Discrete Event Systems

Exercise Sheet 3

1 Pumping Lemma [Exam]

Is the following language regular? Prove your claims!

$$
L=\left\{0^{a} 1^{b} 0^{c} 1^{d} \mid a, b, c, d \geq 0 \text { and } a=1, b=2 \text { and } c=d\right\}
$$

2 Deterministic Finite Automata [Exam]

Transform the NFA A in Figure 1 into an equivalent DFA, while assuming $\Sigma=\{0,1\}$. (Hint: Only construct states which are necessary!)

Figure 1: NFA A.

3 Transforming Automata [Exam]

Consider the DFA B in Figure 2 over the alphabet $\Sigma=\{0,1\}$. Give a regular expression for the language L accepted by the automaton B. If you like, you can do this by ripping out states as presented in the lecture.

Figure 2: DFA B.

4 Pumping Lemma

Is the following language regular? Prove your claims!

$$
L=\left\{1^{n} 02^{n} \mid n \geq 0\right\}
$$

