
Distributed
 Computing

HS 2020 Prof. R. Wattenhofer
Robin Fritsch

Computational Thinking

Sample Solutions to Exercise 3

1 Hamiltonian

a) We need to prove that we can solve an arbitrary instance of Hamiltonian Cycle by solving
instances of Hamiltonian Path. Let G = (V,E) be the input graph. For each edge e =
(u, v) ∈ E we construct a graph G′ as follows. We remove e from G and add two new nodes
s and t as well as two new edges (s, u) and (v, t). Then we search G′ for a Hamiltonian
path. If one exists, it must have endpoints s and t and it gives us a Hamiltonian Cycle in
G containing the edge e. On the other hand, if an Hamiltonian cycle exists in G, then for
each of its edges our construction leads to a G′ containing a Hamiltonian path.

b) Let G = (V,E) be an input of Hamiltonian Path. For every pair of vertices u, v ∈ V , we
construct a graph G′ by adding the edge (u, v) to G and check if G′ contains a Hamiltonian
cycle. If we find one, this gives us a Hamiltonian path in G since at most one of the cycles
edges was added. On the other hand, if a Hamiltonian path exists in G, the G′ we obtain
by adding the edge between its endpoints contains a Hamilton cycle.

2 Circuit Complexity

a) The inclusion NCi ⊂ ACi for i ≥ 0 is obvious. To prove ACi ⊂ NCi+1 for i ≥ 0 we need
to replace gates with a large fan-in since these are not allowed in NCi+1. A gate (AND or
OR) with fan-in m can be replaced by a binary tree of the same gate with fan-in 2. This
tree will have a depth of logm. Since m is no larger than the size of the circuit, the depth
of the circuit increases at most by a factor of logm = log(poly(n)) = O(log(n)) through this
transformation.

b) PARITY can be solved by a binary tree of XOR gates. (The XOR gates can be constructed
from AND, OR and NOT.) Depending on if we are asking if the number of 1s is even or
odd, a NOT gate needs to be placed before the output. Since the depth of such a circuit is
O(log n), PARITY is in NC1.

c) In NC0 all gates have a fan-in of at most 2. That means an output bit in a circuit of depth
d can only be connected to at most 2d input bits. In particular, this number is constant
when d is constant. Since the output of PARITY depends on all n input bits, it cannot be
computed by a circuit in NC0.

d) Let xn . . . x1yn . . . y1 denote the input and zn+1 . . . z1 the output. It is well known that
adding two n-bit binary numbers can be done by successively adding two bits and a possible
carry bit from the previous addition. (This is a ripple-carry adder (RCA) consisting of a
sequence of n full adders.) If ck denotes the carry bit from the k-th addition, this can be
written as z1 = x1 ⊕ y1, c1 = x1 ∧ y1,

ck = (ck−1 ∧ (xk ∨ yk)) ∨ (xk ∧ yk)

zk = xk ⊕ yk ⊕ ck

for k = 2, . . . , n, and zn+1 = cn.

However, since every carry bit depends on the previous one, this would lead to a circuit of
depth O(n). (In the RCA each full adder uses the carry bit of the previous full adder as
an input.) To find a circuit of constant depth, we would like to compute the carry bits ck
independently of each other. Note that the carry bit at position k is 1 if and only if a carry
is generated at some position i ≤ k and is carried all the way to position k. This fact can
be written as

ck =
∨

1≤i≤k

xi ∧ yi ∧
∧

i<j≤k

(xj ∨ yj)

 .

Using this expression we can construct a circuit with constant depth and unbounded fan-in.

e) In binary addition the first (most significant) bit of the result depends on all input bits. By
the same reasoning as in c) this cannot be accomplished in a circuit with constant depth
and fan-in of 2.

2

