Discrete Event Systems

Exercise session #4

Maria Apostolaki

Roland Schmid

nsg.ee.ethz.ch

ETH Zurich 8 Oct 2020

Give context-free grammars for the following languages over the alphabet $\Sigma = \{0, 1\}$:

- A) $L = \{w \mid \text{ the length of w is odd}\}$
- B) $L_1 = \{w \mid contains more 1s than 0s\}$

A) $L_1 = \{w \mid \text{the length of w is odd}\}$

A) $L_1 = \{w \mid \text{the length of w is odd}\}$

$$V = \{X, A\},$$

 $\Sigma = \{0, 1\},$

$$R =$$

$$S = X$$

A) $L_1 = \{w \mid \text{the length of w is odd}\}$

$$V = \{X, A\},$$
 $\Sigma = \{0, 1\},$
 $R = \begin{cases} X \rightarrow XAX \mid A, \\ A \rightarrow 0 \mid 1 \end{cases},$
 $S = X$

B) $L_1 = \{w \mid contains more 1s than 0s\}$

B) $L_1 = \{w \mid contains more 1s than 0s\}$

$$S \rightarrow A1A$$

$$A \rightarrow AA \mid 1A0 \mid 0A1 \mid 1 \mid \varepsilon$$

B) $L_1 = \{w \mid contains more 1s than 0s\}$

$$S \rightarrow A1A$$

$$A \rightarrow AA \mid 1A0 \mid 0A1 \mid 1 \mid \varepsilon$$

a) Consider the context-free grammar G with the production $S \rightarrow SS \mid 1S2 \mid 0$. Describe the language L(G) in words, and prove that L(G) is not regular.

a) Consider the context-free grammar G with the production $S \rightarrow SS \mid 1S2 \mid 0$. Describe the language L(G) in words, and prove that L(G) is not regular.

```
Assume L(G) is regular. We take w=1^p0\ 2^p\in L(G), w=xyz with |xy|\le p and |y|\ge 1, because of |xy|\le p, xy can only consist of 1s According to the pumping lemma, we should have xy\ z\in L However, by choosing i=0 we delete at least one 1 and get a word w'=1^{p-|y|}0\ 2^p with |y|\ge 1. w' is not in L(G) since it has fewer 1s than 2s. This means that w is not pumpable and hence, L(G) is not regular.
```

b) The regular languages are a subset of the context-free languages. Give the context-free grammar for an arbitrary language L that is regular.

b) The regular languages are a subset of the context-free languages. Give the context-free grammar for an arbitrary language L that is regular.

Since every regular language is also context-free, we can choose an arbitrary regular language.

 $L = \{0^n 1, n \ge 1\}$ is clearly regular.

A context-free grammar for this language uses only the production $S \rightarrow 0S \mid 1$.

3. Pumping Lemma Revisited

A) Determine whether the language $L = \{1^{n^2} | n \in N\}$ is regular. Prove your claim!

3. Pumping Lemma Revisited

B) Consider a regular language L and a pumping number p such that every word $u \in L$ can be written as u = xyz with $|xy| \le p$ and $|y| \ge 1$ such that $xyz \in L$ for all $|z| \ge 0$.

Can you use the pumping number p to determine the number of states of a minimal DFA accepting L? What about the number of states of the corresponding NFA?

3. Pumping Lemma Revisited

$$\Sigma = \{a_1, a_2, ..., a_n\}$$

$$L = \bigcup_{i=1}^{n} a_i^* = a_1^* \cup a_2^* \cup \dots \cup a_n^*$$

Minimum Pumping length 1, but minimum DFA n+2