* Median validity:

 If input values are orderable, byzantine outliers can be prevented by agreeing on a value
close to the median value of the correct nodes

 The median is the value separating the upper half from the lower half of a data sample.

Byzantine agreement in the synchronous
model

* Assumption: nodes operate in synchronous rounds. In each round,
each node may send a message to each other node, receive the
message by other nodes and do some computation.

* -> runtime is easy, since it is only the number of rounds

King Algorithm (synchronous byzantine

agreement)

Idea:

* Once all correct nodes have the same
value, we can easily make a decision.

» We receive at least n — f times
same value

* So let’s have one correct node decide
on the value and broadcast it. Then
all nodes choose it.

Problem:
e What if the “correct node” turns
byzantine.

» Have f + 1 such “king nodes”!

Algorithm 11.14 King Algorithm (for f < n/3)

1: @ = my input value
2: for phase =1to f+1do

10:
11:
12:
13:
14:

Round 1
Broadcast value(x)
Round 2

if some value(y) received at least n — f times then
Broadcast propose(y)

end if

if some propose(z) received more than f times then
r=z

end if
Round 3

Let node v; be the predefined king of this phase i

The king v; broadcasts its current value w

if received strictly less than n — f propose(y) then
r=w

end if

15: end for

King Algorithm (synchronous byzantine
agreement)

Algorithm 11.14 King Algorithm (for f < n/3)

1: & = my input value

Idea: 2. for phase — 1 to f +1do Do until at least one correct king
* Once all correct nodes have the same Hound 1
value, we can easily make a decision. 3: Broadcast value(r) Send out own value If we know that there’s a majority in
> We receive at least n — f times Round 2 the correct nodes, propose that value.
. : . We always know that there’s a
same value 4: if some value(y) received at least n — f times then . e .
. . e floret s orenz(y) majority, if all correct nodes have
* So let’s have one correct node (king) 6 ond if " same value.
decide on the value and broadcast it. ;: if some propose(z) received more than f times then ot eEe @E @aret acle e et
: Tr ==z SO 0o . .
Then all nodes choose it. , : “correct majority”, join the majority.
9: end if
Round 3
Problem: 10: Let node v; be the predefined king of this phase i King of this phase broadcasts
e \What if the k|ng turns byza ntine. 11: The king v; broadcasts its current value w its value
] 12: if received strictly less than n — f propose(y) then
» Have f + 1 kings! 5.
14: end if

15: end for

King Algorithm (synchronous byzantine

agreement)

Algorithm 11.14 King Algorithm (for f < n/3)

* Does it solve byzantine agreement? e =y ot valie

o e . q- o yhase =1 to f+1d
* Validity: All same validity! “ Tor LR <°
Round 1
 Agreement: They agree at least after + | Broadeast valus(s)

the first correct king.
e Termination: After (f+1)*3 rounds

10:
11:
12:
13:
14:

Round 2

if some value(y) received at least n — f times then
Broadcast propose(y)

end if

if some propose(z) received more than f times then
r=z

end if
Round 3

Let node v; be the predefined king of this phase i

The king v; broadcasts its current value w

if received strictly less than n — f propose(y) then
r=w

end if

15: end for

Asynchronous Byzantine Agreement

Assumption: Messages do , ,
. Algorithm 17.21 Asynchronous Byzantine Agreement (Ben-Or, for f < n/10)
not need to arrive at the I oy € {0.1) < input bit

sdame t|me anymore. They 2: round = 1 4 round

3: while true do

have vVa r|a ble delays 4: Broadcast propose(x, round)

5. Wait until n — f propose messages of current round arrived

6: if at least n/2 + 3f + 1 propose messages contain same value z then

T: Broadcast propose(z,round + 1)
8: Decide for x and terminate
> We can use the exa Ct 9: else if at least n/2+ f 4 1 propose messages contain same value = then
. - . 10: Ty =T
same idea as when there 1 else
12: choose z,, randomly, with Pr[z, = 0] = Pr(z, = 1] =1/2
are only crashes. 15 end if

14: round = round + 1
15: end while

“Default”: Flip coin and broadcast value

Algorithm 16.15 Randomized Consensus (assuming f < n/2)

1. v; € {0,1}

< input bit

2: round = 1
3. while true do

4:

[

10:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

© o3P

Broadcast myValue(v;, round)
Propose

Wait until a majority of myValue messages of current round arrived
if all messages contain the same value v then
Broadcast propose(v, round)
else
Broadcast propose(_L, round)
end if

Vote

Wait until a majority of propose messages of current round arrived
if all messages propose the same value v then

Broadcast myValue(v, round + 1)

Broadcast propose(v, round + 1)

Decide for v and terminate
else if there is at least one proposal for v then

Vi =
else

Choose v; randomly, with Pr{v; = 0] = Pr|v; 1] 1/2
end if
round = round + 1

22: end while

Algorithm 17.21 Asynchronous Byzantine Agreement (Ben-Or, for f < n/10)

2: round = 1

< input bit
< round

3: while true do

4:

10:
11:
12:
13:
14:

Broadcast propose(x, ,round)

Wait until n — f propose messages of current round arrived

if at least n/2 + 3f + 1 propose messages contain same value = then
Broadcast propose(z,round + 1)
Decide for x and terminate

else if at least n/2+ f+ 1 propose messages contain same value z then
Ty =1

else
choose x, randomly, with Pr[z, = 0] = Pr[z, =1] =1/2

end if

round = round + 1

15: end while

Wait for n — f messages: Is there a majority? Joint it!

Algorithm 16.15 Randomized Consensus (assuming f < n/2) Algorithm 17.21 Asynchronous Byzantine Agreement (Ben-Or, for f < n/10)
1 v; € {0,1} < input bit 1: 2, € {0,1} < input bit
2: round = 1 2: round = 1 < round
3 while irue do | 3: while true do
4 Broadcast myValue(v;, round) 4: Broadcast propose(x, ,round)
Propose 5. Wait until n — f propose messages of current round arrived
5: Wait until a majority of myValue messages of current round arrived 6: if at least n/2+ 3f + 1 propose messages contain same value then
6: if all messages contain the same value v then 7 Broadcast propose(z,round + 1)
7: Broadcast propose(v, round) 8: Decide for x and terminate
8 else 9: else if at least n/2+ f+ 1 propose messages contain same value z then
9: Broadcast propose(_L, round) 10: Ty =T
10: end if 11: else
Vote 12: choose x, randomly, with Pr[z, = 0] = Pr[z, =1] =1/2
13: end if
11: }Vait until a majority of propose messages of current round arrived 14: round = round + 1
12: if all messages propose the same value v then 15: end while
13: Broadcast myValue(v, round + 1)
14: Broadcast propose(v, round + 1)
15: Decide for v and terminate
16: else if there is at least one proposal for v then
17: Vi ="
18: else
19: Choose v; randomly, with Pr{v; = 0] = Pr[v; = 1] = 1/2
20: end if

21: round = round + 1
22: end while

Do all nodes know of the majority? Decide and terminate!

Algorithm 16.15 Randomized Consensus (assuming f < n/2) Algorithm 17.21 Asynchronous Byzantine Agreement (Ben-Or, for f < n/10)
1: v; €{0,1} < input bit 1: x, € {0,1} 4 input bit
2: round = 1 2: round = 1 4 round
3 while irue do _. _ 3: while true do
4: Broadcast myValue(v;, round) 4 Broadcast propose(z,,round)
Propose 5. Wait until n — f propose messages of current round arrived
5: Wait until a majority of myValue messages of current round arrived 6: if at least n/ 2+ 3f + 1 propose messages contain same value z then
6: if all messages contain the same value v then 7: Broadcast propose(z,round + 1)
T Broadcast propose(v, round) 8 Decide for 2 and terminate
8 else 9: else if at least n/2+ f+ 1 propose messages contain same value z then
9: Broadcast propose(_L, round) 10: Ty =T
10: end if 11: else
Vote 12: choose x, randomly, with Pr[z, = 0] = Pr[z, =1] =1/2
13: end if
11: }N'ait until a majority of propose messages of current round arrived 14: round = round + 1
12: if all messages propose the same value v then 15: end while
13: Broadcast myValue(v, round + 1)
14: Broadcast propose(v, round + 1)
15: Decide for v and terminate
16: else if there is at least one proposal for v then
17: V; =V
18: else
19: Choose v; randomly, with Pr{v; = 0] = Pr|v; 1] 1/2
20: end if

21: round = round + 1
22: end while

Asynchronous Byzantine Agreement

The two algorithms also have

Algorithm 17.21 Asynchronous Byzantine Agreement (Ben-Or, for f < n/10)

the same prOblem' 1.z, € {0,1} < input bit
2: round = 1 < round
* They’re slow! (Expected 3: while true do
. . 4: Broadcast propose(x,,round)
exponentlal runti me) 5. Wait until n — f propose messages of current round arrived
6: if at least n/2 + 3f + 1 propose messages contain same value z then
T: Broadcast propose(z,round + 1)
8: Decide for x and terminate
9: else if at least n/2+ f 4 1 propose messages contain same value = then
10: Ty =
11: else
12: choose z,, randomly, with Pr[z, = 0] = Pr(z, = 1] =1/2
13: end if
14: round = round + 1

15: end while

Asynchronous Byzantine Agreement

The two algorithms also have
the same problem:

* They’re slow! (In expectation
exponential runtime)

But we can use the same trick
to improve on that:

* Shared coin / bitstring!

e But: If byzantine nodes know
next round’s bit, they can
exploit that and the
algorithm might never
terminate. (See Theorem
17.29)

Algorithm 17.21 Asynchronous Byzantine Agreement (Ben-Or, for f < n/10)

1.z, € {0,1} < input bit

2: round = 1 < round

3: while true do

4: Broadcast propose(z, round)

Wait until n — f propose messages of current round arrived

if at least n/2 + 3f + 1 propose messages contain same value = then
Broadcast propose(z,round + 1)
Decide for x and terminate

9: else if at least n/2+ f+ 1 propose messages contain same value x then

10: Ty =

11:
If no popular value, look at bitstring

12:
13: end if
14: round = round + 1

15: end while

Exercise Session Week 9

 Last Sheet: Advanced questions

* Recap

* Chapter 17 — Byzantine Agreement
* Chapter 18 — Broadcast & Shared Coins

* Next Sheet: Quiz questions

Secret can only be unveiled with cooperation
of t nodes

Algorithm 18.22 (¢,n)-Threshold Secret Sharing
1: Input: A secret s, represented as a real number.

Secret distribution by dealer d

2: Generate t — 1 random numbers aq,...,a;—1 € R

3: Obtain a polynomial p of degree t — 1 with p(z) = s+ a1z + -+ a;_ 12t~
4: Generate n distinct z1,...,z, € R\ {0}

5: Distribute share msg(z1,p(x1)), to node vy, ..., msg(z,,p(x,)), to node v,

Secret recovery

6: Collect ¢ shares msg(z,,p(x,)), from at least ¢ nodes
7: Use Lagrange’s interpolation formula to obtain p(0) = s

21

Gen

erate a bit string

Algorithm 18.23 Preprocessing Step for Algorithm 18.24 (code for dealer d)

1
2
3:
4

. According to Algorithm 18.22, choose polynomial p of degree f
. for:=1,....ndo
Choose coinflip ¢;, where ¢; = 0 with probability 1/2, else ¢; = 1
Using Algorithm 18.22, generate n shares (z%,p(x})),..., (2!, p(z")) for
Ci
end for

. Send shares msg(z,,, p(zy,)),, - - . ,msg(z!, p(z1)), to node u

22

Byzantine nodes need at least one correct
node to unveil next round’s bit

Algorithm 18.24 Shared Coin using Secret Sharing (ith iteration)

1: Replace Line 12 in Algorithm 17.21 by

2: Request shares from at least f 4+ 1 nodes

3: Using Algorithm 18.22, let ¢; be the value reconstructed from the shares
4: return c¢;

23

Exercise Session Week 9

 Last Sheet: Advanced questions

* Recap

* Chapter 17 — Byzantine Agreement
* Chapter 18 — Broadcast & Shared Coins

* Next Sheet: Quiz questions

1.1 Synchronous consensus
Oon a gric

> EduApp:
a) Consensus when w and h are known

b) Consensus when w and h are unknown

d) What’s the smallest number of byzantine
failures such that consensus might become
impossible?

w-h>w+h

2.1 What is the average?

7 nodes want to find the average of their inputs.
Inputs are: -3,-2,-1,0, 1, 2, 3.

» EduApp:

a) What's the smallest number of failures (crash/byzantine) such that
the task might become impossible?

b) If 2 nodes crash, in what range can the consensus value lie?

c) Additionally to the 7 correct ones, we have 2 byzantine nodes. In
what range can the consensus value lie?

