
Chapter 4

Data & Storage

A computer does more than just computation. In particular, a computer can
also store and retrieve large amounts of data efficiently. In this chapter, we want
to understand some of the key ingredients when it comes to dealing with data
and storage.

4.1 Dictionary

We manage a library and want to be able to quickly tell whether we carry a
given book or not. We need the capability to insert, delete, and search books.

Definition 4.1 (Dictionary). A dictionary is a data structure that manages → notebook

a set of objects. Each object is uniquely identified by its key. The relevant
operations are

• search: find an object with a given key

• insert: put an object into the set

• delete: remove an object from the set

Remarks:

• There are alternative names for dictionary, e.g. key-value store, asso-
ciative array, map, or just set.

• If the dictionary only offers search, it is called static; if it also offers
insert and delete, it is dynamic.

• When discussing the algorithms, we will often ignore that we actually
have a set of objects, each of which is identified by a unique key, and
just talk about the set of keys. With regard to the library example,
books are globally uniquely identified by a key called ISBN. Whenever
we say we insert/delete/search a key, we can just drag the key’s object
along.

• The classic data structure for dictionaries is a binary search tree.

73

https://colab.research.google.com/drive/1B4BUWj0zTKnSoMkKwKMirt-GJsZHPaSM#scrollTo=RxvjIjXwQgFF


74 CHAPTER 4. DATA & STORAGE

Definition 4.2 (Binary search tree). A binary search tree is a rooted tree,
where each node stores a key. Additionally, each node may have a pointer to a
left and/or right child tree. For all nodes, if existing, the nodes in the left child
tree store smaller keys, and those in the right child tree store larger keys.

→ notebook
1 def search(self, key): # self is current node, initially root

2 if key < self.key:

3 if self.left is None: return None

4 else: return self.left.search(key)

5 elif key > self.key:

6 if self.right is None: return None

7 else: return self.right.search(key)

8 return self.val

Algorithm 4.3: Search Tree: Search

Remarks:

• The cost of searching in a binary search tree is proportional to the
depth of the key, which is the distance between the node with the key
and the root.

• There are search trees called splay trees that keep frequently searched
keys close to the root for quick access. On the other hand, there may
be rarely accessed keys deep in a splay tree.

• Using balanced search trees, we can maintain a dictionary with worst-
case logarithmic depth for all keys, and thus worst-case logarithmic
cost per insert/delete/search operation.

• Is there a way to build a dictionary with less than logarithmic cost
and with keys that cannot be ordered?

4.2 Hashing

In this section we use hashing to implement an efficient dictionary.

Definition 4.4 (Universe, Key Set, Hash Table, Buckets). We consider a uni-
verse U containing all possible keys. We want to maintain a subset of this
universe, the key set N ⊆ U with |N | =: n, where |N | � |U |. We will use a
hash table M , i.e. an array M with m buckets M [0],M [1], . . . ,M [m− 1].

Remarks:

• The standard library of almost every widely used programming lan-
guage provides hash tables, sometimes by another name. In C++,
they are called unordered map, in Python dictionary, in Java HashMap.
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• The translation from virtual memory to physical memory uses a piece
of hardware called translation lookaside buffer (TLB), which is a hard-
ware implementation of a hash table. It has a fixed size and acts like
a cache for frequently looked up virtual addresses.

• Compilers make use of hash tables to manage the symbol table.

Definition 4.5 (Hash Function). Given a universe U and a hash table M , a
hash function is a function h : U →M . Given some key k ∈ U , we call h(k)
the hash of k.

Remarks:

• A hash function should be fast to compute and distribute hashes
nicely, e.g. h(k) = k mod m for a key k ∈ N; in contrast to Chapter
3, we do not care whether a hash function is one-way.

• If we use ISBN mod m as our library hash function, can we insert/de-
lete/search books in constant time?!

• What if two keys k 6= k′ have h(k) = h(k′)?

Definition 4.6 (Collision). Given a hash function h : U → M , two distinct
keys k, k′ ∈ U produce a collision if h(k) = h(k′).

Remarks:

• Since keys may experience collisions, the key must be stored in the
bucket.

• There are competing objectives we want to optimize for when hashing.
On the one hand, we want to make the hash table small since we want
to save memory. On the other hand, small tables will have more
collisions. How likely is it to get a collision for a given n and m?

Theorem 4.7 (Birthday Problem). If we throw a fair m-sided dice n ≤ m
times, let D be the event that all throws show different numbers. Then D satisfies
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Remarks:

• Theorem 4.7 is called the “birthday problem” since traditionally, peo-
ple use birthdays for illustration: In order to have a chance of at least
50% that two people in a group share a birthday, we only need 23
people.

• If we insert more than roughly n ≈
√
m keys into a hash table, the

probability of a collision approaches 1 quickly. In other words, unless
we are willing to use at least m ≈ n2 space for our hash table, we will
need a good strategy for resolving collisions.

• Theorem 4.7 assumes totally random hash functions — for non-random
distributions of hashes, we might have more collisions. In particular,
if we fix a hash function, then we can always end up with a key set N
that suffers from many collisions. E.g., if many books have an ISBN

that ends in 000, then ISBN mod 1000 is a terrible hash function.

• Maybe we can use modulo, but with a different m?

• However, for any hash function there are bad key sets.

• On the other hand, for every key set there are good hash functions!
How do we efficiently pick a good hash function, i.e. one that is likely
to distribute hashes well?

Definition 4.8 (Universal Family). Let H ⊆ {h : U → M} be a family of
hash functions from U to M . If for all pairs of distinct keys k 6= k′ ∈ U ,
the probability of a collision is P[h(k) = h(k′)] ≤ 1

m when we choose h ∈ H
uniformly, then H is called a universal family (of hash functions).

Remarks:

• In other words: if we choose a hash function from a universal family,
we can expect the hashes to be distributed well, regardless of the key
set.

• We cannot just pick a random function from U to M because there
are |M ||U | many, so we need |U | log |M | bits to encode such a random
function. That is even more bits than keys in our huge universe U .

Lemma 4.9. For prime m, a ∈ {0, . . . ,m− 1}, δ ∈ {1, . . . , b− 1}, and b ≤ m,
the linear function fδ(a) := a · δ mod m is a bijection.

Proof. Suppose there are integers a, a′ with 0 ≤ a < a′ < m such that fδ(a) =
fδ(a

′) mod m. Then, there exists an integer k such that a′ · δ = a · δ + km ⇔
δ(a′− a) = km, which implies that m | δ(a′− a). Since δ is relative prime to m,
we have m | (a′ − a), thus a = a′ mod m⇒ a = a′.

Theorem 4.10 (Universal Hashing). Let m be prime and s ∈ N. Let U =
{0, . . . , b − 1}s and let M = {0, . . . ,m − 1} with b ≤ m. For a key k =
(k0, . . . , ks−1) ∈ U and coefficient tuple a = (a0, . . . , as−1) ∈ {0, . . . ,m − 1}s,
define

ha(k0, . . . , ks−1) =

s−1∑
i=0

ai · ki mod m.
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Then H := {ha : a ∈ {0, . . . ,m− 1}s} is a universal family of hash functions.

Proof. Let (k0, . . . , ks−1) = k 6= k′ = (k′0, . . . , k
′
s−1) ∈ U . Using δi = k′i − ki we

get

ha(k′)− ha(k) =

s−1∑
i=0

ai · k′i −
s−1∑
i=0

ai · ki =

s−1∑
i=0

ai · δi mod m.

The terms with δi = 0 are 0, and so we can ignore them. Let X := {i ∈
{0, . . . ,m−1} : δi 6= 0} be the non-empty set of the indices of the non-zero terms,
with x = |X|. There are mx possibilities to choose the coefficients {ai : i ∈ X}.
So how many of these possibilities will have a conflict, i.e., a sum of 0? If we
choose x − 1 coefficients arbitrarily, then the last coefficient can always render
the sum 0, as according to Lemma 4.9 the last coefficient can add any value
{0, . . . ,m − 1} to the sum. In other words, mx−1 sums are 0. Therefore, our

chance of randomly picking an a that produces a collision is mx−1

mx = 1
m .

Remarks:

• Theorem 4.10 gives us a general method for picking hash functions
from a universal family in an efficient manner. We simply choose a
prime number m and uniformly at random some factors a0, . . . , ar.
Thus, we can represent our hash function as the tuple (m, a0, . . . , ar).

• In practice, hash tables perform really well, and if we detect that we
had bad luck in choosing our hash function, we just choose a new one
and rebuild our table with the new function — this is called rehashing.

4.3 Static Hashing

How can we state the tradeoff between space and collisions more precisely?

Definition 4.11 (Number of Collisions). Given a hash function h : U → M
and a key set N ⊆ U , define the number of collisions that h produces on N as

C(h,N) := |{{k, k′} ⊆ N : k 6= k′, h(k) = h(k′)}|.

Lemma 4.12 (Space vs. Collisions). We want a hash function h which produces
less than c collisions, i.e. C = C(h,N) < c, with n = |N |. If h comes from a

universal family, a hash table size m = dn(n−1)c e works.

Proof. There are
(
n
2

)
pairs of distinct keys in N , and each pair produces a

collision with probability at most 1/m since h is chosen from a universal fam-
ily. Using the linearity of expectation we can bound the number of expected
collisions:

E[C] ≤
(
n

2

)
· 1

m
=
n(n− 1)

2m
.

We choose m such that 2 · E[C] ≤ c:

2 · E[C] ≤ c⇔ n(n− 1)

m
≤ c⇔ n(n− 1)

c
≤ m.
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Now we use the Markov inequality which states that for any random variable
X that only takes on non-negative integer values, we have P[X ≥ k ·E[X]] ≤ 1

k .
Hence, we have Pr[C < 2·E[C] ≤ c] ≥ 1

2 . In other words, to find a hash function
with C < c we only need to sample 2 hash functions in expectation.

Remarks:

• According to Theorem 4.12, if we want no collisions, we set c = 1 and

choose m = dn(n−1)1 e = n(n− 1).

• Similarly, if we can tolerate n collisions, we find that a hash table of
size m = n− 1 suffices.

• Algorithm 4.13 defines perfect static hashing, which applies the result
of Theorem 4.12.

→ notebook
1 # Compute primary hash table M and secondary hash tables M_i

2 def perfect_static_hashing(N): # N = fixed set (list) of keys

3 n = len(N)

4 M = [None]*n

5 h = None

6 h2 = [None]*n

7 while True:

8 h = from_universal_family(n) # h: N -> range(n)

9 if C(h,N) < n: break # C counts the number of collisions

10 for i in range(n):

11 N_i = [x for x in N if h(x) = i]

12 n_i = len(N_i)

13 if n_i > 1:

14 M[i] = [None]*(n_i*(n_i-1))

15 while True:

16 h2[i] = from_universal_family(len(M[i]))

17 if C(h2[i], N_i) < 1: break

18 return M, h, h2

Algorithm 4.13: Perfect Static Hashing

Remarks:

• In the first stage, we find a hash function h with at most n collisions
in linear space according to Theorem 4.12.

• In the second stage, we find a hash function hi per bucket i without
collisions by using an amount of space that is quadratic in the number
of keys in the bucket ni as per Theorem 4.12.
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Theorem 4.14 (Perfect Static Hashing). Algorithm 4.13 returns a collision-
free data structure of with a total size (M and all Mi) less than 3n.

Proof. The data structure is collision-free because of the if condition in the inner
while loop. Bucket i is of size ni(ni − 1) = 2

(
ni

2

)
, holds ni keys that produced(

ni

2

)
collisions. Since the total number of collisions is less than n (if condition in

the first while loop), and each bucket is of size twice its collisions, the total size
of all buckets is less than 2n. The size of the primary table M is n, so together
the total size of the data structure is less than n+ 2n = 3n.

Remarks:

• We now have a hashing algorithm that can be built in linear space
and expected linear time, and offers worst-case constant time search
for a static set N .

• But what about a dynamic dictionary?

4.4 Dynamic Hashing

Definition 4.15 (Hashing with Chaining). In hashing with chaining, every → notebook

bucket M [i] stores a pointer to a secondary data structure that manages all keys
k with h(k) = i. Insertion, search, and deletion of k are all relegated to those
data structures. In the simplest implementation, we use a list for each bucket.

Remarks:

• Algorithm 4.13 is an instance of hashing with chaining with the Mi

being the secondary data structures managing the buckets.

• The Java standard library uses hashing with chaining to resolve colli-
sions.

Definition 4.16 (Load Factor). The fraction n
m =: α is called the load factor

of the hash table.

Remarks:

• The performance of all three operations (insert/delete/search) de-
pends on the load factor for all collision resolution strategies.

• Hashing with chaining allows for a load factor α > 1 since the size
of the table is the number of secondary data structures; performance
deteriorates with growing α.

• If we use linked lists as secondary structures and use a hash function
chosen from a universal family, the cost for an unsuccessful search is
1+α in expectation, while that for a successful search is roughly 1+ α

2
in expectation.

• If we use one of the strategies of this section and α grows too large,
we should rehash with a bigger m in order to remain efficient. In the
Java standard library, if a hash table surpasses a load factor of 0.75,
it is rehashed into a hash table with twice the size of the old one.
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Definition 4.17 (Hashing with Probing). In hashing with probing, keys are
stored directly in the hash table. The sequence (hi(k) mod m)i≥0 is called the
probing sequence of k, and each step of the iteration is a probe.

1 def search(self, k):

2 i = 0

3 while i < self.size:

4 j = self.h(i, k) % self.size # j = hi(k)

5 key_value = self.M[j]

6 if key_value == None: return None

7 elif key_value[0] == k: return key_value[1]

8 i += 1

9 return None

Algorithm 4.18: Hashing with Probing: Search

Remarks:

• Algorithm 4.18 defines how to search for a key in hashing with prob-
ing. The search is successful if the elif condition is satisfied. If the
preceding if is satisfied (or None returned at the end) the search is
unsuccessful.

• To insert a key, we adapt Algorithm 4.18: with an unsuccessful search
where if was satisfied, we insert in the empty bucket. Therefore, the
cost of an insert is roughly the cost of an unsuccessful search. An
unsuccessful search where the loop finished triggers a rehash.

• Table 4.19 describes three different types of hashing with probing, each
together with the approximate time that a successful or unsuccessful
search takes in expectation. More generally, linear probing uses some
linear function hi(k) = h(k)+ci for some c 6= 0, and quadratic probing
uses some quadratic function hi(k) = h(k) + ci + di2 with d 6= 0. As
long as we guarantee that hi(k) is integer for all i ∈ [m], the constants
c and d can be rational.

Probing hi(k) ≈ cost successful ≈ cost unsuccess.

Linear h(k) + i 1
2

(
1 + 1

(1−α)2

)
1
2

(
1 + 1

1−α

)
Quadratic h(k) + i2 1

1−α + ln 1
1−α − α 1 + ln 1

1−α −
α
2

Double hashing h1(k) + i · h2(k) 1
1−α

1
α ln

(
1

1−α

)
Table 4.19: Different types of hashing with probing together with the expected
number of probes per search, where α is the load factor of the table. For hashing
with probing, we need α ≤ 1 since we must have n ≤ m. Each of h, h1, h2 is a
hash function drawn from a universal family.



4.5. CUCKOO HASHING 81

Remarks:

• What is the reason for the different costs in Table 4.19?

• Linear probing suffers from so-called primary clustering : the probing
sequences are simplistic; if two probing sequences meet in the same
bucket j, they will continue to collide in buckets j + 1, j + 2, . . .

• Quadratic probing does not suffer from primary clustering, but it is
subject to secondary clustering : if two keys have the same hash, then
their probing sequences are identical.

• The form of quadratic probing defined in Table 4.19 has one additional
issue: the probing sequence of a key does not necessarily cover the
whole table. Assume m = 7 buckets and h(k) = 0, then the probing
sequence of k is (0, 1, 4, 2, 2, 4, 1) — buckets 3, 5, 6 do not appear.

• Double hashing does not suffer from either version of clustering. One
can show that if the hash functions h1 and h2 used in double hashing
are independently drawn from a universal family, then double hashing
performs as well as an idealized hash function that assigns hashes
uniformly at random.

4.5 Cuckoo Hashing

So far, the cost of all operations for dynamic key sets has been given in expected
time cost. There are algorithms that allow us to do better and give us worst
case guarantees on some of the operations. Two widely known possibilities to
achieve this are called dynamic perfect hashing and cuckoo hashing.

→ notebook
1 Cuckoo hashing uses two hash tables, and as such provide two

possible buckets M1[h1(k)] or M2[h2(k)] for each key k.↪→

2 If one of the two buckets is empty, simply place k there.

3 If both buckets are occupied by other keys, k is anyway inserted

in one of the two possible buckets, replacing some key k1

that currently resides in this bucket.

↪→

↪→

4 The kicked out key k1 moves to its other bucket, potentially

kicking out the currently resident key k2; this is repeated

recursively until an empty bucket is found.

↪→

↪→

5 If this recursion loops or takes too long (logarithmic in the

table size), the hash table is rebuilt using two new hash

functions.

↪→

↪→

Algorithm 4.20: Cuckoo Hashing: Insert
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Remarks:

• Search and delete only need to check two buckets to figure out whether
a given key is in the table, and so those operations are worst case
constant time.

• One can show that the expected insert cost in cuckoo hashing is con-
stant as long as the load factor α is below 0.5.

• Cuckoo hashing gets its name from cuckoo birds: they lay their eggs
into the nests of other birds, and once the cuckoo chicks hatch, they
push the other eggs/chicks out of the nest.

• The idea behind cuckoo hashing is to use the “power of two choices”,
which can be roughly described as: if you can choose between two
resources and use the one that is less busy, you gain efficiency.

• To adapt perfect static hashing to a dynamic setting where we can
also handle inserts and deletions, all we have to do is choose the size
of Mi twice as large as in Algorithm 4.13, and rehash appropriately:
Whenever C(hi, Ni) > 0 for some bucket i, we rehash that bucket
until there are no collisions. Once some bucket reaches n2i ≈ |Mi| due
to insertions, we rehash the entire table. This leaves us with expected
constant time insert and delete, and worst case constant time search.
To keep the table linear-sized, we rehash everything after every m
updates (inserts or deletes).

4.6 Key-Value Databases

Definition 4.21 (Key-Value Database System). The concept of dictionaries is
used in key-value database systems. The server maintains the dictionary and
clients can insert and query the stored data using the keys.

Remarks:

• Popular key-value databases are Redis and Memcached. They are
often used for caching in web services. Dynamically generated docu-
ments or results of queries to other databases can be stored temporar-
ily to allow fast access to often requested data.

• The data is often kept in main memory to speed up the access and
only duplicated to disk to recover the database in case of a system
failure.

• Depending on the used database, different data types can be stored
in the value. This can be an integer, a string, or even an array.

• Document databases are an extension of simple key-value database
systems. The value has to be in a format that the database under-
stands, such as a JSON or XML document. These databases allow
queries on the content of the documents. MongoDB and CouchDB
are popular document databases.
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4.7 Relational Databases

However, most databases offer queries beyond simple key searches. Questions
like “What is the movie with the largest cast?” or “How many directors have
directed more than ten movies?” should be answered without first writing a
new program. Relational databases can store large amounts of structured data
and answer possibly complex questions about it.

Definition 4.22 (Table, Row, Column, Database). A table consists of rows,
so that each row (data record) contains the same fields, i.e., kinds of entries.
When the rows of a table are written line by line, the fields form the columns
of the table. Each column is referred to by a descriptive name, and is associated
with the type of the respective field, e.g., integer, floating point, string, or a date.
A database is a collection of tables.

Remarks:

• In the database context, tables are also called relations, because the
entries in each row are related to each other, namely by belonging to
the same row.

movies

title director year

12 Angry Men Sidney Lumet 1957

Raiders of the Lost Ark Steven Spielberg 1981

War of the Worlds Steven Spielberg 2005

Manos: The Hands of Fate Harold P. Warren 1966

...

Figure 4.23: A database containing a single table called “movies” storing the
title, director, and year of release for each movie.

Remarks:

• Databases as we study them are accessed using the so-called structured
query language (SQL). Thus they are referred to as SQL or relational
databases.

• MySQL and PostgreSQL are two popular open source SQL database
systems.

• SQL database systems typically run as a daemon process on some
server. Client applications connect to the server and authenticate
themselves via username and password. Therefore, multiple users ac-
cessing the same database may result in concurrency issues. Some
form of concurrency control is necessary!
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• Other database systems are tailored to single-user processing. They
relieve developers from the burden of implementing efficient data struc-
tures for relational data. SQLite is one such example, and is used, e.g.,
in Firefox, Chrome, Android, Adobe Lightroom, and Windows 10.

4.8 SQL Basics

Definition 4.24 (SQL Data Types). SQL defines the following types of columns.
• CHARACTER(m) and CHARACTER VARYING(m) for fixed and vari-

able length strings of (maximum) length m,
• BIT(m) and BIT VARYING(m) for fixed and variable length bit strings

of (maximum) length m,
• NUMERIC, DECIMAL, INTEGER, and SMALLINT for fixed point and

integer numbers,
• FLOAT, REAL, and DOUBLE PRECISION for floating point numbers,
• DATE, TIME, and TIMESTAMP for points in time, or
• INTERVAL for ranges of time.

Remarks:

• The range of each type includes the special value NULL. Note that
NULL is different from the string ’NULL’, the empty string, and from
the number 0 (zero). NULL indicates that the row has no value for
the corresponding field.

• Many database systems implement more types, e.g., geographic coor-
dinates, IP addresses, geometric objects, or large integers.

• All SQL statements end with a semicolon. The SQL language is case
insensitive, but by convention keywords are often typed in upper case.

• The SQL-92 specification is over 600 pages long, newer versions of the
standard even longer. To add insult to injury there are lots of vendor
specific “SQL dialects”, i.e., modifications and extensions. However,
the basic set of commands for creating, manipulating, and querying
tables are largely the same across database implementations.

CREATE DATABASE database-name; → notebook

Additional parameters allow to set database-specific options, e.g., user-
based permissions, or default character sets for text strings. How a database
is opened depends on the implementation.

CREATE TABLE table-name (field-name type, field-name type, . . . );
To enforce that all rows have a value for a particular field, one can add
NOT NULL to the type when creating the table. Fields have a default
value, which is NULL if not specified by adding DEFAULT value to the
type description.
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Remarks:

• There are also GUI and web-based client applications (that execute
locally or on an http-server, respectively) and offer access to the
database in a more intuitive manner than the classic command line
tools. Examples for PostgreSQL are pgAdmin, DataGrip and DBeaver.

• Such tools are especially helpful for creating the databases and tables
and often support multiple database systems. They also feature im-
porting data from various formats, e.g., CSV files, instead of using
SQL statements to populate the tables.

INSERT INTO table-name (field-name, . . . ) VALUES (value, . . . ); → notebook

Values must be listed in the same order as the corresponding field names.
When a field name (and thus its value) is omitted the field’s default value is
assumed. When the list of field names is omitted the field’s values must be
listed in the same order that was used when creating the table. To insert
more than one row in one statement, multiple rows may be separated by
commas.

→ notebook
SELECT * FROM movies;

SELECT * FROM movies WHERE director = 'Spielberg, Steven';

SELECT title FROM movies WHERE year BETWEEN 1990 AND 1999;

SELECT * FROM movies WHERE title IS NULL OR director IS NULL;

SELECT title, director FROM movies WHERE title LIKE '%the%';

Listing 4.25: Querying the movies table.

SELECT field-name, . . . FROM table-name WHERE condition;
Lists all specified fields of all rows in the table that fulfill the condition.
The special field * lists all fields. The WHERE condition may be omitted
to list the whole table. A condition can include comparisons (<,>,=, <>)
between fields constants. The special value NULL can be tested with IS
NULL. Conditions can be joined using parenthesis and logic operators like
AND, OR, and NOT. Strings can be matched with patterns using field-
name LIKE pattern . In the pattern, an underscore ( ) matches a single
character, whereas % matches arbitrarily many.

→ notebook
SELECT MIN(year) FROM movies;

SELECT AVG(year) FROM movies WHERE director='Lumet, Sidney';

SELECT COUNT(*) FROM movies;

SELECT COUNT(DISTINCT director) FROM movies;

Listing 4.26: Aggregation with SQL.

https://colab.research.google.com/drive/1B4BUWj0zTKnSoMkKwKMirt-GJsZHPaSM#scrollTo=JNfPfpH-ZWBW
https://colab.research.google.com/drive/1B4BUWj0zTKnSoMkKwKMirt-GJsZHPaSM#scrollTo=DDR_YJyBZkD0
https://colab.research.google.com/drive/1B4BUWj0zTKnSoMkKwKMirt-GJsZHPaSM#scrollTo=UoZxMtohkAaZ
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SELECT aggregate, . . . ;
Functions for aggregation include AVG to compute the average of a certain
field, MIN and MAX for the minimum and maximum value, SUM for the
sum of a field, and COUNT to count the number of occurrences. In an
aggregation, the keyword DISTINCT indicates that only distinct values
should be considered.

→ notebook
SELECT director, COUNT(title) FROM movies GROUP BY director;

SELECT director, COUNT(title) FROM movies GROUP BY director

HAVING COUNT(title) > 10;

SELECT year, director, COUNT(title) FROM movies

GROUP BY director, year

ORDER BY year DESC, director ASC;

Listing 4.27: Grouping and sorting.

SELECT field-name |aggregate, . . . GROUP BY field-name,. . . ;
Aggregations may be partitioned using the group-by clause. Similar to
before, the query result can only include aggregates and fields by which
the result is partitioned.

Since WHERE clauses are applied before GROUP BY the result of aggre-
gations cannot appear in them. When the result should be conditioned
on the result of an aggregation, a HAVING clause can be used.

SELECT . . . ORDER BY field-name,. . . ;
After each field-name, the keyword ASC or DESC can be used to deter-
mine ascending or descending sorting order, respectively.

UPDATE movies SET title = 'Star Wars Episode IV: A New Hope'

WHERE title = 'Star Wars';

DELETE FROM movies WHERE title = '';

Listing 4.28: Updating and removing rows.

UPDATE table SET field-name = value,. . . WHERE condition;
Updates the specified fields in all rows fulfilling the condition.

DELETE FROM table-name WHERE condition;
Removes all rows fulfilling the condition from the table.

4.9 Modeling

The way our example table from Figure 4.23 is designed results in lots of dupli-
cate data—the director’s name is stored anew for each row, and two directors
with the same name cannot be distinguished. The situation worsens when we

https://colab.research.google.com/drive/1B4BUWj0zTKnSoMkKwKMirt-GJsZHPaSM#scrollTo=KHhxxlCIWj6o
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want to store the cast of each movie. Clearly the way we modeled our data
can be improved. Entity-Relationship (ER) diagrams are a tool to find good
representations for data.

Definition 4.29 (ER Diagram). Rectangles denote entities (tables), and dia-
monds with edges to entities indicate relations between those entities. On such
an edge, the number 1 or the letter n denotes whether the corresponding entity
takes part once or arbitrarily many times in the relation. Entities and rela-
tions can have attributes (columns) with a name, drawn as ellipses. Italicised
attributes are key attributes which must be unique for each such entity.

directors

id name

movies

id title year

directing

1 n

actors

id name

acting

character

n n

Figure 4.30: Model for a movie database. Movies and directors are in a 1-
to-n relation: Each movie is directed by 1 director, and a director may work
on many movies. Movies and actors are in a n-to-n relation, which has an
additional attribute: An actor may appear in many movies, and each appearance
is associated with a character in that movie, played by that actor.

Remarks:

• It is standard practice to assign a so-called key attribute, often named
id, to every entity.

• What do ER diagrams have to do with SQL? Primarily, ER diagrams
are for conceptually modeling the kind of data and relations one wishes
to store. They can be translated into databases, but not in a unique
way.

• A close relative of the ER diagram is the Unified Modeling Language
(UML). UML is used to represent the tables of a database (or classes
of object oriented software) accurately, with detailed information, e.g.
fields.

• Each entity corresponds to a table with the corresponding attributes
as columns. An n-to-n relation is represented by a table with columns
for each attribute, and a column for the key attribute of each entity
in the relation.
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actor

id name

1 Harrison Ford

2 Tom Cruise

...

acting

actor id character movie id

1 Indy 2

2 Ray Ferrier 3

...

Figure 4.31: The actor table and a table capturing the acting relation.

Remarks:

• The same scheme can be used for 1-to-1 and 1-to-n relations. However,
one may also include the relation in the table storing the entity on the
1-side.

directors

id name

1 Sidney Lumet

2 Steven Spielberg

3 Harold P. Warren

...

movies

id title year director id

1 12 Angry Men 1957 1

2 Raiders of the Lost Ark 1981 2

3 War of the Worlds 2005 2

4 Manos: The Hands of Fate 1966 3

...

Figure 4.32: The movie and director tables using the new database layout. The
director table simply maps ids to director names. Since the directing relationship
is 1-to-n, it can be represented by adding a column to the movies table that
stores the director for each movie.

Remarks:

• Similarly, a 1-to-1 relation can be turned into an attribute of one of
the entities.

• Tables dedicated to capturing relations are often called join tables.

4.10 Joins

How can we access the data, which is now scattered across multiple tables?

→ notebook

https://colab.research.google.com/drive/1B4BUWj0zTKnSoMkKwKMirt-GJsZHPaSM#scrollTo=tG0MKjXPrulW&line=3&uniqifier=1
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SELECT movie.title, director.name AS director, movie.year

FROM movie

INNER JOIN director ON movie.director_id = director.id;

Listing 4.33: Example query that returns the table depicted in Figure 4.34.

SELECT . . .
FROM left-table INNER JOIN right-table ON condition;
Returns all rows that can be formed from a row in the left-table and a
row in the right-table that satisfy the specified condition.

movie.title director movie.year

12 Angry Men Sidney Lumet 1957

Raiders of the Lost Ark Steven Spielberg 1981

War of the Worlds Steven Spielberg 2005

Manos: The Hands of Fate Harold P. Warren 1966

...

Figure 4.34: The result returned by the query in Listing 4.33.

Remarks:

• In a query, one can create aliases for field and table names using the
AS keyword, see Listing 4.33.

• The result of a JOIN clause can be ordered, fields can be aggregated
and grouped, and conditions can be added using WHERE clauses.

• For example, we can combine joins and aggregations to answer our
initial question of which movie has the largest cast.

→ notebook
SELECT movie.title, COUNT(*) AS cast_size

FROM acting INNER JOIN movie ON acting.movie_id = movie.id

GROUP BY movie.id ORDER BY cast_size DESC LIMIT 10;

Listing 4.35: Finding the 10 movies with the largest cast.

https://colab.research.google.com/drive/1B4BUWj0zTKnSoMkKwKMirt-GJsZHPaSM#scrollTo=_-09nB26obZP&line=3&uniqifier=1
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Remarks:

• The query from Listing 4.35 uses a LIMIT clause to return only the
ten first entries of the sorted results.

• An INNER JOIN where the condition is TRUE returns the Cartesian
product of both tables. This special case can also be obtained with
the CROSS JOIN clause.

• An inner join will only return those rows of one table that have a
matching row (that satisfies the condition) in the other table. For
example, in Listing 4.33, a director with id 5 would not appear in the
result if there are no movies which have director id=5.

• If you want unmatched rows to appear in the result, you need to use
an OUTER JOIN.

→ notebook
SELECT movie.title, director.name AS director, movie.year

FROM movie

RIGHT OUTER JOIN director ON movie.director_id = director.id;

Listing 4.36: Example query that returns the table depicted in Figure 4.37.

movie.title director movie.year

12 Angry Men Sidney Lumet 1957

Raiders of the Lost Ark Steven Spielberg 1981

War of the Worlds Steven Spielberg 2005

Manos: The Hands of Fate Harold P. Warren 1966

NULL Jon Doe NULL

...

Figure 4.37: The result returned by the query in Algorithm 4.36. The right outer
join includes all rows from the inner join (see Figure 4.34) and, additionally, all
entries from the directors table for which there is no matching entry in the
movies table. In our example, “director” Jon Doe has not directed any movies,
hence the movie title and year column are filled with NULL values.

SELECT . . .
FROM left-table LEFT|RIGHT|FULL OUTER JOIN right-table
ON condition;
Returns all rows from the inner join. In addition, a LEFT or RIGHT
OUTER JOIN also returns all rows from the left or right table that have no

https://colab.research.google.com/drive/1B4BUWj0zTKnSoMkKwKMirt-GJsZHPaSM#scrollTo=SHU6ONPYpmh9&line=2&uniqifier=1


4.11. KEYS & CONSTRAINTS 91

matching row on the opposite table, respectively. The fields in unmatched
rows that cannot be filled from the other table are filled with NULL values.
A FULL OUTER JOIN returns both of the above.

Remarks:

• A LEFT OUTER JOIN in Listing 4.36 would include the movies with
no director instead of the directors who have not directed any movie.

• Queries may use more than one JOIN clause.

→ notebookSELECT movie.title

FROM actor INNER JOIN acting

ON acting.actor_id = actor.id AND actor.name = 'Harrison Ford'

RIGHT OUTER JOIN movie ON acting.movie_id = movie.id

WHERE acting.actor_id IS NULL;

Listing 4.38: Finding all movies that Harrison Ford did not appear in.

Remarks:

• The conditions for the first join in Listing 4.38 ensure that only movies
with Harrison Ford are taken into account for the second OUTER
JOIN. That second join in turn delivers all movies that cannot be
matched, yielding a NULL entry for the actor id for movies without
Harrison Ford.

4.11 Keys & Constraints

What is stopping us from inserting a row in the acting table that contains an
actor id or a movie id that does not exist? Or from creating a director with a
duplicate id?

Definition 4.39 (Key). In a table, a column (or set of columns) is a unique
key if the corresponding values uniquely identify the rows within the table. The
primary key of a table is a designated unique key. A foreign key is a column
(or set of columns) that references the primary key of another table.

Remarks:

• SQL databases can automatically enforce these constraints. For exam-
ple, a row containing a foreign key can only be inserted if it references
an existing primary key. Vice versa, a row may only be removed if its
primary key is not referenced by any foreign key.

ALTER TABLE table
ADD CONSTRAINT UNIQUE (field-name,. . . ); → notebook

Any two rows must differ in at least one of the specified fields.

https://colab.research.google.com/drive/1B4BUWj0zTKnSoMkKwKMirt-GJsZHPaSM#scrollTo=p4CuCrujwRAH&line=3&uniqifier=1
https://colab.research.google.com/drive/1B4BUWj0zTKnSoMkKwKMirt-GJsZHPaSM#scrollTo=V5kkxbRK-zrR
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ALTER TABLE table ADD PRIMARY KEY (field-name,. . . );
Sets the specified fields as the primary key for the table. Any two rows
must differ in at least one of the specified fields. The entries in these fields
must not be NULL.

ALTER TABLE left-table ADD FOREIGN KEY (field-name,. . . )
REFERENCES right-table;
Ensures that the values in the specified fields in the left table are the
primary key of a row in the right table.

Remarks:

• Constraints for new tables can also be set using CREATE TABLE.

• Other ALTER TABLE queries add different constraints (e.g., checking
that an integer field contains only certain values), remove constraints,
and change the name, type or default value of fields.

• To ensure that checking constraints and searching for data is fast,
database systems rely on index data structures.

4.12 Indexing

Definition 4.40 (Index). In the database context, an index is a data structure
that speeds up searching for rows with specific values.

Remarks:

• Without an index data structure, rows with a specific value can only
be found by scanning through the whole table.

• Earlier in the chapter you learned how hash tables can retrieve the
row associated with a key quickly. Many database systems implement
hash tables as one possible index data structure.

CREATE INDEX directorid ON director USING HASH (id);

Listing 4.41: Adding a hash table index to our database.

Remarks:

• The director associated with a movie is now found quickly when per-
forming a join.

• Some database systems automatically create index data structures to
speed up queries that involve frequently used fields.

• Index data structures have a name—“directorid” in Listing 4.41. This
is for referencing it later, e.g., if one decides to delete the index.
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• Hash tables scatter the data across the storage (volatile or persistent),
and it is likely that every access incurs overhead. Many database
queries require scanning through ranges of the data sequentially. For
example, when searching the movies from 2000–2005. Thus, accessing
supposedly closeby rows requires accessing items at many different
places.

• B+ trees are a data structure designed to minimize the amount of I/O
operations for both searching and scanning.

CREATE INDEX movieyear ON movies USING BTREE (year);

Listing 4.42: Adding a B+ tree index to our database.

Definition 4.43 (B+ Tree). A B+ Tree of order b is a rooted search tree
mapping keys to rows. B+ trees are balanced, i.e., all leaf nodes are at the
same depth.

Every non-leaf node has between bb/2c and b children. A non-leaf node v
with k children contains exactly k − 1 keys, in sorted order. The ith key of
a non-leaf node v is identical to the smallest key in the subtree rooted at v’s
(i+ 1)st child.

Leaf nodes contain all keys inserted into the tree, together with a pointer
which points to the row associated with that key. Every leaf has pointers to at
least b(b− 1)/2c and at most b− 1 table rows. Additionally, every leaf w has a
pointer which points to its next sibling w′.
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Figure 4.44: Example B+ tree of order b = 4.

Remarks:

• The root node is a special case—it may have as little as 2 children if
it is not a leaf. If it is a leaf, it may have only one pointer to a table
row.
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• The order b is sometimes called branching factor. To reduce the num-
ber of necessary I/O operations, b is chosen so that all data necessary
to store a node is the size of one page on disk.

• Finding the row for some key k in a B+ tree works similar to a binary
search tree.

• When inserting a key k, we have to check if the leaf v that should
contain k is already full (i.e. already contains b−1 keys). In that case
v, and possibly predecessors of v that contain too many keys, need to
be split using B+SplitUp.

• If the root node is split into two nodes v, v′, then a new root r con-
taining key k and v and v′ as children is created, and the recursion
stops.

• Inserting a key k is now performed by first making room using B+SplitUp
if necessary, and then inserting k at the leaf.

1 def B+Insert(self, k, r):

2 # Search for k to find the leaf v at which k must be inserted

3 v = self.search(k)

4 if len(v) == b-1:

5 B+SplitUp(v, k)

6 Replace child of key k with row r in node v

7 else:

8 Insert key k with row r into node v

Algorithm 4.45: B+Insert

Remarks:

• Vice versa, when deleting a key, nodes with too few keys need to be
filled up or removed from the tree.

• The properties of B+ trees ensure that every node has at least one
sibling. Thus, the merge operation always has two nodes to work with.

• If no keys can be “borrowed” from a sibling, the merge may propagate
until the last two children of the root node are merged into one node.
In that case the root node is replaced by the merged node, decreasing
the height of the tree by 1.

1 def B+Delete(self, k):

2 # Search for k to find the leaf v containing k

3 v = self.search(k)

4 Remove k from v
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5 if len(v) < (b-1)/2:

6 B+MergeUp(v)

Algorithm 4.46: B+Delete

Remarks:

• The height of a B+ tree is changed only when inserting a new or
removing an old root node. Therefore, all leaf nodes are always at the
same depth, thus ensuring the balanced property.

• A B+ tree containing n keys has height at most O(logb n).

• It may happen that many nodes contain as little as b/2 keys, wasting
memory and I/O operations. B* trees ensure that nodes contain at
least 2

3b keys by cleverly “trading” entries with neighboring nodes
when they contain too many or too few keys.

4.13 Transactions

Definition 4.47 (Transaction). A database transaction is a sequence of state-
ments that is executed atomically, i.e. the transaction appears to be instanta-
neous to an observer.

Remarks:

• Why would we need transactions? Consider a bank managing cus-
tomer’s accounts using a database system. Alice wants to calculate
the liquid assets, and Bob wants to make a money transfer:

-- Alice's statement:

SELECT SUM(balance) FROM accounts;

-- Bob's statements:

UPDATE accounts SET balance=balance-100 WHERE customer = 'Bob';

UPDATE accounts SET balance=balance+100 WHERE customer = 'Jim';

Listing 4.48: Concurrency issues in databases.

Remarks:

• Assuming that the database system uses multiple threads or processes
to process queries, Alice’s query may be CHF 100 short.

• To execute the queries atomically, both Alice and Bob can use trans-
actions.

BEGIN TRANSACTION; statement1; . . . ; END TRANSACTION;
Executes the statements atomically.
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Remarks:

• One way to implement transactions is to keep track of all fields read
from and written to (the read- and write-set, respectively). Then,
before a transaction ends, the database system checks whether an-
other transaction wrote to any value in the read-set. If the read-set
is unchanged, the write-set can be applied atomically, e.g., by using a
global lock.

• SQL offers different so-called isolation levels. The isolation level de-
fines when writes of one transaction become visible to others. The
above technique implements the repeatable reads level, ensuring that
read values were committed before and are not written by another
transaction.

• Consider some transaction A that selects all years between 1999 and
2004. What happens if another transaction B concurrently inserts an
entry for the year 2000? In the repeatable reads isolation level, A may
not see B’s data if B’s insert is scheduled after A read all other entries
for the year 2000, and A would still be allowed to finish. Repeatable
reads do not ensure atomicity . . .

• The highest isolation level is called serializable. This level ensures that
the transactions behave “as if they were executed in some sequential
order”, possibly at the cost of low concurrency.

4.14 Programming with Databases

How do you write an application that relies on a SQL database to store data?
Should you construct the necessary SQL statements by manipulating strings,
send them to the SQL server, and then parse the result?

Remarks:

• Writing such a SQL client is one possibility, but this is error-prone:
The compiler used for the application will not be able to detect errors
made in the SQL statements. Moreover, the declarative SQL most
likely does not mix well with the programming language chosen for
the application.

• One way to mitigate these issues in object oriented programming lan-
guages is object/relational mapping.

Definition 4.49 (Object/Relational Mapping). Object/Relational Map- → notebook

ping (ORM) is a design pattern used in object oriented programming to store
objects in and retrieve them from relational (SQL) databases.

Remarks:

• In the simplest case, an ORM simply maps a class to a table. An ob-
ject then corresponds to a row, and the object’s attributes correspond
to the row’s fields.

https://colab.research.google.com/drive/1B4BUWj0zTKnSoMkKwKMirt-GJsZHPaSM#scrollTo=-ln8d9lCGgpw
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• The ORM takes care of storing and retrieving object in the database
and performs type conversions where necessary. It provides object ori-
ented abstractions for database queries involving WHERE and other
clauses. ORMs also remove boilerplate code, i.e., setting up the SQL
connection, error handling, data conversion, etc.

• Popular ORMs include SQLAlchemy for Python, ActiveRecord for
Ruby, Hibernate for Java, and the Entity Framework for .NET.

• The ORM needs to know how it should translate between objects
and rows. For that, many ORM implementations allow to specify the
database layout using object oriented methods. Many ORM mappers
also support creating the database using the object oriented specifi-
cation.

• Some concepts from object oriented programming are difficult to model
with database concepts, and vice versa. The problems arising from
combining these two paradigms are called the Object-relational impe-
dance mismatch.

Chapter Notes

Dictionaries based on search trees are useful for providing additional operations
such as nearest neighbor queries or range queries, where we want to find all
keys in a certain range. Binary search trees were first published by three in-
dependent groups in 1960 and 1962 (for references, see Knuth [18]). The first
instance of a self-balancing search tree that guarantees logarithmic cost for in-
sert/search/delete is the AVL-tree, named so after its inventors Adelson-Velski
and Landis [1]. For multidimensional keys, e.g. geometric data or images, there
are specialized tree structures such as kd-trees [3] or BK-trees [5].

Hashing has a long history and was initially used and validated based on
empirical results. One of the first publications was Peterson’s 1957 article [20]
where he defined an idealized version of probing and empirically analyzed linear
probing. Universal hashing was introduced two decades later by Carter and
Wegman in 1979 [6]. Perfect static hashing was invented in 1984 by Fredman et
al. [13] and is sometimes also referred to as FKS hashing after its inventors. Its
dynamization by Dietzfelbinger et al. took another decade until 1994 [12]. A
comprehensive study on perfect hashing by Czech et al. was compiled in 1997
[11]. Cuckoo hashing is a comparatively recent algorithm; it was introduced by
Pagh and Rodler in 2001 [19].

There have been a number of other developments regarding hashing since the
late 1970s; for an overview, see Knuth [18], in particular the section on History
at the end of chapter 6.4. For a neat visualization of hashing with probing, see
[14] online.

The power of two choices paradigm has found widespread application and
analysis in load balancing scenarios. It was initially studied from the perspective
of a balls-into-bins game where we want to minimize the maximum number of
balls in any bin, and to do this we can pick two random bins and put the next
ball into the least full of the two bins. Richa et al. [21] compiled an excellent
survey on the earliest sources and numerous applications of this paradigm.
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In 1970, Edgar F. Codd proposed the relational database model [9] while
working at IBM research. Later in the 70s, another group at IBM developed
SQL’s predecessor SEQUEL (Structured English QUEry Language) [7]. After
being renamed SQL due to trademark issues, it was standardized by the ISO
in 1987 and later revised [15]. Other companies started developing relational
database systems, and nowadays there are many SQL databases implementing
different feature sets to choose from.

Around the same time, ER diagrams were conceived as a modeling tool [4, 8].
The Unified Modeling Language (UML), first standardized by the ISO in 1995
[16] and revised in 2012, also includes diagrams that model databases.

B Trees were invented in 1970 [2] for use in file systems. Many variants
were studied, among them B* Trees [17], in which at most 1/3 of the memory
is unused instead of 1/2 for B Trees. People soon realized that (also for file
systems) scanning subsequent rows is an important operation. B+ Trees require
at most one I/O operation to find the next element, cf. [17, 10].

Techniques from database systems can also be found in other areas of com-
puter science. Transactions as a parallel programming model have been adotped
for other programming languages under the term transactional memory. Ideas
developed to ensure that database transactions appear atomic w.r.t. writing
data to disk were adopted by general purpose file systems under the name jour-
naling.

This chapter was written in collaboration with Georg Bachmeier and Jochen
Seidel.
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