Discrete Event Systems

Exercise session \#3

ETH Zurich
1 Oct 2020

1. Pumping Lemma

Is following language regular?

$$
L=\left\{0^{a} 1^{b} 0^{c} 1^{d} \mid a, b, c, d \geq 0 \text { and } a=1, b=2 \text { and } c=d\right\}
$$

1. Pumping Lemma

Assume for contradiction that L is regular, p is the pumping length.
Let $w=0110^{\mathrm{p}} 1^{\mathrm{p}}, \mathrm{w} \in \mathrm{L}$ and $|\mathrm{w}|>\mathrm{p}$.

1. Pumping Lemma

Assume for contradiction that L is regular, p is the pumping length.
Let $w=0110^{\mathrm{p}} 1^{\mathrm{p}}, \mathrm{w} \in \mathrm{L}$ and $|\mathrm{w}|>\mathrm{p}$.
From pL, w can be split into 3 parts: $w=x y z$, where $|x y| \leq p$ and for any $i \geq 0$, we have $x y i z \in L$.

1. Pumping Lemma

Assume for contradiction that L is regular, p is the pumping length.
Let $w=0110^{\mathrm{p}} 1^{\mathrm{p}}, \mathrm{w} \in \mathrm{L}$ and $|\mathrm{w}|>\mathrm{p}$.
From pL, w can be split into 3 parts: $w=x y z$, where $|x y| \leq p$ and for any $i \geq 0$, we have $x y i z \in L$.

We therefore consider the various cases.

* If y starts anywhere within the first three symbols
* If y consists of only 0 s from the second block,

Note that y cannot contain 1 s from the second block because of the requirement $|\mathrm{xy}| \leq \mathrm{p}$.

1. Pumping Lemma

Assume for contradiction that L is regular, p is the pumping length.
Let $w=0110^{\mathrm{p}} 1^{\mathrm{p}}, \mathrm{w} \in \mathrm{L}$ and $|\mathrm{w}|>\mathrm{p}$.
From pL, w can be split into 3 parts: $w=x y z$, where $|x y| \leq p$ and for any $i \geq 0$, we have $x y i z \in L$.

We therefore consider the various cases.

* If y starts anywhere within the first three symbols (i.e. 011) of w, deleting y creates a word with an illegal prefix (e.g. $10^{p} 1^{p}$ for $y=01$).
* If y consists of only 0 s from the second block, the word $w^{\prime}=x y^{2} z$ has more $0 s$ than 1 s in the last $\left|w^{\prime}\right|-3$ symbols and hence c $!=\mathrm{d}$.

Note that y cannot contain 1 s from the second block because of the requirement $|\mathrm{xy}| \leq \mathrm{p}$.
Therefore, L cannot be regular and we have a contradiction.

2. Deterministic Finite Automata [Exam]

Transform the NFA into an equivalent DFA, while assuming $\Sigma=\{0,1\}$. (Hint: Only construct states which are necessary!)

2. Deterministic Finite Automata [Exam]

2 Deterministic Finite Automata [Exam]

DFA

2. Deterministic Finite Automata [Exam]

DFA

2. Deterministic Finite Automata [Exam]

DFA

2. Deterministic Finite Automata [Exam]

DFA

2. Deterministic Finite Automata [Exam]

2. Deterministic Finite Automata [Exam]

3. Transforming Automata [Exam]

Consider the DFA over the alphabet $\Sigma=\{0,1\}$. Give a regular expression for the language L accepted by the automaton below. If you like, you can do this by ripping out states as presented in the lecture.

Hint: remove q2, q1, q3

3. Transforming Automata [Exam]

Add start and accept

Ripe out q2

3. Transforming Automata [Exam]

Add start and accept

Ripe out q2

3. Transforming Automata [Exam]

Add start and accept

Ripe out q2

3. Transforming Automata [Exam]

3. Transforming Automata [Exam]

$\left(01^{*} 0\right)^{*} 1\left(0 \cup 11^{*} 0\left(01^{*} 0\right)^{*} 1\right)^{*}$

4. Pumping Lemma

a) $\mathrm{L}=1^{\mathrm{n}} 02^{\mathrm{n}}>=0$

Is L regular?

Assume L is regular.
We take $w=1^{p} 02^{p} \in L$,
$w=x y z$ with $|x y| \leq p$ and $|y| \geq 1$, because of $|x y| \leq p, x y$ can only consist of 1 s
According to the pumping lemma, we should have $x y z \in L$
However, by choosing $\mathrm{i}=0$ we delete at least one 1 and get a word $\mathrm{w}^{\prime}=\mathrm{p}^{-|y|} 02^{\mathrm{p}}$ with $|y| \geq 1$.
w^{\prime} is not in L since it has fewer 1 s than 2 s .
This means that w is not pumpable and hence, L is not regular.

