Discrete Event Systems Exercise session #3

Maria Apostolaki

Roland Schmid

nsg.ee.ethz.ch

ETH Zurich 1 Oct 2020

Is following language regular?

 $L = \{0^a 1^b 0^c 1^d \mid a, b, c, d \ge 0 \text{ and } a = 1, b = 2 \text{ and } c = d\}$

Assume for contradiction that L is regular, p is the pumping length. Let $w = 0110^{p}1^{p}$, $w \in L$ and |w| > p.

Assume for contradiction that L is regular, p is the pumping length. Let $w = 0110^{p} 1^{p}$, $w \in L$ and |w| > p.

From pL, w can be split into 3 parts: w = xyz, where $|xy| \le p$ and for any $i \ge 0$, we have $xy^{i}z \in L$.

Assume for contradiction that L is regular, p is the pumping length. Let $w = 0110^{p}1^{p}$, $w \in L$ and |w| > p.

We therefore consider the various cases.

- If y starts anywhere within the first three symbols *
- If y consists of only 0s from the second block, ×

Note that y cannot contain 1s from the second block because of the requirement $|xy| \leq p$.

From pL, w can be split into 3 parts: w = xyz, where $|xy| \le p$ and for any $i \ge 0$, we have $xy^i z \in L$.

Assume for contradiction that L is regular, p is the pumping length. Let $w = 0110^{p}1^{p}$, $w \in L$ and |w| > p.

From pL, w can be split into 3 parts: w = xyz, where $|xy| \le p$ and for any $i \ge 0$, we have $xy^{i}z \in L$.

We therefore consider the various cases.

- * an illegal prefix (e.g. $1 0^{p} 1^{p}$ for y = 01).
- * |w'| - 3 symbols and hence c != d.

Note that y cannot contain 1s from the second block because of the requirement $|xy| \leq p$.

Therefore, L cannot be regular and we have a contradiction.

If y starts anywhere within the first three symbols (i.e. 011) of w, deleting y creates a word with

If y consists of only 0s from the second block, the word $w' = xy^2z$ has more 0s than 1s in the last

(Hint: Only construct states which are necessary!)

Transform the NFA into an equivalent DFA, while assuming $\Sigma = \{0, 1\}$.

Consider the DFA over the alphabet $\Sigma = \{0, 1\}$. Give a regular expression for the language L accepted by the automaton below. If you like, you can do this by ripping out states as presented in the lecture.

Hint: remove q2, q1, q3

 $(01^*0)^*1(0 \cup 11^*0(01^*0)^*1)^*$

a) $L = 1^n 02^n >= 0$ Is L regular?

Assume L is regular. We take $w = 1^p 0 2^p \in L$,

w = xyz with $|xy| \le p$ and $|y| \ge 1$, because of $|xy| \le p$, xy can only consist of 1s According to the pumping lemma, we should have $xy z \in L$ However, by choosing i=0 we delete at least one 1 and get a word w' = $1^{-|y|} = 0 2^{\circ}$ with $|y| \ge 1$. w' is not in L since it has fewer 1s than 2s. This means that w is not pumpable and hence, L is not regular.