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1. Pumping Lemma

Is following language reqgular?

L = {0%1°0°1¢ | a,b,c,d > 0 and a = 1,b = 2 and ¢ = d}
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1. Pumping Lemma

Assume for contradiction that L is regular, p is the pumping length.
Let w= 0110"1" , w e L and |w|>p.

From pL, w can be split into 3 parts: w = xyz, where |xy| < p and for any i = 0, we have xyiz € L.

We therefore consider the various cases.

If y starts anywhere within the first three symbols (i.e. 011) of w, deleting y creates a word with
an illegal prefix (e.g. 1 0°2° fory = 01).

If v consists of only Os from the second block, the word w' = xy2z has more Os than 1s in the last
lw'| — 3 symbols and hence c != d.

Note that y cannot contain 1s from the second block because of the requirement |xy| < p.

Therefore, L cannot be regular and we have a contradiction.



2. Deterministic Finite Automata [Exam]

Transform the NFA into an equivalent DFA, while assuming 2 = {0, 1}.
(Hint: Only construct states which are necessary!)
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3. Transforming Automata [Exam]

Consider the DFA over the alphabet 2 = {0, 1}. Give a regular expression
for the language L accepted by the automaton below. If you like, you can
do this by ripping out states as presented in the lecture.

$ Hint: remove g2, ql, g3
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Ripe out g3
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4. Pumping Lemma

a) L=1"02" >=0
Is L reqular?

Assume L is regular.
We take w = 170 2" e L,
w = Xyz with |xy| < p and |y| = 1, because of |xy| < p, xy can only consist of 1s

According to the pumping lemma, we should have xy z €L

However, by choosing i=0 we delete at least one 1 and get a word w’ = ¥~ Yl 0 2 with ly| = 1.
w’ is not in L since it has fewer 1s than 2s.
This means that w is not pumpable and hence, L is not regular.



