

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Prof. R. Wattenhofer Tejaswi Nadahalli and Ard Kastrati

Computational Thinking Exercise 5 (Cryptography)

1 Nonce Reuse

In the ElGamal digital signature scheme, why should the same random nonce never be reused for 2 different messages with the same public/secret keypair?

2 Cryptographic Hash Functions

Let $h_1, h_2 : \{0, 1\}^* \to \{0, 1\}^n$ be two collision resistant functions. Are the following hash functions also collision resistant? Explain¹.

- $h_3(x) = h_1(x) \oplus h_2(x)$
- $h_4(x) = x_0; h_1(x)$

Hint: Try to find a collision or reduce the collision-resistance of the constructed hash functions to collision-resistance of h_1 and h_2 .

3 IND-CPA

Let $h : \{0,1\}^* \to \{0,1\}^n$ be a collision resistant hash function, and let (Generate, Encrypt, Decrypt) be a correct and IND-CPA secure PK encryption scheme, as defined in the lecture. We define another PK encryption scheme (Generate', Encrypt', Decrypt') as follows:

- Generate'() = Generate() = (k_p, k_s) \rightarrow that is, the keys are generated in the same way
- Encrypt' $(m, k_p) = (c_1, c_2) = (h(m), \text{Encrypt}(m, k_p))$ \rightarrow In other words, h(m) is appended to the encrypted message.
- Decrypt'($(c_1, c_2), k_s$) = Decrypt(c_2, k_s)
- a) Show that the new scheme is a correct encryption scheme. That is, show that for any m Decrypt'(Encrypt'(m, k_p), k_s) = m.
- b) Show that (Generate', Encrypt', Decrypt') is not IND-CPA secure.

Hint: Think about the IND-CPA game and how can the adversary win with non-negligble probability.

HS 2020

 $^{^{1}}x_{0}$ means the first bit of the message x, and as in the lecture, concatenation of messages is denoted by ;