Computational Thinking Exercise 14

1 PCP warm-up

Do the following PCPs have a solution?
a) Domino set $\left[\frac{a}{a a a b}\right],\left[\frac{a b b a}{b a}\right],\left[\frac{a a}{a b a}\right],\left[\frac{b b a b}{b b}\right]$.
b) Domino set $\left[\frac{a b}{a b b}\right],\left[\frac{a a b a}{a b b}\right],\left[\frac{b a a}{a a a}\right]$.
c) Domino set $\left[\frac{a b b b}{b}\right],\left[\frac{b}{b c a}\right],\left[\frac{c a c}{c a}\right],\left[\frac{a a}{c b}\right],\left[\frac{b b}{b b b}\right]$.
d) Domino set $\left[\frac{a d}{d d a}\right],\left[\frac{b c}{c a}\right],\left[\frac{c}{a}\right],\left[\frac{d}{d b}\right],\left[\frac{a b}{b c}\right]$.

2 PCP variants

Are the following variants of the PCP problem decidable or undecidable?
a) $a b^{*}$ PCP: each word α and each word β has the following form: it starts with a single letter a, and then an arbitrary number of letters b. Some examples for valid words are $a, a b b$ or abbbbbb.
b) Limited-use PCP: given an integer parameter k in the input, we only accept domino sequences that contain each domino at most k times.
c) Unique-triplet PCP: we only accept domino sequences where no consecutive triplet of dominoes appears two times, i.e. there are no distinct indices i, j such that each of the following three pairs of dominoes are the same: those at positions i and j, those at positions $(i+1)$ and $(j+1)$, and those at positions $(i+2)$ and $(j+2)$.
d) Two-color PCP: besides the two words (α, β), dominoes also have a color: each domino is painted red or blue. We only accept domino sequences that are alternating, i.e. a red domino is always followed by a blue domino, and vice versa.
e) Half-used PCP: given the input set of dominoes S, we only accept domino sequences that use at most half of the domino types (possibly with repetitions), i.e. there are at least $\frac{1}{2} \cdot|S|$ input dominoes that never occur in the sequence.
f) Silly PCP: for each domino (α, β) of the input set, the two words have the same length, i.e. we have $|\alpha|=|\beta|$.
g) Almost-silly PCP: for some constant integer $c>1$, the length of each word α and each word β has to be a multiple of c.
h) Binary PCP: the size of the alphabet is restricted to two characters, i.e. $\Sigma=\{0,1\}$.

