Automata & languages

A primer on the Theory of Computation

Laurent Vanbever nsg.ee.ethz.ch

ETH Zürich (D-ITET) October 15 2020 Part 5 out of 5

Last week was all about

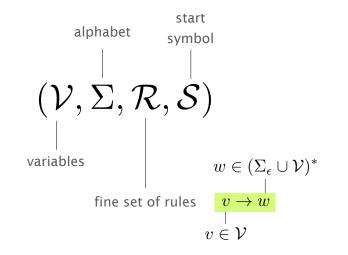
Context-Free Languages

Context-Free Languages

a superset of Regular Languages

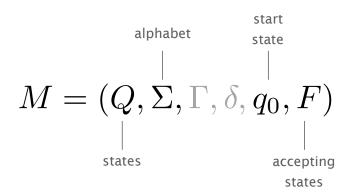
Example $\{0^n1^n \mid n \ge 0\}$ is a CFL but not a RL

We saw the concept of Context-Free Grammars

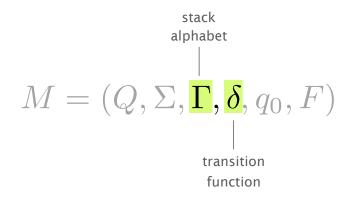


As for Regular Languages, Context-Free Languages are recognized by "machines"

Push-Down Automatas are pretty similar to DFAs



Push-Down Automatas are pretty similar to DFAs except for... the stack



 $Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \to P(Q \times \Gamma_{\epsilon})$

PDA Exercises

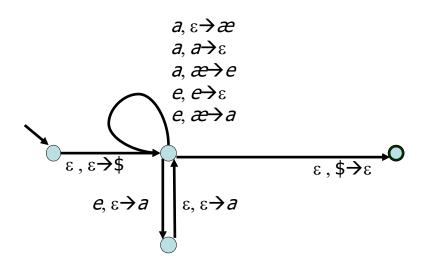
• Draw the PDA $\{a^ib^jc^k \mid i, j, k \ge 0 \text{ and } i=j \text{ or } i=k\}$

- Solution 2
- The idea is to use the stack to keep count of the number of *a*'s and/or *e*'s needed to get a valid string. If we have a surplus of *e*'s thus far, we should have corresponding number of *a*'s (two for every *e*) on the stack. On the other hand, if we have a surplus of *a*'s we *cannot* put *e*'s on the stack since we can't split symbols. So instead, we use a new symbol æ, which corresponds to a needed pair of a and e.
- Let's see how this looks on the next slide.

• Draw the PDA for $L = \{x \in \{a, e\}^* \mid n_a(x) = 2n_e(x)\}$

2/1

Solution 2 (nondeterministic)



This week, we'll see that

computers are not limitless

Some problems cannot be solved by a computer (no matter its power) Alan Turing (1912-1954)

But before that, we'll prove

some extra properties about Context-Free Languages

Today's plan 1 PDA × CFG Thu Oct 15 2 Pumping lemma for CFL

- . -
- 3 Turing Machines

Even smarter automata...

- Even though the PDA is more powerful than the FA, it is still really stupid, since it doesn't understand a lot of important languages.
- Let's try to make it more powerful by adding a second stack
 - You can push or pop from either stack, also there's still an input string
 - Clearly there are quite a few "implementation details"
 - It seems at first that it doesn't help a lot to add a second stack, but...

2/1

Even smarter automata...

- Even though the PDA is more powerful than the FA, it is still really stupid, since it doesn't understand a lot of important languages.
- Let's try to make it more powerful by adding a second stack
 - You can push or pop from either stack, also there's still an input string
 - Clearly there are quite a few "implementation details"
 - It seems at first that it doesn't help a lot to add a second stack, but...
- Lemma: A PDA with two stacks is as powerful as a machine which operates on an infinite tape (restricted to read/write only "current" tape cell at the time known as "Turing Machine").
 - Still that doesn't sound very exciting, does it...?!?

Automata & languages

A primer on the Theory of Computation

regular language

context-free language

Part 3

turing machine

Turing Machine

- A Turing Machine (TM) is a device with a finite amount of *read-only* "*hard*" memory (states), and an unbounded amount of read/write tape-memory. There is no separate input. Rather, the input is assumed to reside on the tape at the time when the TM starts running.
- Just as with Automata, TM's can either be input/output machines (compare with Finite State Transducers), or yes/no decision machines.

Turing Machine: Example Program

- Sample Rules:
 - If read 1, write 0, go right, repeat.
 - If read 0, write 1, HALT!
 - If read \Box , write 1, HALT! (the symbol \Box stands for the blank cell)
- Let's see how these rules are carried out on an input with the *reverse* binary representation of 47:

2/3

2/4

Turing Machine: Formal Definition

- Definition: A Turing machine (TM) consists of a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rei}).$
 - Q, Σ , and q_0 , are the same as for an FA.
 - q_{acc} and q_{rej} are accept and reject states, respectively.
 - Γ is the tape alphabet which necessarily contains the blank symbol \bullet , as well as the input alphabet Σ .
 - δ is as follows:

$$\delta: (Q - \{q_{\text{acc}}, q_{\text{rej}}\}) \times \Gamma \to Q \times \Gamma \times \{L, R\}$$

- Therefore given a non-halt state *p*, and a tape symbol *x*, $\delta(p,x) = (q,y,D)$ means that TM goes into state *q*, replaces *x* by *y*, and the tape head moves in direction D (left or right).

Turing Machine: Formal Definition

- Definition: A Turing machine (TM) consists of a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej}).$
 - Q, Σ , and q_0 , are the same as for an FA.
 - q_{acc} and q_{rei} are accept and reject states, respectively.
 - Γ is the tape alphabet which necessarily contains the blank symbol •, as well as the input alphabet $\Sigma.$
 - $\quad \delta \text{ is as follows:} \\$

$$\delta: (Q - \{q_{\text{acc}}, q_{\text{rej}}\}) \times \Gamma \to Q \times \Gamma \times \{L, R\}$$

- Therefore given a non-halt state *p*, and a tape symbol *x*, $\delta(p,x) = (q,y,D)$ means that TM goes into state *q*, replaces *x* by *y*, and the tape head moves in direction D (left or right).
- A string x is accepted by M if after being put on the tape with the Turing machine head set to the left-most position, and letting M run, M eventually enters the accept state. In this case w is an element of L(M) – the language accepted by M.

Comparison

Device	Separate Input?	Read/Write Data Structure	Deterministic by default?	
FA	Yes	None	Yes	
PDA	Yes	LIFO Stack	No	
ТМ	No 1-way infinite tape. 1 cell access per step.		Yes (but will also allow crashes)	

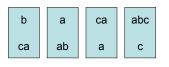
Turing Machine: Goals

- First Goal of Turing's Machine: A "computer" which is as powerful as any real computer/programming language
 - As powerful as C, or "Java++"
 - Can execute all the same algorithms / code
 - Not as fast though (move the head left and right instead of RAM)
 - Historically: A model that can compute anything that a human can compute.
 Before invention of electronic computers the term "computer" actually referred to a *person* who's line of work is to calculate numerical quantities!
 - This is known as the [Church-[Post-]] Turing thesis, 1936.
- Second Goal of Turing's Machine: And at the same time a model that is simple enough to actually prove interesting epistemological results.

2/7

Can a computer compute anything...?!?

• Given collection of dominos, e.g.



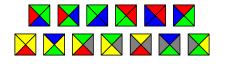
• Can you make a list of these dominos (repetitions are allowed) so that the top string equals the bottom string, e.g.

а	b	са	а	abc	
ab	са	а	ab	с	

- This problem is known as Post-Correspondance-Problem.
- It is provably unsolvable by computers!

Also the Turing Machine (the Computer) is limited

 Similary it is undecidable whether you can cover a floor with a given set of floor tiles (famous examples are Penrose tiles or Wang tiles)

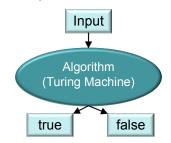


- Examples are leading back to Kurt Gödel's incompleteness theorem
 - "Any powerful enough axiomatic system will allow for propositions that are undecidable."

Decidability

• A function is computable if there is an algorithm (according to the Church-Turing-Thesis a Turing machine is sufficient) that computes the function (in finite time).

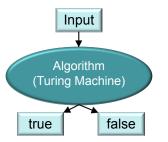
- Decidability
- A function is computable if there is an algorithm (according to the Church-Turing-Thesis a Turing machine is sufficient) that computes the function (in finite time).
- A subset T of a set M is called decidable (or recursive), if the function
 f: M → {true, false} with f(m) = true if m ∈ T, is computable.



2/11

Decidability

- A function is computable if there is an algorithm (according to the Church-Turing-Thesis a Turing machine is sufficient) that computes the function (in finite time).
- A subset T of a set M is called decidable (or recursive), if the function f: M → {true, false} with f(m) = true if m ∈ T, is computable.
- A more general class are the semi-decidable problems, for which the algorithm must only terminate in finite time in either the true or the false branch, but not the other.



Halting Problem

- The halting problem is a famous example of an undecidable (semi-decidable) problem. Essentially, you cannot write a computer program that decides whether another computer program ever terminates (or has an infinite loop) on some given input.
- In pseudo code, we would like to have:

procedure halting(program, input) {
 if program(input) terminates
 then return true
 else return false

2/14

Halting Problem: Proof

• Now we write a little wrapper around our halting procedure

procedure test(program) {
 if halting(program,program)=true
 then loop forever
 else return
}

• Now we simply run: test (test)! Does it halt?!?

- Excursion: P and NP
- P is the complexity class containing decision problems which can be solved by a Turing machine in time polynomial of the input size.

2/15

Excursion: P and NP

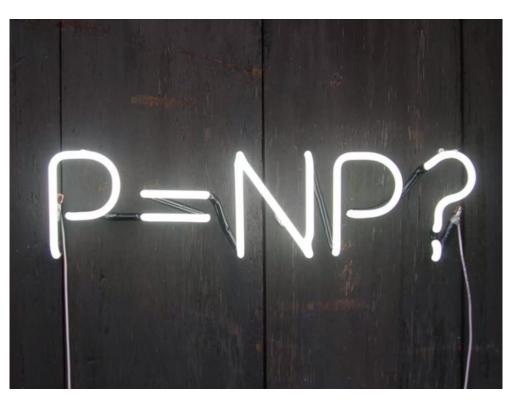
- P is the complexity class containing decision problems which can be solved by a Turing machine in time polynomial of the input size.
- NP is the class of decision problems solvable by a non-deterministic polynomial time Turing machine such that the machine answers "yes," if at least one computation path accepts, and answers "no," if all computation paths reject.

Excursion: P and NP

- P is the complexity class containing decision problems which can be solved by a Turing machine in time polynomial of the input size.
- NP is the class of decision problems solvable by a non-deterministic polynomial time Turing machine such that the machine answers "yes," if at least one computation path accepts, and answers "no," if all computation paths reject.
 - Informally, there is a Turing machine which can check the correctness of an answer in polynomial time.
 - E.g. one can check in polynomial time whether a traveling salesperson path connects *n* cities with less than a total distance *d*.

NP-complete problems

- An important notion in this context is the large set of NP-complete decision problems, which is a subset of NP and might be informally described as the "hardest" problems in NP.
- If there is a polynomial-time algorithm for even one of them, then there is a polynomial-time algorithm for all the problems in NP.
 - E.g. Given a set of *n* integers, is there a non-empty subset which sums up to
 0? This problem was shown to be NP-complete.
 - Also the traveling salesperson problem is NP-complete, or Tetris, or Minesweeper.

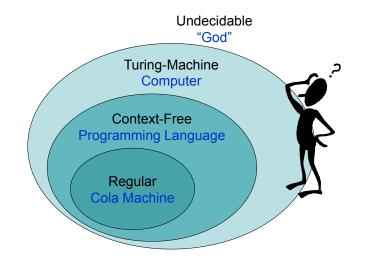


2/19

P vs. NP

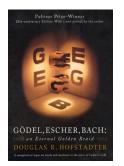
- One of the big questions in Math and CS: Is P = NP?
 - Or are there problems which cannot be solved in polynomial time.
 - Big practical impact (e.g. in Cryptography).
 - One of the seven \$1M problems by the Clay Mathematics Institute of Cambridge, Massachusetts.

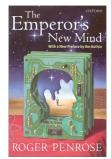
Summary (Chomsky Hierarchy)



Bedtime Reading

If you're leaning towards "human = machine"





If you're leaning towards "human ⊃ machine"